xref: /linux/arch/arm64/kvm/pmu-emul.c (revision 06a130e42a5bfc84795464bff023bff4c16f58c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list.h>
11 #include <linux/perf_event.h>
12 #include <linux/perf/arm_pmu.h>
13 #include <linux/uaccess.h>
14 #include <asm/kvm_emulate.h>
15 #include <kvm/arm_pmu.h>
16 #include <kvm/arm_vgic.h>
17 
18 #define PERF_ATTR_CFG1_COUNTER_64BIT	BIT(0)
19 
20 DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
21 
22 static LIST_HEAD(arm_pmus);
23 static DEFINE_MUTEX(arm_pmus_lock);
24 
25 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
26 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
27 
28 static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
29 {
30 	return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
31 }
32 
33 static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
34 {
35 	return &vcpu->arch.pmu.pmc[cnt_idx];
36 }
37 
38 static u32 __kvm_pmu_event_mask(unsigned int pmuver)
39 {
40 	switch (pmuver) {
41 	case ID_AA64DFR0_EL1_PMUVer_IMP:
42 		return GENMASK(9, 0);
43 	case ID_AA64DFR0_EL1_PMUVer_V3P1:
44 	case ID_AA64DFR0_EL1_PMUVer_V3P4:
45 	case ID_AA64DFR0_EL1_PMUVer_V3P5:
46 	case ID_AA64DFR0_EL1_PMUVer_V3P7:
47 		return GENMASK(15, 0);
48 	default:		/* Shouldn't be here, just for sanity */
49 		WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
50 		return 0;
51 	}
52 }
53 
54 static u32 kvm_pmu_event_mask(struct kvm *kvm)
55 {
56 	u64 dfr0 = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
57 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
58 
59 	return __kvm_pmu_event_mask(pmuver);
60 }
61 
62 u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
63 {
64 	u64 mask = ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMU_EXCLUDE_EL0 |
65 		   kvm_pmu_event_mask(kvm);
66 
67 	if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL2, IMP))
68 		mask |= ARMV8_PMU_INCLUDE_EL2;
69 
70 	if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
71 		mask |= ARMV8_PMU_EXCLUDE_NS_EL0 |
72 			ARMV8_PMU_EXCLUDE_NS_EL1 |
73 			ARMV8_PMU_EXCLUDE_EL3;
74 
75 	return mask;
76 }
77 
78 /**
79  * kvm_pmc_is_64bit - determine if counter is 64bit
80  * @pmc: counter context
81  */
82 static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
83 {
84 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
85 
86 	return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
87 		kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5));
88 }
89 
90 static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
91 {
92 	u64 val = kvm_vcpu_read_pmcr(kvm_pmc_to_vcpu(pmc));
93 
94 	return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
95 	       (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
96 }
97 
98 static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
99 {
100 	return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
101 		!kvm_pmc_has_64bit_overflow(pmc));
102 }
103 
104 static u32 counter_index_to_reg(u64 idx)
105 {
106 	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
107 }
108 
109 static u32 counter_index_to_evtreg(u64 idx)
110 {
111 	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
112 }
113 
114 static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
115 {
116 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
117 	u64 counter, reg, enabled, running;
118 
119 	reg = counter_index_to_reg(pmc->idx);
120 	counter = __vcpu_sys_reg(vcpu, reg);
121 
122 	/*
123 	 * The real counter value is equal to the value of counter register plus
124 	 * the value perf event counts.
125 	 */
126 	if (pmc->perf_event)
127 		counter += perf_event_read_value(pmc->perf_event, &enabled,
128 						 &running);
129 
130 	if (!kvm_pmc_is_64bit(pmc))
131 		counter = lower_32_bits(counter);
132 
133 	return counter;
134 }
135 
136 /**
137  * kvm_pmu_get_counter_value - get PMU counter value
138  * @vcpu: The vcpu pointer
139  * @select_idx: The counter index
140  */
141 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
142 {
143 	if (!kvm_vcpu_has_pmu(vcpu))
144 		return 0;
145 
146 	return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
147 }
148 
149 static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
150 {
151 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
152 	u64 reg;
153 
154 	kvm_pmu_release_perf_event(pmc);
155 
156 	reg = counter_index_to_reg(pmc->idx);
157 
158 	if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
159 	    !force) {
160 		/*
161 		 * Even with PMUv3p5, AArch32 cannot write to the top
162 		 * 32bit of the counters. The only possible course of
163 		 * action is to use PMCR.P, which will reset them to
164 		 * 0 (the only use of the 'force' parameter).
165 		 */
166 		val  = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
167 		val |= lower_32_bits(val);
168 	}
169 
170 	__vcpu_sys_reg(vcpu, reg) = val;
171 
172 	/* Recreate the perf event to reflect the updated sample_period */
173 	kvm_pmu_create_perf_event(pmc);
174 }
175 
176 /**
177  * kvm_pmu_set_counter_value - set PMU counter value
178  * @vcpu: The vcpu pointer
179  * @select_idx: The counter index
180  * @val: The counter value
181  */
182 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
183 {
184 	if (!kvm_vcpu_has_pmu(vcpu))
185 		return;
186 
187 	kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
188 }
189 
190 /**
191  * kvm_pmu_release_perf_event - remove the perf event
192  * @pmc: The PMU counter pointer
193  */
194 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
195 {
196 	if (pmc->perf_event) {
197 		perf_event_disable(pmc->perf_event);
198 		perf_event_release_kernel(pmc->perf_event);
199 		pmc->perf_event = NULL;
200 	}
201 }
202 
203 /**
204  * kvm_pmu_stop_counter - stop PMU counter
205  * @pmc: The PMU counter pointer
206  *
207  * If this counter has been configured to monitor some event, release it here.
208  */
209 static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
210 {
211 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
212 	u64 reg, val;
213 
214 	if (!pmc->perf_event)
215 		return;
216 
217 	val = kvm_pmu_get_pmc_value(pmc);
218 
219 	reg = counter_index_to_reg(pmc->idx);
220 
221 	__vcpu_sys_reg(vcpu, reg) = val;
222 
223 	kvm_pmu_release_perf_event(pmc);
224 }
225 
226 /**
227  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
228  * @vcpu: The vcpu pointer
229  *
230  */
231 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
232 {
233 	int i;
234 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
235 
236 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
237 		pmu->pmc[i].idx = i;
238 }
239 
240 /**
241  * kvm_pmu_vcpu_reset - reset pmu state for cpu
242  * @vcpu: The vcpu pointer
243  *
244  */
245 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
246 {
247 	unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
248 	int i;
249 
250 	for_each_set_bit(i, &mask, 32)
251 		kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
252 }
253 
254 /**
255  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
256  * @vcpu: The vcpu pointer
257  *
258  */
259 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
260 {
261 	int i;
262 
263 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
264 		kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
265 	irq_work_sync(&vcpu->arch.pmu.overflow_work);
266 }
267 
268 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
269 {
270 	u64 val = FIELD_GET(ARMV8_PMU_PMCR_N, kvm_vcpu_read_pmcr(vcpu));
271 
272 	if (val == 0)
273 		return BIT(ARMV8_PMU_CYCLE_IDX);
274 	else
275 		return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
276 }
277 
278 /**
279  * kvm_pmu_enable_counter_mask - enable selected PMU counters
280  * @vcpu: The vcpu pointer
281  * @val: the value guest writes to PMCNTENSET register
282  *
283  * Call perf_event_enable to start counting the perf event
284  */
285 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
286 {
287 	int i;
288 	if (!kvm_vcpu_has_pmu(vcpu))
289 		return;
290 
291 	if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) || !val)
292 		return;
293 
294 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
295 		struct kvm_pmc *pmc;
296 
297 		if (!(val & BIT(i)))
298 			continue;
299 
300 		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
301 
302 		if (!pmc->perf_event) {
303 			kvm_pmu_create_perf_event(pmc);
304 		} else {
305 			perf_event_enable(pmc->perf_event);
306 			if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
307 				kvm_debug("fail to enable perf event\n");
308 		}
309 	}
310 }
311 
312 /**
313  * kvm_pmu_disable_counter_mask - disable selected PMU counters
314  * @vcpu: The vcpu pointer
315  * @val: the value guest writes to PMCNTENCLR register
316  *
317  * Call perf_event_disable to stop counting the perf event
318  */
319 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
320 {
321 	int i;
322 
323 	if (!kvm_vcpu_has_pmu(vcpu) || !val)
324 		return;
325 
326 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
327 		struct kvm_pmc *pmc;
328 
329 		if (!(val & BIT(i)))
330 			continue;
331 
332 		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
333 
334 		if (pmc->perf_event)
335 			perf_event_disable(pmc->perf_event);
336 	}
337 }
338 
339 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
340 {
341 	u64 reg = 0;
342 
343 	if ((kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E)) {
344 		reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
345 		reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
346 		reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
347 	}
348 
349 	return reg;
350 }
351 
352 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
353 {
354 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
355 	bool overflow;
356 
357 	if (!kvm_vcpu_has_pmu(vcpu))
358 		return;
359 
360 	overflow = !!kvm_pmu_overflow_status(vcpu);
361 	if (pmu->irq_level == overflow)
362 		return;
363 
364 	pmu->irq_level = overflow;
365 
366 	if (likely(irqchip_in_kernel(vcpu->kvm))) {
367 		int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
368 					      pmu->irq_num, overflow, pmu);
369 		WARN_ON(ret);
370 	}
371 }
372 
373 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
374 {
375 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
376 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
377 	bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
378 
379 	if (likely(irqchip_in_kernel(vcpu->kvm)))
380 		return false;
381 
382 	return pmu->irq_level != run_level;
383 }
384 
385 /*
386  * Reflect the PMU overflow interrupt output level into the kvm_run structure
387  */
388 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
389 {
390 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
391 
392 	/* Populate the timer bitmap for user space */
393 	regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
394 	if (vcpu->arch.pmu.irq_level)
395 		regs->device_irq_level |= KVM_ARM_DEV_PMU;
396 }
397 
398 /**
399  * kvm_pmu_flush_hwstate - flush pmu state to cpu
400  * @vcpu: The vcpu pointer
401  *
402  * Check if the PMU has overflowed while we were running in the host, and inject
403  * an interrupt if that was the case.
404  */
405 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
406 {
407 	kvm_pmu_update_state(vcpu);
408 }
409 
410 /**
411  * kvm_pmu_sync_hwstate - sync pmu state from cpu
412  * @vcpu: The vcpu pointer
413  *
414  * Check if the PMU has overflowed while we were running in the guest, and
415  * inject an interrupt if that was the case.
416  */
417 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
418 {
419 	kvm_pmu_update_state(vcpu);
420 }
421 
422 /*
423  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
424  * to the event.
425  * This is why we need a callback to do it once outside of the NMI context.
426  */
427 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
428 {
429 	struct kvm_vcpu *vcpu;
430 
431 	vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
432 	kvm_vcpu_kick(vcpu);
433 }
434 
435 /*
436  * Perform an increment on any of the counters described in @mask,
437  * generating the overflow if required, and propagate it as a chained
438  * event if possible.
439  */
440 static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
441 				      unsigned long mask, u32 event)
442 {
443 	int i;
444 
445 	if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
446 		return;
447 
448 	/* Weed out disabled counters */
449 	mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
450 
451 	for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
452 		struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
453 		u64 type, reg;
454 
455 		/* Filter on event type */
456 		type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
457 		type &= kvm_pmu_event_mask(vcpu->kvm);
458 		if (type != event)
459 			continue;
460 
461 		/* Increment this counter */
462 		reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
463 		if (!kvm_pmc_is_64bit(pmc))
464 			reg = lower_32_bits(reg);
465 		__vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
466 
467 		/* No overflow? move on */
468 		if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
469 			continue;
470 
471 		/* Mark overflow */
472 		__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
473 
474 		if (kvm_pmu_counter_can_chain(pmc))
475 			kvm_pmu_counter_increment(vcpu, BIT(i + 1),
476 						  ARMV8_PMUV3_PERFCTR_CHAIN);
477 	}
478 }
479 
480 /* Compute the sample period for a given counter value */
481 static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
482 {
483 	u64 val;
484 
485 	if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
486 		val = (-counter) & GENMASK(63, 0);
487 	else
488 		val = (-counter) & GENMASK(31, 0);
489 
490 	return val;
491 }
492 
493 /*
494  * When the perf event overflows, set the overflow status and inform the vcpu.
495  */
496 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
497 				  struct perf_sample_data *data,
498 				  struct pt_regs *regs)
499 {
500 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
501 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
502 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
503 	int idx = pmc->idx;
504 	u64 period;
505 
506 	cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
507 
508 	/*
509 	 * Reset the sample period to the architectural limit,
510 	 * i.e. the point where the counter overflows.
511 	 */
512 	period = compute_period(pmc, local64_read(&perf_event->count));
513 
514 	local64_set(&perf_event->hw.period_left, 0);
515 	perf_event->attr.sample_period = period;
516 	perf_event->hw.sample_period = period;
517 
518 	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
519 
520 	if (kvm_pmu_counter_can_chain(pmc))
521 		kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
522 					  ARMV8_PMUV3_PERFCTR_CHAIN);
523 
524 	if (kvm_pmu_overflow_status(vcpu)) {
525 		kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
526 
527 		if (!in_nmi())
528 			kvm_vcpu_kick(vcpu);
529 		else
530 			irq_work_queue(&vcpu->arch.pmu.overflow_work);
531 	}
532 
533 	cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
534 }
535 
536 /**
537  * kvm_pmu_software_increment - do software increment
538  * @vcpu: The vcpu pointer
539  * @val: the value guest writes to PMSWINC register
540  */
541 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
542 {
543 	kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
544 }
545 
546 /**
547  * kvm_pmu_handle_pmcr - handle PMCR register
548  * @vcpu: The vcpu pointer
549  * @val: the value guest writes to PMCR register
550  */
551 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
552 {
553 	int i;
554 
555 	if (!kvm_vcpu_has_pmu(vcpu))
556 		return;
557 
558 	/* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
559 	if (!kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
560 		val &= ~ARMV8_PMU_PMCR_LP;
561 
562 	/* The reset bits don't indicate any state, and shouldn't be saved. */
563 	__vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
564 
565 	if (val & ARMV8_PMU_PMCR_E) {
566 		kvm_pmu_enable_counter_mask(vcpu,
567 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
568 	} else {
569 		kvm_pmu_disable_counter_mask(vcpu,
570 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
571 	}
572 
573 	if (val & ARMV8_PMU_PMCR_C)
574 		kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
575 
576 	if (val & ARMV8_PMU_PMCR_P) {
577 		unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
578 		mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
579 		for_each_set_bit(i, &mask, 32)
580 			kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
581 	}
582 	kvm_vcpu_pmu_restore_guest(vcpu);
583 }
584 
585 static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
586 {
587 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
588 	return (kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) &&
589 	       (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
590 }
591 
592 /**
593  * kvm_pmu_create_perf_event - create a perf event for a counter
594  * @pmc: Counter context
595  */
596 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
597 {
598 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
599 	struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
600 	struct perf_event *event;
601 	struct perf_event_attr attr;
602 	u64 eventsel, reg, data;
603 	bool p, u, nsk, nsu;
604 
605 	reg = counter_index_to_evtreg(pmc->idx);
606 	data = __vcpu_sys_reg(vcpu, reg);
607 
608 	kvm_pmu_stop_counter(pmc);
609 	if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
610 		eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
611 	else
612 		eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
613 
614 	/*
615 	 * Neither SW increment nor chained events need to be backed
616 	 * by a perf event.
617 	 */
618 	if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
619 	    eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
620 		return;
621 
622 	/*
623 	 * If we have a filter in place and that the event isn't allowed, do
624 	 * not install a perf event either.
625 	 */
626 	if (vcpu->kvm->arch.pmu_filter &&
627 	    !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
628 		return;
629 
630 	p = data & ARMV8_PMU_EXCLUDE_EL1;
631 	u = data & ARMV8_PMU_EXCLUDE_EL0;
632 	nsk = data & ARMV8_PMU_EXCLUDE_NS_EL1;
633 	nsu = data & ARMV8_PMU_EXCLUDE_NS_EL0;
634 
635 	memset(&attr, 0, sizeof(struct perf_event_attr));
636 	attr.type = arm_pmu->pmu.type;
637 	attr.size = sizeof(attr);
638 	attr.pinned = 1;
639 	attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
640 	attr.exclude_user = (u != nsu);
641 	attr.exclude_kernel = (p != nsk);
642 	attr.exclude_hv = 1; /* Don't count EL2 events */
643 	attr.exclude_host = 1; /* Don't count host events */
644 	attr.config = eventsel;
645 
646 	/*
647 	 * If counting with a 64bit counter, advertise it to the perf
648 	 * code, carefully dealing with the initial sample period
649 	 * which also depends on the overflow.
650 	 */
651 	if (kvm_pmc_is_64bit(pmc))
652 		attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
653 
654 	attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
655 
656 	event = perf_event_create_kernel_counter(&attr, -1, current,
657 						 kvm_pmu_perf_overflow, pmc);
658 
659 	if (IS_ERR(event)) {
660 		pr_err_once("kvm: pmu event creation failed %ld\n",
661 			    PTR_ERR(event));
662 		return;
663 	}
664 
665 	pmc->perf_event = event;
666 }
667 
668 /**
669  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
670  * @vcpu: The vcpu pointer
671  * @data: The data guest writes to PMXEVTYPER_EL0
672  * @select_idx: The number of selected counter
673  *
674  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
675  * event with given hardware event number. Here we call perf_event API to
676  * emulate this action and create a kernel perf event for it.
677  */
678 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
679 				    u64 select_idx)
680 {
681 	struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
682 	u64 reg;
683 
684 	if (!kvm_vcpu_has_pmu(vcpu))
685 		return;
686 
687 	reg = counter_index_to_evtreg(pmc->idx);
688 	__vcpu_sys_reg(vcpu, reg) = data & kvm_pmu_evtyper_mask(vcpu->kvm);
689 
690 	kvm_pmu_create_perf_event(pmc);
691 }
692 
693 void kvm_host_pmu_init(struct arm_pmu *pmu)
694 {
695 	struct arm_pmu_entry *entry;
696 
697 	/*
698 	 * Check the sanitised PMU version for the system, as KVM does not
699 	 * support implementations where PMUv3 exists on a subset of CPUs.
700 	 */
701 	if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
702 		return;
703 
704 	mutex_lock(&arm_pmus_lock);
705 
706 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
707 	if (!entry)
708 		goto out_unlock;
709 
710 	entry->arm_pmu = pmu;
711 	list_add_tail(&entry->entry, &arm_pmus);
712 
713 	if (list_is_singular(&arm_pmus))
714 		static_branch_enable(&kvm_arm_pmu_available);
715 
716 out_unlock:
717 	mutex_unlock(&arm_pmus_lock);
718 }
719 
720 static struct arm_pmu *kvm_pmu_probe_armpmu(void)
721 {
722 	struct arm_pmu *tmp, *pmu = NULL;
723 	struct arm_pmu_entry *entry;
724 	int cpu;
725 
726 	mutex_lock(&arm_pmus_lock);
727 
728 	/*
729 	 * It is safe to use a stale cpu to iterate the list of PMUs so long as
730 	 * the same value is used for the entirety of the loop. Given this, and
731 	 * the fact that no percpu data is used for the lookup there is no need
732 	 * to disable preemption.
733 	 *
734 	 * It is still necessary to get a valid cpu, though, to probe for the
735 	 * default PMU instance as userspace is not required to specify a PMU
736 	 * type. In order to uphold the preexisting behavior KVM selects the
737 	 * PMU instance for the core during vcpu init. A dependent use
738 	 * case would be a user with disdain of all things big.LITTLE that
739 	 * affines the VMM to a particular cluster of cores.
740 	 *
741 	 * In any case, userspace should just do the sane thing and use the UAPI
742 	 * to select a PMU type directly. But, be wary of the baggage being
743 	 * carried here.
744 	 */
745 	cpu = raw_smp_processor_id();
746 	list_for_each_entry(entry, &arm_pmus, entry) {
747 		tmp = entry->arm_pmu;
748 
749 		if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
750 			pmu = tmp;
751 			break;
752 		}
753 	}
754 
755 	mutex_unlock(&arm_pmus_lock);
756 
757 	return pmu;
758 }
759 
760 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
761 {
762 	unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
763 	u64 val, mask = 0;
764 	int base, i, nr_events;
765 
766 	if (!kvm_vcpu_has_pmu(vcpu))
767 		return 0;
768 
769 	if (!pmceid1) {
770 		val = read_sysreg(pmceid0_el0);
771 		/* always support CHAIN */
772 		val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
773 		base = 0;
774 	} else {
775 		val = read_sysreg(pmceid1_el0);
776 		/*
777 		 * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
778 		 * as RAZ
779 		 */
780 		val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
781 			 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
782 			 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
783 		base = 32;
784 	}
785 
786 	if (!bmap)
787 		return val;
788 
789 	nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
790 
791 	for (i = 0; i < 32; i += 8) {
792 		u64 byte;
793 
794 		byte = bitmap_get_value8(bmap, base + i);
795 		mask |= byte << i;
796 		if (nr_events >= (0x4000 + base + 32)) {
797 			byte = bitmap_get_value8(bmap, 0x4000 + base + i);
798 			mask |= byte << (32 + i);
799 		}
800 	}
801 
802 	return val & mask;
803 }
804 
805 void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
806 {
807 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
808 
809 	kvm_pmu_handle_pmcr(vcpu, kvm_vcpu_read_pmcr(vcpu));
810 
811 	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= mask;
812 	__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= mask;
813 	__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= mask;
814 }
815 
816 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
817 {
818 	if (!kvm_vcpu_has_pmu(vcpu))
819 		return 0;
820 
821 	if (!vcpu->arch.pmu.created)
822 		return -EINVAL;
823 
824 	/*
825 	 * A valid interrupt configuration for the PMU is either to have a
826 	 * properly configured interrupt number and using an in-kernel
827 	 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
828 	 */
829 	if (irqchip_in_kernel(vcpu->kvm)) {
830 		int irq = vcpu->arch.pmu.irq_num;
831 		/*
832 		 * If we are using an in-kernel vgic, at this point we know
833 		 * the vgic will be initialized, so we can check the PMU irq
834 		 * number against the dimensions of the vgic and make sure
835 		 * it's valid.
836 		 */
837 		if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
838 			return -EINVAL;
839 	} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
840 		   return -EINVAL;
841 	}
842 
843 	/* One-off reload of the PMU on first run */
844 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
845 
846 	return 0;
847 }
848 
849 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
850 {
851 	if (irqchip_in_kernel(vcpu->kvm)) {
852 		int ret;
853 
854 		/*
855 		 * If using the PMU with an in-kernel virtual GIC
856 		 * implementation, we require the GIC to be already
857 		 * initialized when initializing the PMU.
858 		 */
859 		if (!vgic_initialized(vcpu->kvm))
860 			return -ENODEV;
861 
862 		if (!kvm_arm_pmu_irq_initialized(vcpu))
863 			return -ENXIO;
864 
865 		ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
866 					 &vcpu->arch.pmu);
867 		if (ret)
868 			return ret;
869 	}
870 
871 	init_irq_work(&vcpu->arch.pmu.overflow_work,
872 		      kvm_pmu_perf_overflow_notify_vcpu);
873 
874 	vcpu->arch.pmu.created = true;
875 	return 0;
876 }
877 
878 /*
879  * For one VM the interrupt type must be same for each vcpu.
880  * As a PPI, the interrupt number is the same for all vcpus,
881  * while as an SPI it must be a separate number per vcpu.
882  */
883 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
884 {
885 	unsigned long i;
886 	struct kvm_vcpu *vcpu;
887 
888 	kvm_for_each_vcpu(i, vcpu, kvm) {
889 		if (!kvm_arm_pmu_irq_initialized(vcpu))
890 			continue;
891 
892 		if (irq_is_ppi(irq)) {
893 			if (vcpu->arch.pmu.irq_num != irq)
894 				return false;
895 		} else {
896 			if (vcpu->arch.pmu.irq_num == irq)
897 				return false;
898 		}
899 	}
900 
901 	return true;
902 }
903 
904 /**
905  * kvm_arm_pmu_get_max_counters - Return the max number of PMU counters.
906  * @kvm: The kvm pointer
907  */
908 u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
909 {
910 	struct arm_pmu *arm_pmu = kvm->arch.arm_pmu;
911 
912 	/*
913 	 * The arm_pmu->cntr_mask considers the fixed counter(s) as well.
914 	 * Ignore those and return only the general-purpose counters.
915 	 */
916 	return bitmap_weight(arm_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS);
917 }
918 
919 static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu)
920 {
921 	lockdep_assert_held(&kvm->arch.config_lock);
922 
923 	kvm->arch.arm_pmu = arm_pmu;
924 	kvm->arch.pmcr_n = kvm_arm_pmu_get_max_counters(kvm);
925 }
926 
927 /**
928  * kvm_arm_set_default_pmu - No PMU set, get the default one.
929  * @kvm: The kvm pointer
930  *
931  * The observant among you will notice that the supported_cpus
932  * mask does not get updated for the default PMU even though it
933  * is quite possible the selected instance supports only a
934  * subset of cores in the system. This is intentional, and
935  * upholds the preexisting behavior on heterogeneous systems
936  * where vCPUs can be scheduled on any core but the guest
937  * counters could stop working.
938  */
939 int kvm_arm_set_default_pmu(struct kvm *kvm)
940 {
941 	struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu();
942 
943 	if (!arm_pmu)
944 		return -ENODEV;
945 
946 	kvm_arm_set_pmu(kvm, arm_pmu);
947 	return 0;
948 }
949 
950 static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
951 {
952 	struct kvm *kvm = vcpu->kvm;
953 	struct arm_pmu_entry *entry;
954 	struct arm_pmu *arm_pmu;
955 	int ret = -ENXIO;
956 
957 	lockdep_assert_held(&kvm->arch.config_lock);
958 	mutex_lock(&arm_pmus_lock);
959 
960 	list_for_each_entry(entry, &arm_pmus, entry) {
961 		arm_pmu = entry->arm_pmu;
962 		if (arm_pmu->pmu.type == pmu_id) {
963 			if (kvm_vm_has_ran_once(kvm) ||
964 			    (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
965 				ret = -EBUSY;
966 				break;
967 			}
968 
969 			kvm_arm_set_pmu(kvm, arm_pmu);
970 			cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
971 			ret = 0;
972 			break;
973 		}
974 	}
975 
976 	mutex_unlock(&arm_pmus_lock);
977 	return ret;
978 }
979 
980 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
981 {
982 	struct kvm *kvm = vcpu->kvm;
983 
984 	lockdep_assert_held(&kvm->arch.config_lock);
985 
986 	if (!kvm_vcpu_has_pmu(vcpu))
987 		return -ENODEV;
988 
989 	if (vcpu->arch.pmu.created)
990 		return -EBUSY;
991 
992 	switch (attr->attr) {
993 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
994 		int __user *uaddr = (int __user *)(long)attr->addr;
995 		int irq;
996 
997 		if (!irqchip_in_kernel(kvm))
998 			return -EINVAL;
999 
1000 		if (get_user(irq, uaddr))
1001 			return -EFAULT;
1002 
1003 		/* The PMU overflow interrupt can be a PPI or a valid SPI. */
1004 		if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
1005 			return -EINVAL;
1006 
1007 		if (!pmu_irq_is_valid(kvm, irq))
1008 			return -EINVAL;
1009 
1010 		if (kvm_arm_pmu_irq_initialized(vcpu))
1011 			return -EBUSY;
1012 
1013 		kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
1014 		vcpu->arch.pmu.irq_num = irq;
1015 		return 0;
1016 	}
1017 	case KVM_ARM_VCPU_PMU_V3_FILTER: {
1018 		u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
1019 		struct kvm_pmu_event_filter __user *uaddr;
1020 		struct kvm_pmu_event_filter filter;
1021 		int nr_events;
1022 
1023 		/*
1024 		 * Allow userspace to specify an event filter for the entire
1025 		 * event range supported by PMUVer of the hardware, rather
1026 		 * than the guest's PMUVer for KVM backward compatibility.
1027 		 */
1028 		nr_events = __kvm_pmu_event_mask(pmuver) + 1;
1029 
1030 		uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
1031 
1032 		if (copy_from_user(&filter, uaddr, sizeof(filter)))
1033 			return -EFAULT;
1034 
1035 		if (((u32)filter.base_event + filter.nevents) > nr_events ||
1036 		    (filter.action != KVM_PMU_EVENT_ALLOW &&
1037 		     filter.action != KVM_PMU_EVENT_DENY))
1038 			return -EINVAL;
1039 
1040 		if (kvm_vm_has_ran_once(kvm))
1041 			return -EBUSY;
1042 
1043 		if (!kvm->arch.pmu_filter) {
1044 			kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
1045 			if (!kvm->arch.pmu_filter)
1046 				return -ENOMEM;
1047 
1048 			/*
1049 			 * The default depends on the first applied filter.
1050 			 * If it allows events, the default is to deny.
1051 			 * Conversely, if the first filter denies a set of
1052 			 * events, the default is to allow.
1053 			 */
1054 			if (filter.action == KVM_PMU_EVENT_ALLOW)
1055 				bitmap_zero(kvm->arch.pmu_filter, nr_events);
1056 			else
1057 				bitmap_fill(kvm->arch.pmu_filter, nr_events);
1058 		}
1059 
1060 		if (filter.action == KVM_PMU_EVENT_ALLOW)
1061 			bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1062 		else
1063 			bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1064 
1065 		return 0;
1066 	}
1067 	case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1068 		int __user *uaddr = (int __user *)(long)attr->addr;
1069 		int pmu_id;
1070 
1071 		if (get_user(pmu_id, uaddr))
1072 			return -EFAULT;
1073 
1074 		return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1075 	}
1076 	case KVM_ARM_VCPU_PMU_V3_INIT:
1077 		return kvm_arm_pmu_v3_init(vcpu);
1078 	}
1079 
1080 	return -ENXIO;
1081 }
1082 
1083 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1084 {
1085 	switch (attr->attr) {
1086 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
1087 		int __user *uaddr = (int __user *)(long)attr->addr;
1088 		int irq;
1089 
1090 		if (!irqchip_in_kernel(vcpu->kvm))
1091 			return -EINVAL;
1092 
1093 		if (!kvm_vcpu_has_pmu(vcpu))
1094 			return -ENODEV;
1095 
1096 		if (!kvm_arm_pmu_irq_initialized(vcpu))
1097 			return -ENXIO;
1098 
1099 		irq = vcpu->arch.pmu.irq_num;
1100 		return put_user(irq, uaddr);
1101 	}
1102 	}
1103 
1104 	return -ENXIO;
1105 }
1106 
1107 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1108 {
1109 	switch (attr->attr) {
1110 	case KVM_ARM_VCPU_PMU_V3_IRQ:
1111 	case KVM_ARM_VCPU_PMU_V3_INIT:
1112 	case KVM_ARM_VCPU_PMU_V3_FILTER:
1113 	case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1114 		if (kvm_vcpu_has_pmu(vcpu))
1115 			return 0;
1116 	}
1117 
1118 	return -ENXIO;
1119 }
1120 
1121 u8 kvm_arm_pmu_get_pmuver_limit(void)
1122 {
1123 	u64 tmp;
1124 
1125 	tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1126 	tmp = cpuid_feature_cap_perfmon_field(tmp,
1127 					      ID_AA64DFR0_EL1_PMUVer_SHIFT,
1128 					      ID_AA64DFR0_EL1_PMUVer_V3P5);
1129 	return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
1130 }
1131 
1132 /**
1133  * kvm_vcpu_read_pmcr - Read PMCR_EL0 register for the vCPU
1134  * @vcpu: The vcpu pointer
1135  */
1136 u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
1137 {
1138 	u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
1139 
1140 	return u64_replace_bits(pmcr, vcpu->kvm->arch.pmcr_n, ARMV8_PMU_PMCR_N);
1141 }
1142