xref: /linux/arch/arm64/kvm/nested.c (revision f3c11cf5cae044668f888a50abb37b29600ca197)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 - Columbia University and Linaro Ltd.
4  * Author: Jintack Lim <jintack.lim@linaro.org>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 
11 #include <asm/kvm_arm.h>
12 #include <asm/kvm_emulate.h>
13 #include <asm/kvm_mmu.h>
14 #include <asm/kvm_nested.h>
15 #include <asm/sysreg.h>
16 
17 #include "sys_regs.h"
18 
19 /* Protection against the sysreg repainting madness... */
20 #define NV_FTR(r, f)		ID_AA64##r##_EL1_##f
21 
22 /*
23  * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
24  * memory usage and potential number of different sets of S2 PTs in
25  * the guests. Running out of S2 MMUs only affects performance (we
26  * will invalidate them more often).
27  */
28 #define S2_MMU_PER_VCPU		2
29 
30 void kvm_init_nested(struct kvm *kvm)
31 {
32 	kvm->arch.nested_mmus = NULL;
33 	kvm->arch.nested_mmus_size = 0;
34 }
35 
36 static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
37 {
38 	/*
39 	 * We only initialise the IPA range on the canonical MMU, which
40 	 * defines the contract between KVM and userspace on where the
41 	 * "hardware" is in the IPA space. This affects the validity of MMIO
42 	 * exits forwarded to userspace, for example.
43 	 *
44 	 * For nested S2s, we use the PARange as exposed to the guest, as it
45 	 * is allowed to use it at will to expose whatever memory map it
46 	 * wants to its own guests as it would be on real HW.
47 	 */
48 	return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
49 }
50 
51 int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
52 {
53 	struct kvm *kvm = vcpu->kvm;
54 	struct kvm_s2_mmu *tmp;
55 	int num_mmus, ret = 0;
56 
57 	/*
58 	 * Let's treat memory allocation failures as benign: If we fail to
59 	 * allocate anything, return an error and keep the allocated array
60 	 * alive. Userspace may try to recover by intializing the vcpu
61 	 * again, and there is no reason to affect the whole VM for this.
62 	 */
63 	num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
64 	tmp = kvrealloc(kvm->arch.nested_mmus,
65 			size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
66 			GFP_KERNEL_ACCOUNT | __GFP_ZERO);
67 	if (!tmp)
68 		return -ENOMEM;
69 
70 	/*
71 	 * If we went through a realocation, adjust the MMU back-pointers in
72 	 * the previously initialised kvm_pgtable structures.
73 	 */
74 	if (kvm->arch.nested_mmus != tmp)
75 		for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
76 			tmp[i].pgt->mmu = &tmp[i];
77 
78 	for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
79 		ret = init_nested_s2_mmu(kvm, &tmp[i]);
80 
81 	if (ret) {
82 		for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
83 			kvm_free_stage2_pgd(&tmp[i]);
84 
85 		return ret;
86 	}
87 
88 	kvm->arch.nested_mmus_size = num_mmus;
89 	kvm->arch.nested_mmus = tmp;
90 
91 	return 0;
92 }
93 
94 struct s2_walk_info {
95 	int	     (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
96 	void	     *data;
97 	u64	     baddr;
98 	unsigned int max_oa_bits;
99 	unsigned int pgshift;
100 	unsigned int sl;
101 	unsigned int t0sz;
102 	bool	     be;
103 };
104 
105 static unsigned int ps_to_output_size(unsigned int ps)
106 {
107 	switch (ps) {
108 	case 0: return 32;
109 	case 1: return 36;
110 	case 2: return 40;
111 	case 3: return 42;
112 	case 4: return 44;
113 	case 5:
114 	default:
115 		return 48;
116 	}
117 }
118 
119 static u32 compute_fsc(int level, u32 fsc)
120 {
121 	return fsc | (level & 0x3);
122 }
123 
124 static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
125 {
126 	u32 esr;
127 
128 	esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
129 	esr |= compute_fsc(level, fsc);
130 	return esr;
131 }
132 
133 static int get_ia_size(struct s2_walk_info *wi)
134 {
135 	return 64 - wi->t0sz;
136 }
137 
138 static int check_base_s2_limits(struct s2_walk_info *wi,
139 				int level, int input_size, int stride)
140 {
141 	int start_size, ia_size;
142 
143 	ia_size = get_ia_size(wi);
144 
145 	/* Check translation limits */
146 	switch (BIT(wi->pgshift)) {
147 	case SZ_64K:
148 		if (level == 0 || (level == 1 && ia_size <= 42))
149 			return -EFAULT;
150 		break;
151 	case SZ_16K:
152 		if (level == 0 || (level == 1 && ia_size <= 40))
153 			return -EFAULT;
154 		break;
155 	case SZ_4K:
156 		if (level < 0 || (level == 0 && ia_size <= 42))
157 			return -EFAULT;
158 		break;
159 	}
160 
161 	/* Check input size limits */
162 	if (input_size > ia_size)
163 		return -EFAULT;
164 
165 	/* Check number of entries in starting level table */
166 	start_size = input_size - ((3 - level) * stride + wi->pgshift);
167 	if (start_size < 1 || start_size > stride + 4)
168 		return -EFAULT;
169 
170 	return 0;
171 }
172 
173 /* Check if output is within boundaries */
174 static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
175 {
176 	unsigned int output_size = wi->max_oa_bits;
177 
178 	if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
179 		return -1;
180 
181 	return 0;
182 }
183 
184 /*
185  * This is essentially a C-version of the pseudo code from the ARM ARM
186  * AArch64.TranslationTableWalk  function.  I strongly recommend looking at
187  * that pseudocode in trying to understand this.
188  *
189  * Must be called with the kvm->srcu read lock held
190  */
191 static int walk_nested_s2_pgd(phys_addr_t ipa,
192 			      struct s2_walk_info *wi, struct kvm_s2_trans *out)
193 {
194 	int first_block_level, level, stride, input_size, base_lower_bound;
195 	phys_addr_t base_addr;
196 	unsigned int addr_top, addr_bottom;
197 	u64 desc;  /* page table entry */
198 	int ret;
199 	phys_addr_t paddr;
200 
201 	switch (BIT(wi->pgshift)) {
202 	default:
203 	case SZ_64K:
204 	case SZ_16K:
205 		level = 3 - wi->sl;
206 		first_block_level = 2;
207 		break;
208 	case SZ_4K:
209 		level = 2 - wi->sl;
210 		first_block_level = 1;
211 		break;
212 	}
213 
214 	stride = wi->pgshift - 3;
215 	input_size = get_ia_size(wi);
216 	if (input_size > 48 || input_size < 25)
217 		return -EFAULT;
218 
219 	ret = check_base_s2_limits(wi, level, input_size, stride);
220 	if (WARN_ON(ret))
221 		return ret;
222 
223 	base_lower_bound = 3 + input_size - ((3 - level) * stride +
224 			   wi->pgshift);
225 	base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
226 
227 	if (check_output_size(wi, base_addr)) {
228 		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
229 		return 1;
230 	}
231 
232 	addr_top = input_size - 1;
233 
234 	while (1) {
235 		phys_addr_t index;
236 
237 		addr_bottom = (3 - level) * stride + wi->pgshift;
238 		index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
239 			>> (addr_bottom - 3);
240 
241 		paddr = base_addr | index;
242 		ret = wi->read_desc(paddr, &desc, wi->data);
243 		if (ret < 0)
244 			return ret;
245 
246 		/*
247 		 * Handle reversedescriptors if endianness differs between the
248 		 * host and the guest hypervisor.
249 		 */
250 		if (wi->be)
251 			desc = be64_to_cpu((__force __be64)desc);
252 		else
253 			desc = le64_to_cpu((__force __le64)desc);
254 
255 		/* Check for valid descriptor at this point */
256 		if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
257 			out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
258 			out->upper_attr = desc;
259 			return 1;
260 		}
261 
262 		/* We're at the final level or block translation level */
263 		if ((desc & 3) == 1 || level == 3)
264 			break;
265 
266 		if (check_output_size(wi, desc)) {
267 			out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
268 			out->upper_attr = desc;
269 			return 1;
270 		}
271 
272 		base_addr = desc & GENMASK_ULL(47, wi->pgshift);
273 
274 		level += 1;
275 		addr_top = addr_bottom - 1;
276 	}
277 
278 	if (level < first_block_level) {
279 		out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
280 		out->upper_attr = desc;
281 		return 1;
282 	}
283 
284 	/*
285 	 * We don't use the contiguous bit in the stage-2 ptes, so skip check
286 	 * for misprogramming of the contiguous bit.
287 	 */
288 
289 	if (check_output_size(wi, desc)) {
290 		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
291 		out->upper_attr = desc;
292 		return 1;
293 	}
294 
295 	if (!(desc & BIT(10))) {
296 		out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
297 		out->upper_attr = desc;
298 		return 1;
299 	}
300 
301 	/* Calculate and return the result */
302 	paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
303 		(ipa & GENMASK_ULL(addr_bottom - 1, 0));
304 	out->output = paddr;
305 	out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
306 	out->readable = desc & (0b01 << 6);
307 	out->writable = desc & (0b10 << 6);
308 	out->level = level;
309 	out->upper_attr = desc & GENMASK_ULL(63, 52);
310 	return 0;
311 }
312 
313 static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
314 {
315 	struct kvm_vcpu *vcpu = data;
316 
317 	return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
318 }
319 
320 static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
321 {
322 	wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
323 
324 	switch (vtcr & VTCR_EL2_TG0_MASK) {
325 	case VTCR_EL2_TG0_4K:
326 		wi->pgshift = 12;	 break;
327 	case VTCR_EL2_TG0_16K:
328 		wi->pgshift = 14;	 break;
329 	case VTCR_EL2_TG0_64K:
330 	default:	    /* IMPDEF: treat any other value as 64k */
331 		wi->pgshift = 16;	 break;
332 	}
333 
334 	wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
335 	/* Global limit for now, should eventually be per-VM */
336 	wi->max_oa_bits = min(get_kvm_ipa_limit(),
337 			      ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
338 }
339 
340 int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
341 		       struct kvm_s2_trans *result)
342 {
343 	u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
344 	struct s2_walk_info wi;
345 	int ret;
346 
347 	result->esr = 0;
348 
349 	if (!vcpu_has_nv(vcpu))
350 		return 0;
351 
352 	wi.read_desc = read_guest_s2_desc;
353 	wi.data = vcpu;
354 	wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
355 
356 	vtcr_to_walk_info(vtcr, &wi);
357 
358 	wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
359 
360 	ret = walk_nested_s2_pgd(gipa, &wi, result);
361 	if (ret)
362 		result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
363 
364 	return ret;
365 }
366 
367 static unsigned int ttl_to_size(u8 ttl)
368 {
369 	int level = ttl & 3;
370 	int gran = (ttl >> 2) & 3;
371 	unsigned int max_size = 0;
372 
373 	switch (gran) {
374 	case TLBI_TTL_TG_4K:
375 		switch (level) {
376 		case 0:
377 			break;
378 		case 1:
379 			max_size = SZ_1G;
380 			break;
381 		case 2:
382 			max_size = SZ_2M;
383 			break;
384 		case 3:
385 			max_size = SZ_4K;
386 			break;
387 		}
388 		break;
389 	case TLBI_TTL_TG_16K:
390 		switch (level) {
391 		case 0:
392 		case 1:
393 			break;
394 		case 2:
395 			max_size = SZ_32M;
396 			break;
397 		case 3:
398 			max_size = SZ_16K;
399 			break;
400 		}
401 		break;
402 	case TLBI_TTL_TG_64K:
403 		switch (level) {
404 		case 0:
405 		case 1:
406 			/* No 52bit IPA support */
407 			break;
408 		case 2:
409 			max_size = SZ_512M;
410 			break;
411 		case 3:
412 			max_size = SZ_64K;
413 			break;
414 		}
415 		break;
416 	default:			/* No size information */
417 		break;
418 	}
419 
420 	return max_size;
421 }
422 
423 /*
424  * Compute the equivalent of the TTL field by parsing the shadow PT.  The
425  * granule size is extracted from the cached VTCR_EL2.TG0 while the level is
426  * retrieved from first entry carrying the level as a tag.
427  */
428 static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
429 {
430 	u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
431 	kvm_pte_t pte;
432 	u8 ttl, level;
433 
434 	lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
435 
436 	switch (vtcr & VTCR_EL2_TG0_MASK) {
437 	case VTCR_EL2_TG0_4K:
438 		ttl = (TLBI_TTL_TG_4K << 2);
439 		break;
440 	case VTCR_EL2_TG0_16K:
441 		ttl = (TLBI_TTL_TG_16K << 2);
442 		break;
443 	case VTCR_EL2_TG0_64K:
444 	default:	    /* IMPDEF: treat any other value as 64k */
445 		ttl = (TLBI_TTL_TG_64K << 2);
446 		break;
447 	}
448 
449 	tmp = addr;
450 
451 again:
452 	/* Iteratively compute the block sizes for a particular granule size */
453 	switch (vtcr & VTCR_EL2_TG0_MASK) {
454 	case VTCR_EL2_TG0_4K:
455 		if	(sz < SZ_4K)	sz = SZ_4K;
456 		else if (sz < SZ_2M)	sz = SZ_2M;
457 		else if (sz < SZ_1G)	sz = SZ_1G;
458 		else			sz = 0;
459 		break;
460 	case VTCR_EL2_TG0_16K:
461 		if	(sz < SZ_16K)	sz = SZ_16K;
462 		else if (sz < SZ_32M)	sz = SZ_32M;
463 		else			sz = 0;
464 		break;
465 	case VTCR_EL2_TG0_64K:
466 	default:	    /* IMPDEF: treat any other value as 64k */
467 		if	(sz < SZ_64K)	sz = SZ_64K;
468 		else if (sz < SZ_512M)	sz = SZ_512M;
469 		else			sz = 0;
470 		break;
471 	}
472 
473 	if (sz == 0)
474 		return 0;
475 
476 	tmp &= ~(sz - 1);
477 	if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
478 		goto again;
479 	if (!(pte & PTE_VALID))
480 		goto again;
481 	level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
482 	if (!level)
483 		goto again;
484 
485 	ttl |= level;
486 
487 	/*
488 	 * We now have found some level information in the shadow S2. Check
489 	 * that the resulting range is actually including the original IPA.
490 	 */
491 	sz = ttl_to_size(ttl);
492 	if (addr < (tmp + sz))
493 		return ttl;
494 
495 	return 0;
496 }
497 
498 unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
499 {
500 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
501 	unsigned long max_size;
502 	u8 ttl;
503 
504 	ttl = FIELD_GET(TLBI_TTL_MASK, val);
505 
506 	if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
507 		/* No TTL, check the shadow S2 for a hint */
508 		u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
509 		ttl = get_guest_mapping_ttl(mmu, addr);
510 	}
511 
512 	max_size = ttl_to_size(ttl);
513 
514 	if (!max_size) {
515 		/* Compute the maximum extent of the invalidation */
516 		switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
517 		case VTCR_EL2_TG0_4K:
518 			max_size = SZ_1G;
519 			break;
520 		case VTCR_EL2_TG0_16K:
521 			max_size = SZ_32M;
522 			break;
523 		case VTCR_EL2_TG0_64K:
524 		default:    /* IMPDEF: treat any other value as 64k */
525 			/*
526 			 * No, we do not support 52bit IPA in nested yet. Once
527 			 * we do, this should be 4TB.
528 			 */
529 			max_size = SZ_512M;
530 			break;
531 		}
532 	}
533 
534 	WARN_ON(!max_size);
535 	return max_size;
536 }
537 
538 /*
539  * We can have multiple *different* MMU contexts with the same VMID:
540  *
541  * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
542  *
543  * - Multiple vcpus using private S2s (huh huh...), hence differing by the
544  *   VBBTR_EL2.BADDR address
545  *
546  * - A combination of the above...
547  *
548  * We can always identify which MMU context to pick at run-time.  However,
549  * TLB invalidation involving a VMID must take action on all the TLBs using
550  * this particular VMID. This translates into applying the same invalidation
551  * operation to all the contexts that are using this VMID. Moar phun!
552  */
553 void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
554 				const union tlbi_info *info,
555 				void (*tlbi_callback)(struct kvm_s2_mmu *,
556 						      const union tlbi_info *))
557 {
558 	write_lock(&kvm->mmu_lock);
559 
560 	for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
561 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
562 
563 		if (!kvm_s2_mmu_valid(mmu))
564 			continue;
565 
566 		if (vmid == get_vmid(mmu->tlb_vttbr))
567 			tlbi_callback(mmu, info);
568 	}
569 
570 	write_unlock(&kvm->mmu_lock);
571 }
572 
573 struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
574 {
575 	struct kvm *kvm = vcpu->kvm;
576 	bool nested_stage2_enabled;
577 	u64 vttbr, vtcr, hcr;
578 
579 	lockdep_assert_held_write(&kvm->mmu_lock);
580 
581 	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
582 	vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
583 	hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
584 
585 	nested_stage2_enabled = hcr & HCR_VM;
586 
587 	/* Don't consider the CnP bit for the vttbr match */
588 	vttbr &= ~VTTBR_CNP_BIT;
589 
590 	/*
591 	 * Two possibilities when looking up a S2 MMU context:
592 	 *
593 	 * - either S2 is enabled in the guest, and we need a context that is
594 	 *   S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
595 	 *   which makes it safe from a TLB conflict perspective (a broken
596 	 *   guest won't be able to generate them),
597 	 *
598 	 * - or S2 is disabled, and we need a context that is S2-disabled
599 	 *   and matches the VMID only, as all TLBs are tagged by VMID even
600 	 *   if S2 translation is disabled.
601 	 */
602 	for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
603 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
604 
605 		if (!kvm_s2_mmu_valid(mmu))
606 			continue;
607 
608 		if (nested_stage2_enabled &&
609 		    mmu->nested_stage2_enabled &&
610 		    vttbr == mmu->tlb_vttbr &&
611 		    vtcr == mmu->tlb_vtcr)
612 			return mmu;
613 
614 		if (!nested_stage2_enabled &&
615 		    !mmu->nested_stage2_enabled &&
616 		    get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
617 			return mmu;
618 	}
619 	return NULL;
620 }
621 
622 static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
623 {
624 	struct kvm *kvm = vcpu->kvm;
625 	struct kvm_s2_mmu *s2_mmu;
626 	int i;
627 
628 	lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
629 
630 	s2_mmu = lookup_s2_mmu(vcpu);
631 	if (s2_mmu)
632 		goto out;
633 
634 	/*
635 	 * Make sure we don't always search from the same point, or we
636 	 * will always reuse a potentially active context, leaving
637 	 * free contexts unused.
638 	 */
639 	for (i = kvm->arch.nested_mmus_next;
640 	     i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
641 	     i++) {
642 		s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
643 
644 		if (atomic_read(&s2_mmu->refcnt) == 0)
645 			break;
646 	}
647 	BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
648 
649 	/* Set the scene for the next search */
650 	kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
651 
652 	/* Clear the old state */
653 	if (kvm_s2_mmu_valid(s2_mmu))
654 		kvm_stage2_unmap_range(s2_mmu, 0, kvm_phys_size(s2_mmu));
655 
656 	/*
657 	 * The virtual VMID (modulo CnP) will be used as a key when matching
658 	 * an existing kvm_s2_mmu.
659 	 *
660 	 * We cache VTCR at allocation time, once and for all. It'd be great
661 	 * if the guest didn't screw that one up, as this is not very
662 	 * forgiving...
663 	 */
664 	s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
665 	s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
666 	s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
667 
668 out:
669 	atomic_inc(&s2_mmu->refcnt);
670 	return s2_mmu;
671 }
672 
673 void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
674 {
675 	/* CnP being set denotes an invalid entry */
676 	mmu->tlb_vttbr = VTTBR_CNP_BIT;
677 	mmu->nested_stage2_enabled = false;
678 	atomic_set(&mmu->refcnt, 0);
679 }
680 
681 void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
682 {
683 	if (is_hyp_ctxt(vcpu)) {
684 		vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
685 	} else {
686 		write_lock(&vcpu->kvm->mmu_lock);
687 		vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
688 		write_unlock(&vcpu->kvm->mmu_lock);
689 	}
690 }
691 
692 void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
693 {
694 	if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) {
695 		atomic_dec(&vcpu->arch.hw_mmu->refcnt);
696 		vcpu->arch.hw_mmu = NULL;
697 	}
698 }
699 
700 /*
701  * Returns non-zero if permission fault is handled by injecting it to the next
702  * level hypervisor.
703  */
704 int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
705 {
706 	bool forward_fault = false;
707 
708 	trans->esr = 0;
709 
710 	if (!kvm_vcpu_trap_is_permission_fault(vcpu))
711 		return 0;
712 
713 	if (kvm_vcpu_trap_is_iabt(vcpu)) {
714 		forward_fault = !kvm_s2_trans_executable(trans);
715 	} else {
716 		bool write_fault = kvm_is_write_fault(vcpu);
717 
718 		forward_fault = ((write_fault && !trans->writable) ||
719 				 (!write_fault && !trans->readable));
720 	}
721 
722 	if (forward_fault)
723 		trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
724 
725 	return forward_fault;
726 }
727 
728 int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
729 {
730 	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
731 	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
732 
733 	return kvm_inject_nested_sync(vcpu, esr_el2);
734 }
735 
736 void kvm_nested_s2_wp(struct kvm *kvm)
737 {
738 	int i;
739 
740 	lockdep_assert_held_write(&kvm->mmu_lock);
741 
742 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
743 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
744 
745 		if (kvm_s2_mmu_valid(mmu))
746 			kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
747 	}
748 }
749 
750 void kvm_nested_s2_unmap(struct kvm *kvm)
751 {
752 	int i;
753 
754 	lockdep_assert_held_write(&kvm->mmu_lock);
755 
756 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
757 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
758 
759 		if (kvm_s2_mmu_valid(mmu))
760 			kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu));
761 	}
762 }
763 
764 void kvm_nested_s2_flush(struct kvm *kvm)
765 {
766 	int i;
767 
768 	lockdep_assert_held_write(&kvm->mmu_lock);
769 
770 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
771 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
772 
773 		if (kvm_s2_mmu_valid(mmu))
774 			kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
775 	}
776 }
777 
778 void kvm_arch_flush_shadow_all(struct kvm *kvm)
779 {
780 	int i;
781 
782 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
783 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
784 
785 		if (!WARN_ON(atomic_read(&mmu->refcnt)))
786 			kvm_free_stage2_pgd(mmu);
787 	}
788 	kvfree(kvm->arch.nested_mmus);
789 	kvm->arch.nested_mmus = NULL;
790 	kvm->arch.nested_mmus_size = 0;
791 	kvm_uninit_stage2_mmu(kvm);
792 }
793 
794 /*
795  * Our emulated CPU doesn't support all the possible features. For the
796  * sake of simplicity (and probably mental sanity), wipe out a number
797  * of feature bits we don't intend to support for the time being.
798  * This list should get updated as new features get added to the NV
799  * support, and new extension to the architecture.
800  */
801 static void limit_nv_id_regs(struct kvm *kvm)
802 {
803 	u64 val, tmp;
804 
805 	/* Support everything but TME */
806 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1);
807 	val &= ~NV_FTR(ISAR0, TME);
808 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1, val);
809 
810 	/* Support everything but Spec Invalidation and LS64 */
811 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1);
812 	val &= ~(NV_FTR(ISAR1, LS64)	|
813 		 NV_FTR(ISAR1, SPECRES));
814 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1, val);
815 
816 	/* No AMU, MPAM, S-EL2, or RAS */
817 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1);
818 	val &= ~(GENMASK_ULL(55, 52)	|
819 		 NV_FTR(PFR0, AMU)	|
820 		 NV_FTR(PFR0, MPAM)	|
821 		 NV_FTR(PFR0, SEL2)	|
822 		 NV_FTR(PFR0, RAS)	|
823 		 NV_FTR(PFR0, EL3)	|
824 		 NV_FTR(PFR0, EL2)	|
825 		 NV_FTR(PFR0, EL1));
826 	/* 64bit EL1/EL2/EL3 only */
827 	val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001);
828 	val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001);
829 	val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001);
830 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1, val);
831 
832 	/* Only support BTI, SSBS, CSV2_frac */
833 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1);
834 	val &= (NV_FTR(PFR1, BT)	|
835 		NV_FTR(PFR1, SSBS)	|
836 		NV_FTR(PFR1, CSV2_frac));
837 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1, val);
838 
839 	/* Hide ECV, ExS, Secure Memory */
840 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1);
841 	val &= ~(NV_FTR(MMFR0, ECV)		|
842 		 NV_FTR(MMFR0, EXS)		|
843 		 NV_FTR(MMFR0, TGRAN4_2)	|
844 		 NV_FTR(MMFR0, TGRAN16_2)	|
845 		 NV_FTR(MMFR0, TGRAN64_2)	|
846 		 NV_FTR(MMFR0, SNSMEM));
847 
848 	/* Disallow unsupported S2 page sizes */
849 	switch (PAGE_SIZE) {
850 	case SZ_64K:
851 		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001);
852 		fallthrough;
853 	case SZ_16K:
854 		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001);
855 		fallthrough;
856 	case SZ_4K:
857 		/* Support everything */
858 		break;
859 	}
860 	/*
861 	 * Since we can't support a guest S2 page size smaller than
862 	 * the host's own page size (due to KVM only populating its
863 	 * own S2 using the kernel's page size), advertise the
864 	 * limitation using FEAT_GTG.
865 	 */
866 	switch (PAGE_SIZE) {
867 	case SZ_4K:
868 		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010);
869 		fallthrough;
870 	case SZ_16K:
871 		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010);
872 		fallthrough;
873 	case SZ_64K:
874 		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010);
875 		break;
876 	}
877 	/* Cap PARange to 48bits */
878 	tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val);
879 	if (tmp > 0b0101) {
880 		val &= ~NV_FTR(MMFR0, PARANGE);
881 		val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101);
882 	}
883 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1, val);
884 
885 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1);
886 	val &= (NV_FTR(MMFR1, HCX)	|
887 		NV_FTR(MMFR1, PAN)	|
888 		NV_FTR(MMFR1, LO)	|
889 		NV_FTR(MMFR1, HPDS)	|
890 		NV_FTR(MMFR1, VH)	|
891 		NV_FTR(MMFR1, VMIDBits));
892 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1, val);
893 
894 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1);
895 	val &= ~(NV_FTR(MMFR2, BBM)	|
896 		 NV_FTR(MMFR2, TTL)	|
897 		 GENMASK_ULL(47, 44)	|
898 		 NV_FTR(MMFR2, ST)	|
899 		 NV_FTR(MMFR2, CCIDX)	|
900 		 NV_FTR(MMFR2, VARange));
901 
902 	/* Force TTL support */
903 	val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001);
904 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1, val);
905 
906 	val = 0;
907 	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
908 		val |= FIELD_PREP(NV_FTR(MMFR4, E2H0),
909 				  ID_AA64MMFR4_EL1_E2H0_NI_NV1);
910 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR4_EL1, val);
911 
912 	/* Only limited support for PMU, Debug, BPs and WPs */
913 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
914 	val &= (NV_FTR(DFR0, PMUVer)	|
915 		NV_FTR(DFR0, WRPs)	|
916 		NV_FTR(DFR0, BRPs)	|
917 		NV_FTR(DFR0, DebugVer));
918 
919 	/* Cap Debug to ARMv8.1 */
920 	tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val);
921 	if (tmp > 0b0111) {
922 		val &= ~NV_FTR(DFR0, DebugVer);
923 		val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111);
924 	}
925 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1, val);
926 }
927 
928 u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr)
929 {
930 	u64 v = ctxt_sys_reg(&vcpu->arch.ctxt, sr);
931 	struct kvm_sysreg_masks *masks;
932 
933 	masks = vcpu->kvm->arch.sysreg_masks;
934 
935 	if (masks) {
936 		sr -= __VNCR_START__;
937 
938 		v &= ~masks->mask[sr].res0;
939 		v |= masks->mask[sr].res1;
940 	}
941 
942 	return v;
943 }
944 
945 static void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
946 {
947 	int i = sr - __VNCR_START__;
948 
949 	kvm->arch.sysreg_masks->mask[i].res0 = res0;
950 	kvm->arch.sysreg_masks->mask[i].res1 = res1;
951 }
952 
953 int kvm_init_nv_sysregs(struct kvm *kvm)
954 {
955 	u64 res0, res1;
956 	int ret = 0;
957 
958 	mutex_lock(&kvm->arch.config_lock);
959 
960 	if (kvm->arch.sysreg_masks)
961 		goto out;
962 
963 	kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
964 					 GFP_KERNEL_ACCOUNT);
965 	if (!kvm->arch.sysreg_masks) {
966 		ret = -ENOMEM;
967 		goto out;
968 	}
969 
970 	limit_nv_id_regs(kvm);
971 
972 	/* VTTBR_EL2 */
973 	res0 = res1 = 0;
974 	if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
975 		res0 |= GENMASK(63, 56);
976 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
977 		res0 |= VTTBR_CNP_BIT;
978 	set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
979 
980 	/* VTCR_EL2 */
981 	res0 = GENMASK(63, 32) | GENMASK(30, 20);
982 	res1 = BIT(31);
983 	set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
984 
985 	/* VMPIDR_EL2 */
986 	res0 = GENMASK(63, 40) | GENMASK(30, 24);
987 	res1 = BIT(31);
988 	set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
989 
990 	/* HCR_EL2 */
991 	res0 = BIT(48);
992 	res1 = HCR_RW;
993 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, TWED, IMP))
994 		res0 |= GENMASK(63, 59);
995 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, MTE2))
996 		res0 |= (HCR_TID5 | HCR_DCT | HCR_ATA);
997 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, TTLBxS))
998 		res0 |= (HCR_TTLBIS | HCR_TTLBOS);
999 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
1000 	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
1001 		res0 |= HCR_ENSCXT;
1002 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, IMP))
1003 		res0 |= (HCR_TOCU | HCR_TICAB | HCR_TID4);
1004 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
1005 		res0 |= HCR_AMVOFFEN;
1006 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1))
1007 		res0 |= HCR_FIEN;
1008 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP))
1009 		res0 |= HCR_FWB;
1010 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, NV2))
1011 		res0 |= HCR_NV2;
1012 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, IMP))
1013 		res0 |= (HCR_AT | HCR_NV1 | HCR_NV);
1014 	if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
1015 	      __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1016 		res0 |= (HCR_API | HCR_APK);
1017 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP))
1018 		res0 |= BIT(39);
1019 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
1020 		res0 |= (HCR_TEA | HCR_TERR);
1021 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
1022 		res0 |= HCR_TLOR;
1023 	if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP))
1024 		res1 |= HCR_E2H;
1025 	set_sysreg_masks(kvm, HCR_EL2, res0, res1);
1026 
1027 	/* HCRX_EL2 */
1028 	res0 = HCRX_EL2_RES0;
1029 	res1 = HCRX_EL2_RES1;
1030 	if (!kvm_has_feat(kvm, ID_AA64ISAR3_EL1, PACM, TRIVIAL_IMP))
1031 		res0 |= HCRX_EL2_PACMEn;
1032 	if (!kvm_has_feat(kvm, ID_AA64PFR2_EL1, FPMR, IMP))
1033 		res0 |= HCRX_EL2_EnFPM;
1034 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1035 		res0 |= HCRX_EL2_GCSEn;
1036 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, SYSREG_128, IMP))
1037 		res0 |= HCRX_EL2_EnIDCP128;
1038 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, ADERR, DEV_ASYNC))
1039 		res0 |= (HCRX_EL2_EnSDERR | HCRX_EL2_EnSNERR);
1040 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, DF2, IMP))
1041 		res0 |= HCRX_EL2_TMEA;
1042 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
1043 		res0 |= HCRX_EL2_D128En;
1044 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1045 		res0 |= HCRX_EL2_PTTWI;
1046 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP))
1047 		res0 |= HCRX_EL2_SCTLR2En;
1048 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP))
1049 		res0 |= HCRX_EL2_TCR2En;
1050 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
1051 		res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
1052 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, CMOW, IMP))
1053 		res0 |= HCRX_EL2_CMOW;
1054 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, NMI, IMP))
1055 		res0 |= (HCRX_EL2_VFNMI | HCRX_EL2_VINMI | HCRX_EL2_TALLINT);
1056 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP) ||
1057 	    !(read_sysreg_s(SYS_SMIDR_EL1) & SMIDR_EL1_SMPS))
1058 		res0 |= HCRX_EL2_SMPME;
1059 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
1060 		res0 |= (HCRX_EL2_FGTnXS | HCRX_EL2_FnXS);
1061 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V))
1062 		res0 |= HCRX_EL2_EnASR;
1063 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64))
1064 		res0 |= HCRX_EL2_EnALS;
1065 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
1066 		res0 |= HCRX_EL2_EnAS0;
1067 	set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
1068 
1069 	/* HFG[RW]TR_EL2 */
1070 	res0 = res1 = 0;
1071 	if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
1072 	      __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1073 		res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey |
1074 			 HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey |
1075 			 HFGxTR_EL2_APIBKey);
1076 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
1077 		res0 |= (HFGxTR_EL2_LORC_EL1 | HFGxTR_EL2_LOREA_EL1 |
1078 			 HFGxTR_EL2_LORID_EL1 | HFGxTR_EL2_LORN_EL1 |
1079 			 HFGxTR_EL2_LORSA_EL1);
1080 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
1081 	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
1082 		res0 |= (HFGxTR_EL2_SCXTNUM_EL1 | HFGxTR_EL2_SCXTNUM_EL0);
1083 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP))
1084 		res0 |= HFGxTR_EL2_ICC_IGRPENn_EL1;
1085 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
1086 		res0 |= (HFGxTR_EL2_ERRIDR_EL1 | HFGxTR_EL2_ERRSELR_EL1 |
1087 			 HFGxTR_EL2_ERXFR_EL1 | HFGxTR_EL2_ERXCTLR_EL1 |
1088 			 HFGxTR_EL2_ERXSTATUS_EL1 | HFGxTR_EL2_ERXMISCn_EL1 |
1089 			 HFGxTR_EL2_ERXPFGF_EL1 | HFGxTR_EL2_ERXPFGCTL_EL1 |
1090 			 HFGxTR_EL2_ERXPFGCDN_EL1 | HFGxTR_EL2_ERXADDR_EL1);
1091 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
1092 		res0 |= HFGxTR_EL2_nACCDATA_EL1;
1093 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1094 		res0 |= (HFGxTR_EL2_nGCS_EL0 | HFGxTR_EL2_nGCS_EL1);
1095 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP))
1096 		res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0);
1097 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1098 		res0 |= HFGxTR_EL2_nRCWMASK_EL1;
1099 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
1100 		res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1);
1101 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP))
1102 		res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1);
1103 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
1104 		res0 |= HFGxTR_EL2_nS2POR_EL1;
1105 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
1106 		res0 |= (HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nAMAIR2_EL1);
1107 	set_sysreg_masks(kvm, HFGRTR_EL2, res0 | __HFGRTR_EL2_RES0, res1);
1108 	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | __HFGWTR_EL2_RES0, res1);
1109 
1110 	/* HDFG[RW]TR_EL2 */
1111 	res0 = res1 = 0;
1112 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP))
1113 		res0 |= HDFGRTR_EL2_OSDLR_EL1;
1114 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1115 		res0 |= (HDFGRTR_EL2_PMEVCNTRn_EL0 | HDFGRTR_EL2_PMEVTYPERn_EL0 |
1116 			 HDFGRTR_EL2_PMCCFILTR_EL0 | HDFGRTR_EL2_PMCCNTR_EL0 |
1117 			 HDFGRTR_EL2_PMCNTEN | HDFGRTR_EL2_PMINTEN |
1118 			 HDFGRTR_EL2_PMOVS | HDFGRTR_EL2_PMSELR_EL0 |
1119 			 HDFGRTR_EL2_PMMIR_EL1 | HDFGRTR_EL2_PMUSERENR_EL0 |
1120 			 HDFGRTR_EL2_PMCEIDn_EL0);
1121 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
1122 		res0 |= (HDFGRTR_EL2_PMBLIMITR_EL1 | HDFGRTR_EL2_PMBPTR_EL1 |
1123 			 HDFGRTR_EL2_PMBSR_EL1 | HDFGRTR_EL2_PMSCR_EL1 |
1124 			 HDFGRTR_EL2_PMSEVFR_EL1 | HDFGRTR_EL2_PMSFCR_EL1 |
1125 			 HDFGRTR_EL2_PMSICR_EL1 | HDFGRTR_EL2_PMSIDR_EL1 |
1126 			 HDFGRTR_EL2_PMSIRR_EL1 | HDFGRTR_EL2_PMSLATFR_EL1 |
1127 			 HDFGRTR_EL2_PMBIDR_EL1);
1128 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
1129 		res0 |= (HDFGRTR_EL2_TRC | HDFGRTR_EL2_TRCAUTHSTATUS |
1130 			 HDFGRTR_EL2_TRCAUXCTLR | HDFGRTR_EL2_TRCCLAIM |
1131 			 HDFGRTR_EL2_TRCCNTVRn | HDFGRTR_EL2_TRCID |
1132 			 HDFGRTR_EL2_TRCIMSPECn | HDFGRTR_EL2_TRCOSLSR |
1133 			 HDFGRTR_EL2_TRCPRGCTLR | HDFGRTR_EL2_TRCSEQSTR |
1134 			 HDFGRTR_EL2_TRCSSCSRn | HDFGRTR_EL2_TRCSTATR |
1135 			 HDFGRTR_EL2_TRCVICTLR);
1136 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
1137 		res0 |= (HDFGRTR_EL2_TRBBASER_EL1 | HDFGRTR_EL2_TRBIDR_EL1 |
1138 			 HDFGRTR_EL2_TRBLIMITR_EL1 | HDFGRTR_EL2_TRBMAR_EL1 |
1139 			 HDFGRTR_EL2_TRBPTR_EL1 | HDFGRTR_EL2_TRBSR_EL1 |
1140 			 HDFGRTR_EL2_TRBTRG_EL1);
1141 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
1142 		res0 |= (HDFGRTR_EL2_nBRBIDR | HDFGRTR_EL2_nBRBCTL |
1143 			 HDFGRTR_EL2_nBRBDATA);
1144 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
1145 		res0 |= HDFGRTR_EL2_nPMSNEVFR_EL1;
1146 	set_sysreg_masks(kvm, HDFGRTR_EL2, res0 | HDFGRTR_EL2_RES0, res1);
1147 
1148 	/* Reuse the bits from the read-side and add the write-specific stuff */
1149 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1150 		res0 |= (HDFGWTR_EL2_PMCR_EL0 | HDFGWTR_EL2_PMSWINC_EL0);
1151 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
1152 		res0 |= HDFGWTR_EL2_TRCOSLAR;
1153 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
1154 		res0 |= HDFGWTR_EL2_TRFCR_EL1;
1155 	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | HDFGWTR_EL2_RES0, res1);
1156 
1157 	/* HFGITR_EL2 */
1158 	res0 = HFGITR_EL2_RES0;
1159 	res1 = HFGITR_EL2_RES1;
1160 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, DPB, DPB2))
1161 		res0 |= HFGITR_EL2_DCCVADP;
1162 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
1163 		res0 |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP);
1164 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
1165 		res0 |= (HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
1166 			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS |
1167 			 HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS |
1168 			 HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS |
1169 			 HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS);
1170 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
1171 		res0 |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 |
1172 			 HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 |
1173 			 HFGITR_EL2_TLBIRVAALE1IS | HFGITR_EL2_TLBIRVALE1IS |
1174 			 HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS |
1175 			 HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
1176 			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS);
1177 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, IMP))
1178 		res0 |= (HFGITR_EL2_CFPRCTX | HFGITR_EL2_DVPRCTX |
1179 			 HFGITR_EL2_CPPRCTX);
1180 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
1181 		res0 |= (HFGITR_EL2_nBRBINJ | HFGITR_EL2_nBRBIALL);
1182 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1183 		res0 |= (HFGITR_EL2_nGCSPUSHM_EL1 | HFGITR_EL2_nGCSSTR_EL1 |
1184 			 HFGITR_EL2_nGCSEPP);
1185 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, COSP_RCTX))
1186 		res0 |= HFGITR_EL2_COSPRCTX;
1187 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
1188 		res0 |= HFGITR_EL2_ATS1E1A;
1189 	set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
1190 
1191 	/* HAFGRTR_EL2 - not a lot to see here */
1192 	res0 = HAFGRTR_EL2_RES0;
1193 	res1 = HAFGRTR_EL2_RES1;
1194 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
1195 		res0 |= ~(res0 | res1);
1196 	set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
1197 out:
1198 	mutex_unlock(&kvm->arch.config_lock);
1199 
1200 	return ret;
1201 }
1202