xref: /linux/arch/arm64/kvm/pmu-emul.c (revision e18655cf35a5958fbf4ae9ca3ebf28871a3a1801)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list.h>
11 #include <linux/perf_event.h>
12 #include <linux/perf/arm_pmu.h>
13 #include <linux/uaccess.h>
14 #include <asm/kvm_emulate.h>
15 #include <kvm/arm_pmu.h>
16 #include <kvm/arm_vgic.h>
17 
18 #define PERF_ATTR_CFG1_COUNTER_64BIT	BIT(0)
19 
20 DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
21 
22 static LIST_HEAD(arm_pmus);
23 static DEFINE_MUTEX(arm_pmus_lock);
24 
25 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
26 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
27 
28 static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
29 {
30 	return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
31 }
32 
33 static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
34 {
35 	return &vcpu->arch.pmu.pmc[cnt_idx];
36 }
37 
38 static u32 __kvm_pmu_event_mask(unsigned int pmuver)
39 {
40 	switch (pmuver) {
41 	case ID_AA64DFR0_EL1_PMUVer_IMP:
42 		return GENMASK(9, 0);
43 	case ID_AA64DFR0_EL1_PMUVer_V3P1:
44 	case ID_AA64DFR0_EL1_PMUVer_V3P4:
45 	case ID_AA64DFR0_EL1_PMUVer_V3P5:
46 	case ID_AA64DFR0_EL1_PMUVer_V3P7:
47 		return GENMASK(15, 0);
48 	default:		/* Shouldn't be here, just for sanity */
49 		WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
50 		return 0;
51 	}
52 }
53 
54 static u32 kvm_pmu_event_mask(struct kvm *kvm)
55 {
56 	u64 dfr0 = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
57 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
58 
59 	return __kvm_pmu_event_mask(pmuver);
60 }
61 
62 u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
63 {
64 	u64 mask = ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMU_EXCLUDE_EL0 |
65 		   kvm_pmu_event_mask(kvm);
66 
67 	if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL2, IMP))
68 		mask |= ARMV8_PMU_INCLUDE_EL2;
69 
70 	if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
71 		mask |= ARMV8_PMU_EXCLUDE_NS_EL0 |
72 			ARMV8_PMU_EXCLUDE_NS_EL1 |
73 			ARMV8_PMU_EXCLUDE_EL3;
74 
75 	return mask;
76 }
77 
78 /**
79  * kvm_pmc_is_64bit - determine if counter is 64bit
80  * @pmc: counter context
81  */
82 static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
83 {
84 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
85 
86 	return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
87 		kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5));
88 }
89 
90 static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
91 {
92 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
93 	u64 val = kvm_vcpu_read_pmcr(vcpu);
94 
95 	if (kvm_pmu_counter_is_hyp(vcpu, pmc->idx))
96 		return __vcpu_sys_reg(vcpu, MDCR_EL2) & MDCR_EL2_HLP;
97 
98 	return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
99 	       (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
100 }
101 
102 static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
103 {
104 	return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
105 		!kvm_pmc_has_64bit_overflow(pmc));
106 }
107 
108 static u32 counter_index_to_reg(u64 idx)
109 {
110 	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
111 }
112 
113 static u32 counter_index_to_evtreg(u64 idx)
114 {
115 	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
116 }
117 
118 static u64 kvm_pmc_read_evtreg(const struct kvm_pmc *pmc)
119 {
120 	return __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), counter_index_to_evtreg(pmc->idx));
121 }
122 
123 static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
124 {
125 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
126 	u64 counter, reg, enabled, running;
127 
128 	reg = counter_index_to_reg(pmc->idx);
129 	counter = __vcpu_sys_reg(vcpu, reg);
130 
131 	/*
132 	 * The real counter value is equal to the value of counter register plus
133 	 * the value perf event counts.
134 	 */
135 	if (pmc->perf_event)
136 		counter += perf_event_read_value(pmc->perf_event, &enabled,
137 						 &running);
138 
139 	if (!kvm_pmc_is_64bit(pmc))
140 		counter = lower_32_bits(counter);
141 
142 	return counter;
143 }
144 
145 /**
146  * kvm_pmu_get_counter_value - get PMU counter value
147  * @vcpu: The vcpu pointer
148  * @select_idx: The counter index
149  */
150 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
151 {
152 	if (!kvm_vcpu_has_pmu(vcpu))
153 		return 0;
154 
155 	return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
156 }
157 
158 static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
159 {
160 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
161 	u64 reg;
162 
163 	kvm_pmu_release_perf_event(pmc);
164 
165 	reg = counter_index_to_reg(pmc->idx);
166 
167 	if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
168 	    !force) {
169 		/*
170 		 * Even with PMUv3p5, AArch32 cannot write to the top
171 		 * 32bit of the counters. The only possible course of
172 		 * action is to use PMCR.P, which will reset them to
173 		 * 0 (the only use of the 'force' parameter).
174 		 */
175 		val  = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
176 		val |= lower_32_bits(val);
177 	}
178 
179 	__vcpu_sys_reg(vcpu, reg) = val;
180 
181 	/* Recreate the perf event to reflect the updated sample_period */
182 	kvm_pmu_create_perf_event(pmc);
183 }
184 
185 /**
186  * kvm_pmu_set_counter_value - set PMU counter value
187  * @vcpu: The vcpu pointer
188  * @select_idx: The counter index
189  * @val: The counter value
190  */
191 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
192 {
193 	if (!kvm_vcpu_has_pmu(vcpu))
194 		return;
195 
196 	kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
197 }
198 
199 /**
200  * kvm_pmu_release_perf_event - remove the perf event
201  * @pmc: The PMU counter pointer
202  */
203 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
204 {
205 	if (pmc->perf_event) {
206 		perf_event_disable(pmc->perf_event);
207 		perf_event_release_kernel(pmc->perf_event);
208 		pmc->perf_event = NULL;
209 	}
210 }
211 
212 /**
213  * kvm_pmu_stop_counter - stop PMU counter
214  * @pmc: The PMU counter pointer
215  *
216  * If this counter has been configured to monitor some event, release it here.
217  */
218 static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
219 {
220 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
221 	u64 reg, val;
222 
223 	if (!pmc->perf_event)
224 		return;
225 
226 	val = kvm_pmu_get_pmc_value(pmc);
227 
228 	reg = counter_index_to_reg(pmc->idx);
229 
230 	__vcpu_sys_reg(vcpu, reg) = val;
231 
232 	kvm_pmu_release_perf_event(pmc);
233 }
234 
235 /**
236  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
237  * @vcpu: The vcpu pointer
238  *
239  */
240 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
241 {
242 	int i;
243 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
244 
245 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
246 		pmu->pmc[i].idx = i;
247 }
248 
249 /**
250  * kvm_pmu_vcpu_reset - reset pmu state for cpu
251  * @vcpu: The vcpu pointer
252  *
253  */
254 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
255 {
256 	unsigned long mask = kvm_pmu_implemented_counter_mask(vcpu);
257 	int i;
258 
259 	for_each_set_bit(i, &mask, 32)
260 		kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
261 }
262 
263 /**
264  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
265  * @vcpu: The vcpu pointer
266  *
267  */
268 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
269 {
270 	int i;
271 
272 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
273 		kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
274 	irq_work_sync(&vcpu->arch.pmu.overflow_work);
275 }
276 
277 static u64 kvm_pmu_hyp_counter_mask(struct kvm_vcpu *vcpu)
278 {
279 	unsigned int hpmn, n;
280 
281 	if (!vcpu_has_nv(vcpu))
282 		return 0;
283 
284 	hpmn = SYS_FIELD_GET(MDCR_EL2, HPMN, __vcpu_sys_reg(vcpu, MDCR_EL2));
285 	n = vcpu->kvm->arch.pmcr_n;
286 
287 	/*
288 	 * Programming HPMN to a value greater than PMCR_EL0.N is
289 	 * CONSTRAINED UNPREDICTABLE. Make the implementation choice that an
290 	 * UNKNOWN number of counters (in our case, zero) are reserved for EL2.
291 	 */
292 	if (hpmn >= n)
293 		return 0;
294 
295 	/*
296 	 * Programming HPMN=0 is CONSTRAINED UNPREDICTABLE if FEAT_HPMN0 isn't
297 	 * implemented. Since KVM's ability to emulate HPMN=0 does not directly
298 	 * depend on hardware (all PMU registers are trapped), make the
299 	 * implementation choice that all counters are included in the second
300 	 * range reserved for EL2/EL3.
301 	 */
302 	return GENMASK(n - 1, hpmn);
303 }
304 
305 bool kvm_pmu_counter_is_hyp(struct kvm_vcpu *vcpu, unsigned int idx)
306 {
307 	return kvm_pmu_hyp_counter_mask(vcpu) & BIT(idx);
308 }
309 
310 u64 kvm_pmu_accessible_counter_mask(struct kvm_vcpu *vcpu)
311 {
312 	u64 mask = kvm_pmu_implemented_counter_mask(vcpu);
313 
314 	if (!vcpu_has_nv(vcpu) || vcpu_is_el2(vcpu))
315 		return mask;
316 
317 	return mask & ~kvm_pmu_hyp_counter_mask(vcpu);
318 }
319 
320 u64 kvm_pmu_implemented_counter_mask(struct kvm_vcpu *vcpu)
321 {
322 	u64 val = FIELD_GET(ARMV8_PMU_PMCR_N, kvm_vcpu_read_pmcr(vcpu));
323 
324 	if (val == 0)
325 		return BIT(ARMV8_PMU_CYCLE_IDX);
326 	else
327 		return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
328 }
329 
330 /**
331  * kvm_pmu_enable_counter_mask - enable selected PMU counters
332  * @vcpu: The vcpu pointer
333  * @val: the value guest writes to PMCNTENSET register
334  *
335  * Call perf_event_enable to start counting the perf event
336  */
337 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
338 {
339 	int i;
340 	if (!kvm_vcpu_has_pmu(vcpu))
341 		return;
342 
343 	if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) || !val)
344 		return;
345 
346 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
347 		struct kvm_pmc *pmc;
348 
349 		if (!(val & BIT(i)))
350 			continue;
351 
352 		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
353 
354 		if (!pmc->perf_event) {
355 			kvm_pmu_create_perf_event(pmc);
356 		} else {
357 			perf_event_enable(pmc->perf_event);
358 			if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
359 				kvm_debug("fail to enable perf event\n");
360 		}
361 	}
362 }
363 
364 /**
365  * kvm_pmu_disable_counter_mask - disable selected PMU counters
366  * @vcpu: The vcpu pointer
367  * @val: the value guest writes to PMCNTENCLR register
368  *
369  * Call perf_event_disable to stop counting the perf event
370  */
371 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
372 {
373 	int i;
374 
375 	if (!kvm_vcpu_has_pmu(vcpu) || !val)
376 		return;
377 
378 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
379 		struct kvm_pmc *pmc;
380 
381 		if (!(val & BIT(i)))
382 			continue;
383 
384 		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
385 
386 		if (pmc->perf_event)
387 			perf_event_disable(pmc->perf_event);
388 	}
389 }
390 
391 /*
392  * Returns the PMU overflow state, which is true if there exists an event
393  * counter where the values of the global enable control, PMOVSSET_EL0[n], and
394  * PMINTENSET_EL1[n] are all 1.
395  */
396 static bool kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
397 {
398 	u64 reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
399 
400 	reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
401 
402 	/*
403 	 * PMCR_EL0.E is the global enable control for event counters available
404 	 * to EL0 and EL1.
405 	 */
406 	if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
407 		reg &= kvm_pmu_hyp_counter_mask(vcpu);
408 
409 	/*
410 	 * Otherwise, MDCR_EL2.HPME is the global enable control for event
411 	 * counters reserved for EL2.
412 	 */
413 	if (!(vcpu_read_sys_reg(vcpu, MDCR_EL2) & MDCR_EL2_HPME))
414 		reg &= ~kvm_pmu_hyp_counter_mask(vcpu);
415 
416 	return reg;
417 }
418 
419 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
420 {
421 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
422 	bool overflow;
423 
424 	if (!kvm_vcpu_has_pmu(vcpu))
425 		return;
426 
427 	overflow = kvm_pmu_overflow_status(vcpu);
428 	if (pmu->irq_level == overflow)
429 		return;
430 
431 	pmu->irq_level = overflow;
432 
433 	if (likely(irqchip_in_kernel(vcpu->kvm))) {
434 		int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
435 					      pmu->irq_num, overflow, pmu);
436 		WARN_ON(ret);
437 	}
438 }
439 
440 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
441 {
442 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
443 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
444 	bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
445 
446 	if (likely(irqchip_in_kernel(vcpu->kvm)))
447 		return false;
448 
449 	return pmu->irq_level != run_level;
450 }
451 
452 /*
453  * Reflect the PMU overflow interrupt output level into the kvm_run structure
454  */
455 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
456 {
457 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
458 
459 	/* Populate the timer bitmap for user space */
460 	regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
461 	if (vcpu->arch.pmu.irq_level)
462 		regs->device_irq_level |= KVM_ARM_DEV_PMU;
463 }
464 
465 /**
466  * kvm_pmu_flush_hwstate - flush pmu state to cpu
467  * @vcpu: The vcpu pointer
468  *
469  * Check if the PMU has overflowed while we were running in the host, and inject
470  * an interrupt if that was the case.
471  */
472 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
473 {
474 	kvm_pmu_update_state(vcpu);
475 }
476 
477 /**
478  * kvm_pmu_sync_hwstate - sync pmu state from cpu
479  * @vcpu: The vcpu pointer
480  *
481  * Check if the PMU has overflowed while we were running in the guest, and
482  * inject an interrupt if that was the case.
483  */
484 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
485 {
486 	kvm_pmu_update_state(vcpu);
487 }
488 
489 /*
490  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
491  * to the event.
492  * This is why we need a callback to do it once outside of the NMI context.
493  */
494 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
495 {
496 	struct kvm_vcpu *vcpu;
497 
498 	vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
499 	kvm_vcpu_kick(vcpu);
500 }
501 
502 /*
503  * Perform an increment on any of the counters described in @mask,
504  * generating the overflow if required, and propagate it as a chained
505  * event if possible.
506  */
507 static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
508 				      unsigned long mask, u32 event)
509 {
510 	int i;
511 
512 	if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
513 		return;
514 
515 	/* Weed out disabled counters */
516 	mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
517 
518 	for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
519 		struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
520 		u64 type, reg;
521 
522 		/* Filter on event type */
523 		type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
524 		type &= kvm_pmu_event_mask(vcpu->kvm);
525 		if (type != event)
526 			continue;
527 
528 		/* Increment this counter */
529 		reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
530 		if (!kvm_pmc_is_64bit(pmc))
531 			reg = lower_32_bits(reg);
532 		__vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
533 
534 		/* No overflow? move on */
535 		if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
536 			continue;
537 
538 		/* Mark overflow */
539 		__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
540 
541 		if (kvm_pmu_counter_can_chain(pmc))
542 			kvm_pmu_counter_increment(vcpu, BIT(i + 1),
543 						  ARMV8_PMUV3_PERFCTR_CHAIN);
544 	}
545 }
546 
547 /* Compute the sample period for a given counter value */
548 static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
549 {
550 	u64 val;
551 
552 	if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
553 		val = (-counter) & GENMASK(63, 0);
554 	else
555 		val = (-counter) & GENMASK(31, 0);
556 
557 	return val;
558 }
559 
560 /*
561  * When the perf event overflows, set the overflow status and inform the vcpu.
562  */
563 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
564 				  struct perf_sample_data *data,
565 				  struct pt_regs *regs)
566 {
567 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
568 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
569 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
570 	int idx = pmc->idx;
571 	u64 period;
572 
573 	cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
574 
575 	/*
576 	 * Reset the sample period to the architectural limit,
577 	 * i.e. the point where the counter overflows.
578 	 */
579 	period = compute_period(pmc, local64_read(&perf_event->count));
580 
581 	local64_set(&perf_event->hw.period_left, 0);
582 	perf_event->attr.sample_period = period;
583 	perf_event->hw.sample_period = period;
584 
585 	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
586 
587 	if (kvm_pmu_counter_can_chain(pmc))
588 		kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
589 					  ARMV8_PMUV3_PERFCTR_CHAIN);
590 
591 	if (kvm_pmu_overflow_status(vcpu)) {
592 		kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
593 
594 		if (!in_nmi())
595 			kvm_vcpu_kick(vcpu);
596 		else
597 			irq_work_queue(&vcpu->arch.pmu.overflow_work);
598 	}
599 
600 	cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
601 }
602 
603 /**
604  * kvm_pmu_software_increment - do software increment
605  * @vcpu: The vcpu pointer
606  * @val: the value guest writes to PMSWINC register
607  */
608 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
609 {
610 	kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
611 }
612 
613 /**
614  * kvm_pmu_handle_pmcr - handle PMCR register
615  * @vcpu: The vcpu pointer
616  * @val: the value guest writes to PMCR register
617  */
618 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
619 {
620 	int i;
621 
622 	if (!kvm_vcpu_has_pmu(vcpu))
623 		return;
624 
625 	/* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
626 	if (!kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
627 		val &= ~ARMV8_PMU_PMCR_LP;
628 
629 	/* The reset bits don't indicate any state, and shouldn't be saved. */
630 	__vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
631 
632 	if (val & ARMV8_PMU_PMCR_E) {
633 		kvm_pmu_enable_counter_mask(vcpu,
634 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
635 	} else {
636 		kvm_pmu_disable_counter_mask(vcpu,
637 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
638 	}
639 
640 	if (val & ARMV8_PMU_PMCR_C)
641 		kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
642 
643 	if (val & ARMV8_PMU_PMCR_P) {
644 		unsigned long mask = kvm_pmu_accessible_counter_mask(vcpu);
645 		mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
646 		for_each_set_bit(i, &mask, 32)
647 			kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
648 	}
649 	kvm_vcpu_pmu_restore_guest(vcpu);
650 }
651 
652 static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
653 {
654 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
655 	unsigned int mdcr = __vcpu_sys_reg(vcpu, MDCR_EL2);
656 
657 	if (!(__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx)))
658 		return false;
659 
660 	if (kvm_pmu_counter_is_hyp(vcpu, pmc->idx))
661 		return mdcr & MDCR_EL2_HPME;
662 
663 	return kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E;
664 }
665 
666 static bool kvm_pmc_counts_at_el0(struct kvm_pmc *pmc)
667 {
668 	u64 evtreg = kvm_pmc_read_evtreg(pmc);
669 	bool nsu = evtreg & ARMV8_PMU_EXCLUDE_NS_EL0;
670 	bool u = evtreg & ARMV8_PMU_EXCLUDE_EL0;
671 
672 	return u == nsu;
673 }
674 
675 static bool kvm_pmc_counts_at_el1(struct kvm_pmc *pmc)
676 {
677 	u64 evtreg = kvm_pmc_read_evtreg(pmc);
678 	bool nsk = evtreg & ARMV8_PMU_EXCLUDE_NS_EL1;
679 	bool p = evtreg & ARMV8_PMU_EXCLUDE_EL1;
680 
681 	return p == nsk;
682 }
683 
684 static bool kvm_pmc_counts_at_el2(struct kvm_pmc *pmc)
685 {
686 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
687 	u64 mdcr = __vcpu_sys_reg(vcpu, MDCR_EL2);
688 
689 	if (!kvm_pmu_counter_is_hyp(vcpu, pmc->idx) && (mdcr & MDCR_EL2_HPMD))
690 		return false;
691 
692 	return kvm_pmc_read_evtreg(pmc) & ARMV8_PMU_INCLUDE_EL2;
693 }
694 
695 /**
696  * kvm_pmu_create_perf_event - create a perf event for a counter
697  * @pmc: Counter context
698  */
699 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
700 {
701 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
702 	struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
703 	struct perf_event *event;
704 	struct perf_event_attr attr;
705 	u64 eventsel, evtreg;
706 
707 	evtreg = kvm_pmc_read_evtreg(pmc);
708 
709 	kvm_pmu_stop_counter(pmc);
710 	if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
711 		eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
712 	else
713 		eventsel = evtreg & kvm_pmu_event_mask(vcpu->kvm);
714 
715 	/*
716 	 * Neither SW increment nor chained events need to be backed
717 	 * by a perf event.
718 	 */
719 	if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
720 	    eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
721 		return;
722 
723 	/*
724 	 * If we have a filter in place and that the event isn't allowed, do
725 	 * not install a perf event either.
726 	 */
727 	if (vcpu->kvm->arch.pmu_filter &&
728 	    !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
729 		return;
730 
731 	memset(&attr, 0, sizeof(struct perf_event_attr));
732 	attr.type = arm_pmu->pmu.type;
733 	attr.size = sizeof(attr);
734 	attr.pinned = 1;
735 	attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
736 	attr.exclude_user = !kvm_pmc_counts_at_el0(pmc);
737 	attr.exclude_hv = 1; /* Don't count EL2 events */
738 	attr.exclude_host = 1; /* Don't count host events */
739 	attr.config = eventsel;
740 
741 	/*
742 	 * Filter events at EL1 (i.e. vEL2) when in a hyp context based on the
743 	 * guest's EL2 filter.
744 	 */
745 	if (unlikely(is_hyp_ctxt(vcpu)))
746 		attr.exclude_kernel = !kvm_pmc_counts_at_el2(pmc);
747 	else
748 		attr.exclude_kernel = !kvm_pmc_counts_at_el1(pmc);
749 
750 	/*
751 	 * If counting with a 64bit counter, advertise it to the perf
752 	 * code, carefully dealing with the initial sample period
753 	 * which also depends on the overflow.
754 	 */
755 	if (kvm_pmc_is_64bit(pmc))
756 		attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
757 
758 	attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
759 
760 	event = perf_event_create_kernel_counter(&attr, -1, current,
761 						 kvm_pmu_perf_overflow, pmc);
762 
763 	if (IS_ERR(event)) {
764 		pr_err_once("kvm: pmu event creation failed %ld\n",
765 			    PTR_ERR(event));
766 		return;
767 	}
768 
769 	pmc->perf_event = event;
770 }
771 
772 /**
773  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
774  * @vcpu: The vcpu pointer
775  * @data: The data guest writes to PMXEVTYPER_EL0
776  * @select_idx: The number of selected counter
777  *
778  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
779  * event with given hardware event number. Here we call perf_event API to
780  * emulate this action and create a kernel perf event for it.
781  */
782 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
783 				    u64 select_idx)
784 {
785 	struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
786 	u64 reg;
787 
788 	if (!kvm_vcpu_has_pmu(vcpu))
789 		return;
790 
791 	reg = counter_index_to_evtreg(pmc->idx);
792 	__vcpu_sys_reg(vcpu, reg) = data & kvm_pmu_evtyper_mask(vcpu->kvm);
793 
794 	kvm_pmu_create_perf_event(pmc);
795 }
796 
797 void kvm_host_pmu_init(struct arm_pmu *pmu)
798 {
799 	struct arm_pmu_entry *entry;
800 
801 	/*
802 	 * Check the sanitised PMU version for the system, as KVM does not
803 	 * support implementations where PMUv3 exists on a subset of CPUs.
804 	 */
805 	if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
806 		return;
807 
808 	mutex_lock(&arm_pmus_lock);
809 
810 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
811 	if (!entry)
812 		goto out_unlock;
813 
814 	entry->arm_pmu = pmu;
815 	list_add_tail(&entry->entry, &arm_pmus);
816 
817 	if (list_is_singular(&arm_pmus))
818 		static_branch_enable(&kvm_arm_pmu_available);
819 
820 out_unlock:
821 	mutex_unlock(&arm_pmus_lock);
822 }
823 
824 static struct arm_pmu *kvm_pmu_probe_armpmu(void)
825 {
826 	struct arm_pmu *tmp, *pmu = NULL;
827 	struct arm_pmu_entry *entry;
828 	int cpu;
829 
830 	mutex_lock(&arm_pmus_lock);
831 
832 	/*
833 	 * It is safe to use a stale cpu to iterate the list of PMUs so long as
834 	 * the same value is used for the entirety of the loop. Given this, and
835 	 * the fact that no percpu data is used for the lookup there is no need
836 	 * to disable preemption.
837 	 *
838 	 * It is still necessary to get a valid cpu, though, to probe for the
839 	 * default PMU instance as userspace is not required to specify a PMU
840 	 * type. In order to uphold the preexisting behavior KVM selects the
841 	 * PMU instance for the core during vcpu init. A dependent use
842 	 * case would be a user with disdain of all things big.LITTLE that
843 	 * affines the VMM to a particular cluster of cores.
844 	 *
845 	 * In any case, userspace should just do the sane thing and use the UAPI
846 	 * to select a PMU type directly. But, be wary of the baggage being
847 	 * carried here.
848 	 */
849 	cpu = raw_smp_processor_id();
850 	list_for_each_entry(entry, &arm_pmus, entry) {
851 		tmp = entry->arm_pmu;
852 
853 		if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
854 			pmu = tmp;
855 			break;
856 		}
857 	}
858 
859 	mutex_unlock(&arm_pmus_lock);
860 
861 	return pmu;
862 }
863 
864 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
865 {
866 	unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
867 	u64 val, mask = 0;
868 	int base, i, nr_events;
869 
870 	if (!kvm_vcpu_has_pmu(vcpu))
871 		return 0;
872 
873 	if (!pmceid1) {
874 		val = read_sysreg(pmceid0_el0);
875 		/* always support CHAIN */
876 		val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
877 		base = 0;
878 	} else {
879 		val = read_sysreg(pmceid1_el0);
880 		/*
881 		 * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
882 		 * as RAZ
883 		 */
884 		val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
885 			 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
886 			 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
887 		base = 32;
888 	}
889 
890 	if (!bmap)
891 		return val;
892 
893 	nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
894 
895 	for (i = 0; i < 32; i += 8) {
896 		u64 byte;
897 
898 		byte = bitmap_get_value8(bmap, base + i);
899 		mask |= byte << i;
900 		if (nr_events >= (0x4000 + base + 32)) {
901 			byte = bitmap_get_value8(bmap, 0x4000 + base + i);
902 			mask |= byte << (32 + i);
903 		}
904 	}
905 
906 	return val & mask;
907 }
908 
909 void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
910 {
911 	u64 mask = kvm_pmu_implemented_counter_mask(vcpu);
912 
913 	kvm_pmu_handle_pmcr(vcpu, kvm_vcpu_read_pmcr(vcpu));
914 
915 	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= mask;
916 	__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= mask;
917 	__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= mask;
918 }
919 
920 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
921 {
922 	if (!kvm_vcpu_has_pmu(vcpu))
923 		return 0;
924 
925 	if (!vcpu->arch.pmu.created)
926 		return -EINVAL;
927 
928 	/*
929 	 * A valid interrupt configuration for the PMU is either to have a
930 	 * properly configured interrupt number and using an in-kernel
931 	 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
932 	 */
933 	if (irqchip_in_kernel(vcpu->kvm)) {
934 		int irq = vcpu->arch.pmu.irq_num;
935 		/*
936 		 * If we are using an in-kernel vgic, at this point we know
937 		 * the vgic will be initialized, so we can check the PMU irq
938 		 * number against the dimensions of the vgic and make sure
939 		 * it's valid.
940 		 */
941 		if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
942 			return -EINVAL;
943 	} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
944 		   return -EINVAL;
945 	}
946 
947 	/* One-off reload of the PMU on first run */
948 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
949 
950 	return 0;
951 }
952 
953 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
954 {
955 	if (irqchip_in_kernel(vcpu->kvm)) {
956 		int ret;
957 
958 		/*
959 		 * If using the PMU with an in-kernel virtual GIC
960 		 * implementation, we require the GIC to be already
961 		 * initialized when initializing the PMU.
962 		 */
963 		if (!vgic_initialized(vcpu->kvm))
964 			return -ENODEV;
965 
966 		if (!kvm_arm_pmu_irq_initialized(vcpu))
967 			return -ENXIO;
968 
969 		ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
970 					 &vcpu->arch.pmu);
971 		if (ret)
972 			return ret;
973 	}
974 
975 	init_irq_work(&vcpu->arch.pmu.overflow_work,
976 		      kvm_pmu_perf_overflow_notify_vcpu);
977 
978 	vcpu->arch.pmu.created = true;
979 	return 0;
980 }
981 
982 /*
983  * For one VM the interrupt type must be same for each vcpu.
984  * As a PPI, the interrupt number is the same for all vcpus,
985  * while as an SPI it must be a separate number per vcpu.
986  */
987 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
988 {
989 	unsigned long i;
990 	struct kvm_vcpu *vcpu;
991 
992 	kvm_for_each_vcpu(i, vcpu, kvm) {
993 		if (!kvm_arm_pmu_irq_initialized(vcpu))
994 			continue;
995 
996 		if (irq_is_ppi(irq)) {
997 			if (vcpu->arch.pmu.irq_num != irq)
998 				return false;
999 		} else {
1000 			if (vcpu->arch.pmu.irq_num == irq)
1001 				return false;
1002 		}
1003 	}
1004 
1005 	return true;
1006 }
1007 
1008 /**
1009  * kvm_arm_pmu_get_max_counters - Return the max number of PMU counters.
1010  * @kvm: The kvm pointer
1011  */
1012 u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
1013 {
1014 	struct arm_pmu *arm_pmu = kvm->arch.arm_pmu;
1015 
1016 	/*
1017 	 * The arm_pmu->cntr_mask considers the fixed counter(s) as well.
1018 	 * Ignore those and return only the general-purpose counters.
1019 	 */
1020 	return bitmap_weight(arm_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS);
1021 }
1022 
1023 static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu)
1024 {
1025 	lockdep_assert_held(&kvm->arch.config_lock);
1026 
1027 	kvm->arch.arm_pmu = arm_pmu;
1028 	kvm->arch.pmcr_n = kvm_arm_pmu_get_max_counters(kvm);
1029 }
1030 
1031 /**
1032  * kvm_arm_set_default_pmu - No PMU set, get the default one.
1033  * @kvm: The kvm pointer
1034  *
1035  * The observant among you will notice that the supported_cpus
1036  * mask does not get updated for the default PMU even though it
1037  * is quite possible the selected instance supports only a
1038  * subset of cores in the system. This is intentional, and
1039  * upholds the preexisting behavior on heterogeneous systems
1040  * where vCPUs can be scheduled on any core but the guest
1041  * counters could stop working.
1042  */
1043 int kvm_arm_set_default_pmu(struct kvm *kvm)
1044 {
1045 	struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu();
1046 
1047 	if (!arm_pmu)
1048 		return -ENODEV;
1049 
1050 	kvm_arm_set_pmu(kvm, arm_pmu);
1051 	return 0;
1052 }
1053 
1054 static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
1055 {
1056 	struct kvm *kvm = vcpu->kvm;
1057 	struct arm_pmu_entry *entry;
1058 	struct arm_pmu *arm_pmu;
1059 	int ret = -ENXIO;
1060 
1061 	lockdep_assert_held(&kvm->arch.config_lock);
1062 	mutex_lock(&arm_pmus_lock);
1063 
1064 	list_for_each_entry(entry, &arm_pmus, entry) {
1065 		arm_pmu = entry->arm_pmu;
1066 		if (arm_pmu->pmu.type == pmu_id) {
1067 			if (kvm_vm_has_ran_once(kvm) ||
1068 			    (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
1069 				ret = -EBUSY;
1070 				break;
1071 			}
1072 
1073 			kvm_arm_set_pmu(kvm, arm_pmu);
1074 			cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
1075 			ret = 0;
1076 			break;
1077 		}
1078 	}
1079 
1080 	mutex_unlock(&arm_pmus_lock);
1081 	return ret;
1082 }
1083 
1084 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1085 {
1086 	struct kvm *kvm = vcpu->kvm;
1087 
1088 	lockdep_assert_held(&kvm->arch.config_lock);
1089 
1090 	if (!kvm_vcpu_has_pmu(vcpu))
1091 		return -ENODEV;
1092 
1093 	if (vcpu->arch.pmu.created)
1094 		return -EBUSY;
1095 
1096 	switch (attr->attr) {
1097 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
1098 		int __user *uaddr = (int __user *)(long)attr->addr;
1099 		int irq;
1100 
1101 		if (!irqchip_in_kernel(kvm))
1102 			return -EINVAL;
1103 
1104 		if (get_user(irq, uaddr))
1105 			return -EFAULT;
1106 
1107 		/* The PMU overflow interrupt can be a PPI or a valid SPI. */
1108 		if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
1109 			return -EINVAL;
1110 
1111 		if (!pmu_irq_is_valid(kvm, irq))
1112 			return -EINVAL;
1113 
1114 		if (kvm_arm_pmu_irq_initialized(vcpu))
1115 			return -EBUSY;
1116 
1117 		kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
1118 		vcpu->arch.pmu.irq_num = irq;
1119 		return 0;
1120 	}
1121 	case KVM_ARM_VCPU_PMU_V3_FILTER: {
1122 		u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
1123 		struct kvm_pmu_event_filter __user *uaddr;
1124 		struct kvm_pmu_event_filter filter;
1125 		int nr_events;
1126 
1127 		/*
1128 		 * Allow userspace to specify an event filter for the entire
1129 		 * event range supported by PMUVer of the hardware, rather
1130 		 * than the guest's PMUVer for KVM backward compatibility.
1131 		 */
1132 		nr_events = __kvm_pmu_event_mask(pmuver) + 1;
1133 
1134 		uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
1135 
1136 		if (copy_from_user(&filter, uaddr, sizeof(filter)))
1137 			return -EFAULT;
1138 
1139 		if (((u32)filter.base_event + filter.nevents) > nr_events ||
1140 		    (filter.action != KVM_PMU_EVENT_ALLOW &&
1141 		     filter.action != KVM_PMU_EVENT_DENY))
1142 			return -EINVAL;
1143 
1144 		if (kvm_vm_has_ran_once(kvm))
1145 			return -EBUSY;
1146 
1147 		if (!kvm->arch.pmu_filter) {
1148 			kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
1149 			if (!kvm->arch.pmu_filter)
1150 				return -ENOMEM;
1151 
1152 			/*
1153 			 * The default depends on the first applied filter.
1154 			 * If it allows events, the default is to deny.
1155 			 * Conversely, if the first filter denies a set of
1156 			 * events, the default is to allow.
1157 			 */
1158 			if (filter.action == KVM_PMU_EVENT_ALLOW)
1159 				bitmap_zero(kvm->arch.pmu_filter, nr_events);
1160 			else
1161 				bitmap_fill(kvm->arch.pmu_filter, nr_events);
1162 		}
1163 
1164 		if (filter.action == KVM_PMU_EVENT_ALLOW)
1165 			bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1166 		else
1167 			bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1168 
1169 		return 0;
1170 	}
1171 	case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1172 		int __user *uaddr = (int __user *)(long)attr->addr;
1173 		int pmu_id;
1174 
1175 		if (get_user(pmu_id, uaddr))
1176 			return -EFAULT;
1177 
1178 		return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1179 	}
1180 	case KVM_ARM_VCPU_PMU_V3_INIT:
1181 		return kvm_arm_pmu_v3_init(vcpu);
1182 	}
1183 
1184 	return -ENXIO;
1185 }
1186 
1187 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1188 {
1189 	switch (attr->attr) {
1190 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
1191 		int __user *uaddr = (int __user *)(long)attr->addr;
1192 		int irq;
1193 
1194 		if (!irqchip_in_kernel(vcpu->kvm))
1195 			return -EINVAL;
1196 
1197 		if (!kvm_vcpu_has_pmu(vcpu))
1198 			return -ENODEV;
1199 
1200 		if (!kvm_arm_pmu_irq_initialized(vcpu))
1201 			return -ENXIO;
1202 
1203 		irq = vcpu->arch.pmu.irq_num;
1204 		return put_user(irq, uaddr);
1205 	}
1206 	}
1207 
1208 	return -ENXIO;
1209 }
1210 
1211 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1212 {
1213 	switch (attr->attr) {
1214 	case KVM_ARM_VCPU_PMU_V3_IRQ:
1215 	case KVM_ARM_VCPU_PMU_V3_INIT:
1216 	case KVM_ARM_VCPU_PMU_V3_FILTER:
1217 	case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1218 		if (kvm_vcpu_has_pmu(vcpu))
1219 			return 0;
1220 	}
1221 
1222 	return -ENXIO;
1223 }
1224 
1225 u8 kvm_arm_pmu_get_pmuver_limit(void)
1226 {
1227 	u64 tmp;
1228 
1229 	tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1230 	tmp = cpuid_feature_cap_perfmon_field(tmp,
1231 					      ID_AA64DFR0_EL1_PMUVer_SHIFT,
1232 					      ID_AA64DFR0_EL1_PMUVer_V3P5);
1233 	return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
1234 }
1235 
1236 /**
1237  * kvm_vcpu_read_pmcr - Read PMCR_EL0 register for the vCPU
1238  * @vcpu: The vcpu pointer
1239  */
1240 u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
1241 {
1242 	u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
1243 
1244 	return u64_replace_bits(pmcr, vcpu->kvm->arch.pmcr_n, ARMV8_PMU_PMCR_N);
1245 }
1246 
1247 void kvm_pmu_nested_transition(struct kvm_vcpu *vcpu)
1248 {
1249 	bool reprogrammed = false;
1250 	unsigned long mask;
1251 	int i;
1252 
1253 	if (!kvm_vcpu_has_pmu(vcpu))
1254 		return;
1255 
1256 	mask = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1257 	for_each_set_bit(i, &mask, 32) {
1258 		struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
1259 
1260 		/*
1261 		 * We only need to reconfigure events where the filter is
1262 		 * different at EL1 vs. EL2, as we're multiplexing the true EL1
1263 		 * event filter bit for nested.
1264 		 */
1265 		if (kvm_pmc_counts_at_el1(pmc) == kvm_pmc_counts_at_el2(pmc))
1266 			continue;
1267 
1268 		kvm_pmu_create_perf_event(pmc);
1269 		reprogrammed = true;
1270 	}
1271 
1272 	if (reprogrammed)
1273 		kvm_vcpu_pmu_restore_guest(vcpu);
1274 }
1275