xref: /linux/arch/arm64/kvm/psci.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/arm-smccc.h>
8 #include <linux/preempt.h>
9 #include <linux/kvm_host.h>
10 #include <linux/uaccess.h>
11 #include <linux/wait.h>
12 
13 #include <asm/cputype.h>
14 #include <asm/kvm_emulate.h>
15 
16 #include <kvm/arm_psci.h>
17 #include <kvm/arm_hypercalls.h>
18 
19 /*
20  * This is an implementation of the Power State Coordination Interface
21  * as described in ARM document number ARM DEN 0022A.
22  */
23 
24 #define AFFINITY_MASK(level)	~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
25 
26 static unsigned long psci_affinity_mask(unsigned long affinity_level)
27 {
28 	if (affinity_level <= 3)
29 		return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
30 
31 	return 0;
32 }
33 
34 static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
35 {
36 	/*
37 	 * NOTE: For simplicity, we make VCPU suspend emulation to be
38 	 * same-as WFI (Wait-for-interrupt) emulation.
39 	 *
40 	 * This means for KVM the wakeup events are interrupts and
41 	 * this is consistent with intended use of StateID as described
42 	 * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
43 	 *
44 	 * Further, we also treat power-down request to be same as
45 	 * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
46 	 * specification (ARM DEN 0022A). This means all suspend states
47 	 * for KVM will preserve the register state.
48 	 */
49 	kvm_vcpu_wfi(vcpu);
50 
51 	return PSCI_RET_SUCCESS;
52 }
53 
54 static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu,
55 					   unsigned long affinity)
56 {
57 	return !(affinity & ~MPIDR_HWID_BITMASK);
58 }
59 
60 static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
61 {
62 	struct vcpu_reset_state *reset_state;
63 	struct kvm *kvm = source_vcpu->kvm;
64 	struct kvm_vcpu *vcpu = NULL;
65 	int ret = PSCI_RET_SUCCESS;
66 	unsigned long cpu_id;
67 
68 	cpu_id = smccc_get_arg1(source_vcpu);
69 	if (!kvm_psci_valid_affinity(source_vcpu, cpu_id))
70 		return PSCI_RET_INVALID_PARAMS;
71 
72 	vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
73 
74 	/*
75 	 * Make sure the caller requested a valid CPU and that the CPU is
76 	 * turned off.
77 	 */
78 	if (!vcpu)
79 		return PSCI_RET_INVALID_PARAMS;
80 
81 	spin_lock(&vcpu->arch.mp_state_lock);
82 	if (!kvm_arm_vcpu_stopped(vcpu)) {
83 		if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1)
84 			ret = PSCI_RET_ALREADY_ON;
85 		else
86 			ret = PSCI_RET_INVALID_PARAMS;
87 
88 		goto out_unlock;
89 	}
90 
91 	reset_state = &vcpu->arch.reset_state;
92 
93 	reset_state->pc = smccc_get_arg2(source_vcpu);
94 
95 	/* Propagate caller endianness */
96 	reset_state->be = kvm_vcpu_is_be(source_vcpu);
97 
98 	/*
99 	 * NOTE: We always update r0 (or x0) because for PSCI v0.1
100 	 * the general purpose registers are undefined upon CPU_ON.
101 	 */
102 	reset_state->r0 = smccc_get_arg3(source_vcpu);
103 
104 	reset_state->reset = true;
105 	kvm_make_request(KVM_REQ_VCPU_RESET, vcpu);
106 
107 	/*
108 	 * Make sure the reset request is observed if the RUNNABLE mp_state is
109 	 * observed.
110 	 */
111 	smp_wmb();
112 
113 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
114 	kvm_vcpu_wake_up(vcpu);
115 
116 out_unlock:
117 	spin_unlock(&vcpu->arch.mp_state_lock);
118 	return ret;
119 }
120 
121 static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
122 {
123 	int matching_cpus = 0;
124 	unsigned long i, mpidr;
125 	unsigned long target_affinity;
126 	unsigned long target_affinity_mask;
127 	unsigned long lowest_affinity_level;
128 	struct kvm *kvm = vcpu->kvm;
129 	struct kvm_vcpu *tmp;
130 
131 	target_affinity = smccc_get_arg1(vcpu);
132 	lowest_affinity_level = smccc_get_arg2(vcpu);
133 
134 	if (!kvm_psci_valid_affinity(vcpu, target_affinity))
135 		return PSCI_RET_INVALID_PARAMS;
136 
137 	/* Determine target affinity mask */
138 	target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
139 	if (!target_affinity_mask)
140 		return PSCI_RET_INVALID_PARAMS;
141 
142 	/* Ignore other bits of target affinity */
143 	target_affinity &= target_affinity_mask;
144 
145 	/*
146 	 * If one or more VCPU matching target affinity are running
147 	 * then ON else OFF
148 	 */
149 	kvm_for_each_vcpu(i, tmp, kvm) {
150 		mpidr = kvm_vcpu_get_mpidr_aff(tmp);
151 		if ((mpidr & target_affinity_mask) == target_affinity) {
152 			matching_cpus++;
153 			if (!kvm_arm_vcpu_stopped(tmp))
154 				return PSCI_0_2_AFFINITY_LEVEL_ON;
155 		}
156 	}
157 
158 	if (!matching_cpus)
159 		return PSCI_RET_INVALID_PARAMS;
160 
161 	return PSCI_0_2_AFFINITY_LEVEL_OFF;
162 }
163 
164 static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags)
165 {
166 	unsigned long i;
167 	struct kvm_vcpu *tmp;
168 
169 	/*
170 	 * The KVM ABI specifies that a system event exit may call KVM_RUN
171 	 * again and may perform shutdown/reboot at a later time that when the
172 	 * actual request is made.  Since we are implementing PSCI and a
173 	 * caller of PSCI reboot and shutdown expects that the system shuts
174 	 * down or reboots immediately, let's make sure that VCPUs are not run
175 	 * after this call is handled and before the VCPUs have been
176 	 * re-initialized.
177 	 */
178 	kvm_for_each_vcpu(i, tmp, vcpu->kvm) {
179 		spin_lock(&tmp->arch.mp_state_lock);
180 		WRITE_ONCE(tmp->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
181 		spin_unlock(&tmp->arch.mp_state_lock);
182 	}
183 	kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP);
184 
185 	memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
186 	vcpu->run->system_event.type = type;
187 	vcpu->run->system_event.ndata = 1;
188 	vcpu->run->system_event.data[0] = flags;
189 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
190 }
191 
192 static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
193 {
194 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0);
195 }
196 
197 static void kvm_psci_system_off2(struct kvm_vcpu *vcpu)
198 {
199 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN,
200 				 KVM_SYSTEM_EVENT_SHUTDOWN_FLAG_PSCI_OFF2);
201 }
202 
203 static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
204 {
205 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0);
206 }
207 
208 static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu)
209 {
210 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET,
211 				 KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2);
212 }
213 
214 static void kvm_psci_system_suspend(struct kvm_vcpu *vcpu)
215 {
216 	struct kvm_run *run = vcpu->run;
217 
218 	memset(&run->system_event, 0, sizeof(vcpu->run->system_event));
219 	run->system_event.type = KVM_SYSTEM_EVENT_SUSPEND;
220 	run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
221 }
222 
223 static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu)
224 {
225 	int i;
226 
227 	/*
228 	 * Zero the input registers' upper 32 bits. They will be fully
229 	 * zeroed on exit, so we're fine changing them in place.
230 	 */
231 	for (i = 1; i < 4; i++)
232 		vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i)));
233 }
234 
235 static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn)
236 {
237 	/*
238 	 * Prevent 32 bit guests from calling 64 bit PSCI functions.
239 	 */
240 	if ((fn & PSCI_0_2_64BIT) && vcpu_mode_is_32bit(vcpu))
241 		return PSCI_RET_NOT_SUPPORTED;
242 
243 	return 0;
244 }
245 
246 static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
247 {
248 	u32 psci_fn = smccc_get_function(vcpu);
249 	unsigned long val;
250 	int ret = 1;
251 
252 	switch (psci_fn) {
253 	case PSCI_0_2_FN_PSCI_VERSION:
254 		/*
255 		 * Bits[31:16] = Major Version = 0
256 		 * Bits[15:0] = Minor Version = 2
257 		 */
258 		val = KVM_ARM_PSCI_0_2;
259 		break;
260 	case PSCI_0_2_FN_CPU_SUSPEND:
261 	case PSCI_0_2_FN64_CPU_SUSPEND:
262 		val = kvm_psci_vcpu_suspend(vcpu);
263 		break;
264 	case PSCI_0_2_FN_CPU_OFF:
265 		kvm_arm_vcpu_power_off(vcpu);
266 		val = PSCI_RET_SUCCESS;
267 		break;
268 	case PSCI_0_2_FN_CPU_ON:
269 		kvm_psci_narrow_to_32bit(vcpu);
270 		fallthrough;
271 	case PSCI_0_2_FN64_CPU_ON:
272 		val = kvm_psci_vcpu_on(vcpu);
273 		break;
274 	case PSCI_0_2_FN_AFFINITY_INFO:
275 		kvm_psci_narrow_to_32bit(vcpu);
276 		fallthrough;
277 	case PSCI_0_2_FN64_AFFINITY_INFO:
278 		val = kvm_psci_vcpu_affinity_info(vcpu);
279 		break;
280 	case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
281 		/*
282 		 * Trusted OS is MP hence does not require migration
283 	         * or
284 		 * Trusted OS is not present
285 		 */
286 		val = PSCI_0_2_TOS_MP;
287 		break;
288 	case PSCI_0_2_FN_SYSTEM_OFF:
289 		kvm_psci_system_off(vcpu);
290 		/*
291 		 * We shouldn't be going back to guest VCPU after
292 		 * receiving SYSTEM_OFF request.
293 		 *
294 		 * If user space accidentally/deliberately resumes
295 		 * guest VCPU after SYSTEM_OFF request then guest
296 		 * VCPU should see internal failure from PSCI return
297 		 * value. To achieve this, we preload r0 (or x0) with
298 		 * PSCI return value INTERNAL_FAILURE.
299 		 */
300 		val = PSCI_RET_INTERNAL_FAILURE;
301 		ret = 0;
302 		break;
303 	case PSCI_0_2_FN_SYSTEM_RESET:
304 		kvm_psci_system_reset(vcpu);
305 		/*
306 		 * Same reason as SYSTEM_OFF for preloading r0 (or x0)
307 		 * with PSCI return value INTERNAL_FAILURE.
308 		 */
309 		val = PSCI_RET_INTERNAL_FAILURE;
310 		ret = 0;
311 		break;
312 	default:
313 		val = PSCI_RET_NOT_SUPPORTED;
314 		break;
315 	}
316 
317 	smccc_set_retval(vcpu, val, 0, 0, 0);
318 	return ret;
319 }
320 
321 static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor)
322 {
323 	unsigned long val = PSCI_RET_NOT_SUPPORTED;
324 	u32 psci_fn = smccc_get_function(vcpu);
325 	struct kvm *kvm = vcpu->kvm;
326 	u32 arg;
327 	int ret = 1;
328 
329 	switch(psci_fn) {
330 	case PSCI_0_2_FN_PSCI_VERSION:
331 		val = PSCI_VERSION(1, minor);
332 		break;
333 	case PSCI_1_0_FN_PSCI_FEATURES:
334 		arg = smccc_get_arg1(vcpu);
335 		val = kvm_psci_check_allowed_function(vcpu, arg);
336 		if (val)
337 			break;
338 
339 		val = PSCI_RET_NOT_SUPPORTED;
340 
341 		switch(arg) {
342 		case PSCI_0_2_FN_PSCI_VERSION:
343 		case PSCI_0_2_FN_CPU_SUSPEND:
344 		case PSCI_0_2_FN64_CPU_SUSPEND:
345 		case PSCI_0_2_FN_CPU_OFF:
346 		case PSCI_0_2_FN_CPU_ON:
347 		case PSCI_0_2_FN64_CPU_ON:
348 		case PSCI_0_2_FN_AFFINITY_INFO:
349 		case PSCI_0_2_FN64_AFFINITY_INFO:
350 		case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
351 		case PSCI_0_2_FN_SYSTEM_OFF:
352 		case PSCI_0_2_FN_SYSTEM_RESET:
353 		case PSCI_1_0_FN_PSCI_FEATURES:
354 		case ARM_SMCCC_VERSION_FUNC_ID:
355 			val = 0;
356 			break;
357 		case PSCI_1_0_FN_SYSTEM_SUSPEND:
358 		case PSCI_1_0_FN64_SYSTEM_SUSPEND:
359 			if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags))
360 				val = 0;
361 			break;
362 		case PSCI_1_1_FN_SYSTEM_RESET2:
363 		case PSCI_1_1_FN64_SYSTEM_RESET2:
364 			if (minor >= 1)
365 				val = 0;
366 			break;
367 		case PSCI_1_3_FN_SYSTEM_OFF2:
368 		case PSCI_1_3_FN64_SYSTEM_OFF2:
369 			if (minor >= 3)
370 				val = PSCI_1_3_OFF_TYPE_HIBERNATE_OFF;
371 			break;
372 		}
373 		break;
374 	case PSCI_1_0_FN_SYSTEM_SUSPEND:
375 		kvm_psci_narrow_to_32bit(vcpu);
376 		fallthrough;
377 	case PSCI_1_0_FN64_SYSTEM_SUSPEND:
378 		/*
379 		 * Return directly to userspace without changing the vCPU's
380 		 * registers. Userspace depends on reading the SMCCC parameters
381 		 * to implement SYSTEM_SUSPEND.
382 		 */
383 		if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags)) {
384 			kvm_psci_system_suspend(vcpu);
385 			return 0;
386 		}
387 		break;
388 	case PSCI_1_1_FN_SYSTEM_RESET2:
389 		kvm_psci_narrow_to_32bit(vcpu);
390 		fallthrough;
391 	case PSCI_1_1_FN64_SYSTEM_RESET2:
392 		if (minor >= 1) {
393 			arg = smccc_get_arg1(vcpu);
394 
395 			if (arg <= PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET ||
396 			    arg >= PSCI_1_1_RESET_TYPE_VENDOR_START) {
397 				kvm_psci_system_reset2(vcpu);
398 				vcpu_set_reg(vcpu, 0, PSCI_RET_INTERNAL_FAILURE);
399 				return 0;
400 			}
401 
402 			val = PSCI_RET_INVALID_PARAMS;
403 			break;
404 		}
405 		break;
406 	case PSCI_1_3_FN_SYSTEM_OFF2:
407 		kvm_psci_narrow_to_32bit(vcpu);
408 		fallthrough;
409 	case PSCI_1_3_FN64_SYSTEM_OFF2:
410 		if (minor < 3)
411 			break;
412 
413 		arg = smccc_get_arg1(vcpu);
414 		/*
415 		 * SYSTEM_OFF2 defaults to HIBERNATE_OFF if arg1 is zero. arg2
416 		 * must be zero.
417 		 */
418 		if ((arg && arg != PSCI_1_3_OFF_TYPE_HIBERNATE_OFF) ||
419 		    smccc_get_arg2(vcpu) != 0) {
420 			val = PSCI_RET_INVALID_PARAMS;
421 			break;
422 		}
423 		kvm_psci_system_off2(vcpu);
424 		/*
425 		 * We shouldn't be going back to the guest after receiving a
426 		 * SYSTEM_OFF2 request. Preload a return value of
427 		 * INTERNAL_FAILURE should userspace ignore the exit and resume
428 		 * the vCPU.
429 		 */
430 		val = PSCI_RET_INTERNAL_FAILURE;
431 		ret = 0;
432 		break;
433 	default:
434 		return kvm_psci_0_2_call(vcpu);
435 	}
436 
437 	smccc_set_retval(vcpu, val, 0, 0, 0);
438 	return ret;
439 }
440 
441 static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
442 {
443 	u32 psci_fn = smccc_get_function(vcpu);
444 	unsigned long val;
445 
446 	switch (psci_fn) {
447 	case KVM_PSCI_FN_CPU_OFF:
448 		kvm_arm_vcpu_power_off(vcpu);
449 		val = PSCI_RET_SUCCESS;
450 		break;
451 	case KVM_PSCI_FN_CPU_ON:
452 		val = kvm_psci_vcpu_on(vcpu);
453 		break;
454 	default:
455 		val = PSCI_RET_NOT_SUPPORTED;
456 		break;
457 	}
458 
459 	smccc_set_retval(vcpu, val, 0, 0, 0);
460 	return 1;
461 }
462 
463 /**
464  * kvm_psci_call - handle PSCI call if r0 value is in range
465  * @vcpu: Pointer to the VCPU struct
466  *
467  * Handle PSCI calls from guests through traps from HVC instructions.
468  * The calling convention is similar to SMC calls to the secure world
469  * where the function number is placed in r0.
470  *
471  * This function returns: > 0 (success), 0 (success but exit to user
472  * space), and < 0 (errors)
473  *
474  * Errors:
475  * -EINVAL: Unrecognized PSCI function
476  */
477 int kvm_psci_call(struct kvm_vcpu *vcpu)
478 {
479 	u32 psci_fn = smccc_get_function(vcpu);
480 	int version = kvm_psci_version(vcpu);
481 	unsigned long val;
482 
483 	val = kvm_psci_check_allowed_function(vcpu, psci_fn);
484 	if (val) {
485 		smccc_set_retval(vcpu, val, 0, 0, 0);
486 		return 1;
487 	}
488 
489 	switch (version) {
490 	case KVM_ARM_PSCI_1_3:
491 		return kvm_psci_1_x_call(vcpu, 3);
492 	case KVM_ARM_PSCI_1_2:
493 		return kvm_psci_1_x_call(vcpu, 2);
494 	case KVM_ARM_PSCI_1_1:
495 		return kvm_psci_1_x_call(vcpu, 1);
496 	case KVM_ARM_PSCI_1_0:
497 		return kvm_psci_1_x_call(vcpu, 0);
498 	case KVM_ARM_PSCI_0_2:
499 		return kvm_psci_0_2_call(vcpu);
500 	case KVM_ARM_PSCI_0_1:
501 		return kvm_psci_0_1_call(vcpu);
502 	default:
503 		WARN_ONCE(1, "Unknown PSCI version %d", version);
504 		smccc_set_retval(vcpu, SMCCC_RET_NOT_SUPPORTED, 0, 0, 0);
505 		return 1;
506 	}
507 }
508