1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/arm-smccc.h> 8 #include <linux/preempt.h> 9 #include <linux/kvm_host.h> 10 #include <linux/uaccess.h> 11 #include <linux/wait.h> 12 13 #include <asm/cputype.h> 14 #include <asm/kvm_emulate.h> 15 16 #include <kvm/arm_psci.h> 17 #include <kvm/arm_hypercalls.h> 18 19 /* 20 * This is an implementation of the Power State Coordination Interface 21 * as described in ARM document number ARM DEN 0022A. 22 */ 23 24 #define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1) 25 26 static unsigned long psci_affinity_mask(unsigned long affinity_level) 27 { 28 if (affinity_level <= 3) 29 return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level); 30 31 return 0; 32 } 33 34 static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu) 35 { 36 /* 37 * NOTE: For simplicity, we make VCPU suspend emulation to be 38 * same-as WFI (Wait-for-interrupt) emulation. 39 * 40 * This means for KVM the wakeup events are interrupts and 41 * this is consistent with intended use of StateID as described 42 * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A). 43 * 44 * Further, we also treat power-down request to be same as 45 * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2 46 * specification (ARM DEN 0022A). This means all suspend states 47 * for KVM will preserve the register state. 48 */ 49 kvm_vcpu_wfi(vcpu); 50 51 return PSCI_RET_SUCCESS; 52 } 53 54 static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu) 55 { 56 vcpu->arch.power_off = true; 57 kvm_make_request(KVM_REQ_SLEEP, vcpu); 58 kvm_vcpu_kick(vcpu); 59 } 60 61 static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu, 62 unsigned long affinity) 63 { 64 return !(affinity & ~MPIDR_HWID_BITMASK); 65 } 66 67 static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu) 68 { 69 struct vcpu_reset_state *reset_state; 70 struct kvm *kvm = source_vcpu->kvm; 71 struct kvm_vcpu *vcpu = NULL; 72 unsigned long cpu_id; 73 74 cpu_id = smccc_get_arg1(source_vcpu); 75 if (!kvm_psci_valid_affinity(source_vcpu, cpu_id)) 76 return PSCI_RET_INVALID_PARAMS; 77 78 vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id); 79 80 /* 81 * Make sure the caller requested a valid CPU and that the CPU is 82 * turned off. 83 */ 84 if (!vcpu) 85 return PSCI_RET_INVALID_PARAMS; 86 if (!vcpu->arch.power_off) { 87 if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1) 88 return PSCI_RET_ALREADY_ON; 89 else 90 return PSCI_RET_INVALID_PARAMS; 91 } 92 93 reset_state = &vcpu->arch.reset_state; 94 95 reset_state->pc = smccc_get_arg2(source_vcpu); 96 97 /* Propagate caller endianness */ 98 reset_state->be = kvm_vcpu_is_be(source_vcpu); 99 100 /* 101 * NOTE: We always update r0 (or x0) because for PSCI v0.1 102 * the general purpose registers are undefined upon CPU_ON. 103 */ 104 reset_state->r0 = smccc_get_arg3(source_vcpu); 105 106 WRITE_ONCE(reset_state->reset, true); 107 kvm_make_request(KVM_REQ_VCPU_RESET, vcpu); 108 109 /* 110 * Make sure the reset request is observed if the change to 111 * power_off is observed. 112 */ 113 smp_wmb(); 114 115 vcpu->arch.power_off = false; 116 kvm_vcpu_wake_up(vcpu); 117 118 return PSCI_RET_SUCCESS; 119 } 120 121 static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu) 122 { 123 int matching_cpus = 0; 124 unsigned long i, mpidr; 125 unsigned long target_affinity; 126 unsigned long target_affinity_mask; 127 unsigned long lowest_affinity_level; 128 struct kvm *kvm = vcpu->kvm; 129 struct kvm_vcpu *tmp; 130 131 target_affinity = smccc_get_arg1(vcpu); 132 lowest_affinity_level = smccc_get_arg2(vcpu); 133 134 if (!kvm_psci_valid_affinity(vcpu, target_affinity)) 135 return PSCI_RET_INVALID_PARAMS; 136 137 /* Determine target affinity mask */ 138 target_affinity_mask = psci_affinity_mask(lowest_affinity_level); 139 if (!target_affinity_mask) 140 return PSCI_RET_INVALID_PARAMS; 141 142 /* Ignore other bits of target affinity */ 143 target_affinity &= target_affinity_mask; 144 145 /* 146 * If one or more VCPU matching target affinity are running 147 * then ON else OFF 148 */ 149 kvm_for_each_vcpu(i, tmp, kvm) { 150 mpidr = kvm_vcpu_get_mpidr_aff(tmp); 151 if ((mpidr & target_affinity_mask) == target_affinity) { 152 matching_cpus++; 153 if (!tmp->arch.power_off) 154 return PSCI_0_2_AFFINITY_LEVEL_ON; 155 } 156 } 157 158 if (!matching_cpus) 159 return PSCI_RET_INVALID_PARAMS; 160 161 return PSCI_0_2_AFFINITY_LEVEL_OFF; 162 } 163 164 static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags) 165 { 166 unsigned long i; 167 struct kvm_vcpu *tmp; 168 169 /* 170 * The KVM ABI specifies that a system event exit may call KVM_RUN 171 * again and may perform shutdown/reboot at a later time that when the 172 * actual request is made. Since we are implementing PSCI and a 173 * caller of PSCI reboot and shutdown expects that the system shuts 174 * down or reboots immediately, let's make sure that VCPUs are not run 175 * after this call is handled and before the VCPUs have been 176 * re-initialized. 177 */ 178 kvm_for_each_vcpu(i, tmp, vcpu->kvm) 179 tmp->arch.power_off = true; 180 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP); 181 182 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 183 vcpu->run->system_event.type = type; 184 vcpu->run->system_event.ndata = 1; 185 vcpu->run->system_event.data[0] = flags; 186 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 187 } 188 189 static void kvm_psci_system_off(struct kvm_vcpu *vcpu) 190 { 191 kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0); 192 } 193 194 static void kvm_psci_system_reset(struct kvm_vcpu *vcpu) 195 { 196 kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0); 197 } 198 199 static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu) 200 { 201 kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 202 KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2); 203 } 204 205 static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu) 206 { 207 int i; 208 209 /* 210 * Zero the input registers' upper 32 bits. They will be fully 211 * zeroed on exit, so we're fine changing them in place. 212 */ 213 for (i = 1; i < 4; i++) 214 vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i))); 215 } 216 217 static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn) 218 { 219 /* 220 * Prevent 32 bit guests from calling 64 bit PSCI functions. 221 */ 222 if ((fn & PSCI_0_2_64BIT) && vcpu_mode_is_32bit(vcpu)) 223 return PSCI_RET_NOT_SUPPORTED; 224 225 return 0; 226 } 227 228 static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu) 229 { 230 struct kvm *kvm = vcpu->kvm; 231 u32 psci_fn = smccc_get_function(vcpu); 232 unsigned long val; 233 int ret = 1; 234 235 switch (psci_fn) { 236 case PSCI_0_2_FN_PSCI_VERSION: 237 /* 238 * Bits[31:16] = Major Version = 0 239 * Bits[15:0] = Minor Version = 2 240 */ 241 val = KVM_ARM_PSCI_0_2; 242 break; 243 case PSCI_0_2_FN_CPU_SUSPEND: 244 case PSCI_0_2_FN64_CPU_SUSPEND: 245 val = kvm_psci_vcpu_suspend(vcpu); 246 break; 247 case PSCI_0_2_FN_CPU_OFF: 248 kvm_psci_vcpu_off(vcpu); 249 val = PSCI_RET_SUCCESS; 250 break; 251 case PSCI_0_2_FN_CPU_ON: 252 kvm_psci_narrow_to_32bit(vcpu); 253 fallthrough; 254 case PSCI_0_2_FN64_CPU_ON: 255 mutex_lock(&kvm->lock); 256 val = kvm_psci_vcpu_on(vcpu); 257 mutex_unlock(&kvm->lock); 258 break; 259 case PSCI_0_2_FN_AFFINITY_INFO: 260 kvm_psci_narrow_to_32bit(vcpu); 261 fallthrough; 262 case PSCI_0_2_FN64_AFFINITY_INFO: 263 val = kvm_psci_vcpu_affinity_info(vcpu); 264 break; 265 case PSCI_0_2_FN_MIGRATE_INFO_TYPE: 266 /* 267 * Trusted OS is MP hence does not require migration 268 * or 269 * Trusted OS is not present 270 */ 271 val = PSCI_0_2_TOS_MP; 272 break; 273 case PSCI_0_2_FN_SYSTEM_OFF: 274 kvm_psci_system_off(vcpu); 275 /* 276 * We shouldn't be going back to guest VCPU after 277 * receiving SYSTEM_OFF request. 278 * 279 * If user space accidentally/deliberately resumes 280 * guest VCPU after SYSTEM_OFF request then guest 281 * VCPU should see internal failure from PSCI return 282 * value. To achieve this, we preload r0 (or x0) with 283 * PSCI return value INTERNAL_FAILURE. 284 */ 285 val = PSCI_RET_INTERNAL_FAILURE; 286 ret = 0; 287 break; 288 case PSCI_0_2_FN_SYSTEM_RESET: 289 kvm_psci_system_reset(vcpu); 290 /* 291 * Same reason as SYSTEM_OFF for preloading r0 (or x0) 292 * with PSCI return value INTERNAL_FAILURE. 293 */ 294 val = PSCI_RET_INTERNAL_FAILURE; 295 ret = 0; 296 break; 297 default: 298 val = PSCI_RET_NOT_SUPPORTED; 299 break; 300 } 301 302 smccc_set_retval(vcpu, val, 0, 0, 0); 303 return ret; 304 } 305 306 static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor) 307 { 308 u32 psci_fn = smccc_get_function(vcpu); 309 u32 arg; 310 unsigned long val; 311 int ret = 1; 312 313 switch(psci_fn) { 314 case PSCI_0_2_FN_PSCI_VERSION: 315 val = minor == 0 ? KVM_ARM_PSCI_1_0 : KVM_ARM_PSCI_1_1; 316 break; 317 case PSCI_1_0_FN_PSCI_FEATURES: 318 arg = smccc_get_arg1(vcpu); 319 val = kvm_psci_check_allowed_function(vcpu, arg); 320 if (val) 321 break; 322 323 switch(arg) { 324 case PSCI_0_2_FN_PSCI_VERSION: 325 case PSCI_0_2_FN_CPU_SUSPEND: 326 case PSCI_0_2_FN64_CPU_SUSPEND: 327 case PSCI_0_2_FN_CPU_OFF: 328 case PSCI_0_2_FN_CPU_ON: 329 case PSCI_0_2_FN64_CPU_ON: 330 case PSCI_0_2_FN_AFFINITY_INFO: 331 case PSCI_0_2_FN64_AFFINITY_INFO: 332 case PSCI_0_2_FN_MIGRATE_INFO_TYPE: 333 case PSCI_0_2_FN_SYSTEM_OFF: 334 case PSCI_0_2_FN_SYSTEM_RESET: 335 case PSCI_1_0_FN_PSCI_FEATURES: 336 case ARM_SMCCC_VERSION_FUNC_ID: 337 val = 0; 338 break; 339 case PSCI_1_1_FN_SYSTEM_RESET2: 340 case PSCI_1_1_FN64_SYSTEM_RESET2: 341 if (minor >= 1) { 342 val = 0; 343 break; 344 } 345 fallthrough; 346 default: 347 val = PSCI_RET_NOT_SUPPORTED; 348 break; 349 } 350 break; 351 case PSCI_1_1_FN_SYSTEM_RESET2: 352 kvm_psci_narrow_to_32bit(vcpu); 353 fallthrough; 354 case PSCI_1_1_FN64_SYSTEM_RESET2: 355 if (minor >= 1) { 356 arg = smccc_get_arg1(vcpu); 357 358 if (arg <= PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET || 359 arg >= PSCI_1_1_RESET_TYPE_VENDOR_START) { 360 kvm_psci_system_reset2(vcpu); 361 vcpu_set_reg(vcpu, 0, PSCI_RET_INTERNAL_FAILURE); 362 return 0; 363 } 364 365 val = PSCI_RET_INVALID_PARAMS; 366 break; 367 } 368 fallthrough; 369 default: 370 return kvm_psci_0_2_call(vcpu); 371 } 372 373 smccc_set_retval(vcpu, val, 0, 0, 0); 374 return ret; 375 } 376 377 static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu) 378 { 379 struct kvm *kvm = vcpu->kvm; 380 u32 psci_fn = smccc_get_function(vcpu); 381 unsigned long val; 382 383 switch (psci_fn) { 384 case KVM_PSCI_FN_CPU_OFF: 385 kvm_psci_vcpu_off(vcpu); 386 val = PSCI_RET_SUCCESS; 387 break; 388 case KVM_PSCI_FN_CPU_ON: 389 mutex_lock(&kvm->lock); 390 val = kvm_psci_vcpu_on(vcpu); 391 mutex_unlock(&kvm->lock); 392 break; 393 default: 394 val = PSCI_RET_NOT_SUPPORTED; 395 break; 396 } 397 398 smccc_set_retval(vcpu, val, 0, 0, 0); 399 return 1; 400 } 401 402 /** 403 * kvm_psci_call - handle PSCI call if r0 value is in range 404 * @vcpu: Pointer to the VCPU struct 405 * 406 * Handle PSCI calls from guests through traps from HVC instructions. 407 * The calling convention is similar to SMC calls to the secure world 408 * where the function number is placed in r0. 409 * 410 * This function returns: > 0 (success), 0 (success but exit to user 411 * space), and < 0 (errors) 412 * 413 * Errors: 414 * -EINVAL: Unrecognized PSCI function 415 */ 416 int kvm_psci_call(struct kvm_vcpu *vcpu) 417 { 418 u32 psci_fn = smccc_get_function(vcpu); 419 unsigned long val; 420 421 val = kvm_psci_check_allowed_function(vcpu, psci_fn); 422 if (val) { 423 smccc_set_retval(vcpu, val, 0, 0, 0); 424 return 1; 425 } 426 427 switch (kvm_psci_version(vcpu)) { 428 case KVM_ARM_PSCI_1_1: 429 return kvm_psci_1_x_call(vcpu, 1); 430 case KVM_ARM_PSCI_1_0: 431 return kvm_psci_1_x_call(vcpu, 0); 432 case KVM_ARM_PSCI_0_2: 433 return kvm_psci_0_2_call(vcpu); 434 case KVM_ARM_PSCI_0_1: 435 return kvm_psci_0_1_call(vcpu); 436 default: 437 return -EINVAL; 438 } 439 } 440 441 int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu) 442 { 443 return 4; /* PSCI version and three workaround registers */ 444 } 445 446 int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 447 { 448 if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++)) 449 return -EFAULT; 450 451 if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++)) 452 return -EFAULT; 453 454 if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++)) 455 return -EFAULT; 456 457 if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3, uindices++)) 458 return -EFAULT; 459 460 return 0; 461 } 462 463 #define KVM_REG_FEATURE_LEVEL_WIDTH 4 464 #define KVM_REG_FEATURE_LEVEL_MASK (BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1) 465 466 /* 467 * Convert the workaround level into an easy-to-compare number, where higher 468 * values mean better protection. 469 */ 470 static int get_kernel_wa_level(u64 regid) 471 { 472 switch (regid) { 473 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: 474 switch (arm64_get_spectre_v2_state()) { 475 case SPECTRE_VULNERABLE: 476 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; 477 case SPECTRE_MITIGATED: 478 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL; 479 case SPECTRE_UNAFFECTED: 480 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED; 481 } 482 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; 483 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: 484 switch (arm64_get_spectre_v4_state()) { 485 case SPECTRE_MITIGATED: 486 /* 487 * As for the hypercall discovery, we pretend we 488 * don't have any FW mitigation if SSBS is there at 489 * all times. 490 */ 491 if (cpus_have_final_cap(ARM64_SSBS)) 492 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; 493 fallthrough; 494 case SPECTRE_UNAFFECTED: 495 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; 496 case SPECTRE_VULNERABLE: 497 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; 498 } 499 break; 500 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: 501 switch (arm64_get_spectre_bhb_state()) { 502 case SPECTRE_VULNERABLE: 503 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; 504 case SPECTRE_MITIGATED: 505 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_AVAIL; 506 case SPECTRE_UNAFFECTED: 507 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_REQUIRED; 508 } 509 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; 510 } 511 512 return -EINVAL; 513 } 514 515 int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 516 { 517 void __user *uaddr = (void __user *)(long)reg->addr; 518 u64 val; 519 520 switch (reg->id) { 521 case KVM_REG_ARM_PSCI_VERSION: 522 val = kvm_psci_version(vcpu); 523 break; 524 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: 525 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: 526 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: 527 val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK; 528 break; 529 default: 530 return -ENOENT; 531 } 532 533 if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id))) 534 return -EFAULT; 535 536 return 0; 537 } 538 539 int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 540 { 541 void __user *uaddr = (void __user *)(long)reg->addr; 542 u64 val; 543 int wa_level; 544 545 if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id))) 546 return -EFAULT; 547 548 switch (reg->id) { 549 case KVM_REG_ARM_PSCI_VERSION: 550 { 551 bool wants_02; 552 553 wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features); 554 555 switch (val) { 556 case KVM_ARM_PSCI_0_1: 557 if (wants_02) 558 return -EINVAL; 559 vcpu->kvm->arch.psci_version = val; 560 return 0; 561 case KVM_ARM_PSCI_0_2: 562 case KVM_ARM_PSCI_1_0: 563 case KVM_ARM_PSCI_1_1: 564 if (!wants_02) 565 return -EINVAL; 566 vcpu->kvm->arch.psci_version = val; 567 return 0; 568 } 569 break; 570 } 571 572 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: 573 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: 574 if (val & ~KVM_REG_FEATURE_LEVEL_MASK) 575 return -EINVAL; 576 577 if (get_kernel_wa_level(reg->id) < val) 578 return -EINVAL; 579 580 return 0; 581 582 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: 583 if (val & ~(KVM_REG_FEATURE_LEVEL_MASK | 584 KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED)) 585 return -EINVAL; 586 587 /* The enabled bit must not be set unless the level is AVAIL. */ 588 if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) && 589 (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL) 590 return -EINVAL; 591 592 /* 593 * Map all the possible incoming states to the only two we 594 * really want to deal with. 595 */ 596 switch (val & KVM_REG_FEATURE_LEVEL_MASK) { 597 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL: 598 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN: 599 wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; 600 break; 601 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL: 602 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED: 603 wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; 604 break; 605 default: 606 return -EINVAL; 607 } 608 609 /* 610 * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the 611 * other way around. 612 */ 613 if (get_kernel_wa_level(reg->id) < wa_level) 614 return -EINVAL; 615 616 return 0; 617 default: 618 return -ENOENT; 619 } 620 621 return -EINVAL; 622 } 623