xref: /linux/arch/arm64/kvm/nested.c (revision 82e86326ec58e074883bfe27ee098cabe3a9beb1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 - Columbia University and Linaro Ltd.
4  * Author: Jintack Lim <jintack.lim@linaro.org>
5  */
6 
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 
10 #include <asm/kvm_arm.h>
11 #include <asm/kvm_emulate.h>
12 #include <asm/kvm_mmu.h>
13 #include <asm/kvm_nested.h>
14 #include <asm/sysreg.h>
15 
16 #include "sys_regs.h"
17 
18 /* Protection against the sysreg repainting madness... */
19 #define NV_FTR(r, f)		ID_AA64##r##_EL1_##f
20 
21 /*
22  * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
23  * memory usage and potential number of different sets of S2 PTs in
24  * the guests. Running out of S2 MMUs only affects performance (we
25  * will invalidate them more often).
26  */
27 #define S2_MMU_PER_VCPU		2
28 
29 void kvm_init_nested(struct kvm *kvm)
30 {
31 	kvm->arch.nested_mmus = NULL;
32 	kvm->arch.nested_mmus_size = 0;
33 }
34 
35 static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
36 {
37 	/*
38 	 * We only initialise the IPA range on the canonical MMU, which
39 	 * defines the contract between KVM and userspace on where the
40 	 * "hardware" is in the IPA space. This affects the validity of MMIO
41 	 * exits forwarded to userspace, for example.
42 	 *
43 	 * For nested S2s, we use the PARange as exposed to the guest, as it
44 	 * is allowed to use it at will to expose whatever memory map it
45 	 * wants to its own guests as it would be on real HW.
46 	 */
47 	return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
48 }
49 
50 int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
51 {
52 	struct kvm *kvm = vcpu->kvm;
53 	struct kvm_s2_mmu *tmp;
54 	int num_mmus, ret = 0;
55 
56 	/*
57 	 * Let's treat memory allocation failures as benign: If we fail to
58 	 * allocate anything, return an error and keep the allocated array
59 	 * alive. Userspace may try to recover by intializing the vcpu
60 	 * again, and there is no reason to affect the whole VM for this.
61 	 */
62 	num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
63 	tmp = kvrealloc(kvm->arch.nested_mmus,
64 			size_mul(sizeof(*kvm->arch.nested_mmus), kvm->arch.nested_mmus_size),
65 			size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
66 			GFP_KERNEL_ACCOUNT | __GFP_ZERO);
67 	if (!tmp)
68 		return -ENOMEM;
69 
70 	/*
71 	 * If we went through a realocation, adjust the MMU back-pointers in
72 	 * the previously initialised kvm_pgtable structures.
73 	 */
74 	if (kvm->arch.nested_mmus != tmp)
75 		for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
76 			tmp[i].pgt->mmu = &tmp[i];
77 
78 	for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
79 		ret = init_nested_s2_mmu(kvm, &tmp[i]);
80 
81 	if (ret) {
82 		for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
83 			kvm_free_stage2_pgd(&tmp[i]);
84 
85 		return ret;
86 	}
87 
88 	kvm->arch.nested_mmus_size = num_mmus;
89 	kvm->arch.nested_mmus = tmp;
90 
91 	return 0;
92 }
93 
94 struct s2_walk_info {
95 	int	     (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
96 	void	     *data;
97 	u64	     baddr;
98 	unsigned int max_oa_bits;
99 	unsigned int pgshift;
100 	unsigned int sl;
101 	unsigned int t0sz;
102 	bool	     be;
103 };
104 
105 static unsigned int ps_to_output_size(unsigned int ps)
106 {
107 	switch (ps) {
108 	case 0: return 32;
109 	case 1: return 36;
110 	case 2: return 40;
111 	case 3: return 42;
112 	case 4: return 44;
113 	case 5:
114 	default:
115 		return 48;
116 	}
117 }
118 
119 static u32 compute_fsc(int level, u32 fsc)
120 {
121 	return fsc | (level & 0x3);
122 }
123 
124 static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
125 {
126 	u32 esr;
127 
128 	esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
129 	esr |= compute_fsc(level, fsc);
130 	return esr;
131 }
132 
133 static int get_ia_size(struct s2_walk_info *wi)
134 {
135 	return 64 - wi->t0sz;
136 }
137 
138 static int check_base_s2_limits(struct s2_walk_info *wi,
139 				int level, int input_size, int stride)
140 {
141 	int start_size, ia_size;
142 
143 	ia_size = get_ia_size(wi);
144 
145 	/* Check translation limits */
146 	switch (BIT(wi->pgshift)) {
147 	case SZ_64K:
148 		if (level == 0 || (level == 1 && ia_size <= 42))
149 			return -EFAULT;
150 		break;
151 	case SZ_16K:
152 		if (level == 0 || (level == 1 && ia_size <= 40))
153 			return -EFAULT;
154 		break;
155 	case SZ_4K:
156 		if (level < 0 || (level == 0 && ia_size <= 42))
157 			return -EFAULT;
158 		break;
159 	}
160 
161 	/* Check input size limits */
162 	if (input_size > ia_size)
163 		return -EFAULT;
164 
165 	/* Check number of entries in starting level table */
166 	start_size = input_size - ((3 - level) * stride + wi->pgshift);
167 	if (start_size < 1 || start_size > stride + 4)
168 		return -EFAULT;
169 
170 	return 0;
171 }
172 
173 /* Check if output is within boundaries */
174 static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
175 {
176 	unsigned int output_size = wi->max_oa_bits;
177 
178 	if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
179 		return -1;
180 
181 	return 0;
182 }
183 
184 /*
185  * This is essentially a C-version of the pseudo code from the ARM ARM
186  * AArch64.TranslationTableWalk  function.  I strongly recommend looking at
187  * that pseudocode in trying to understand this.
188  *
189  * Must be called with the kvm->srcu read lock held
190  */
191 static int walk_nested_s2_pgd(phys_addr_t ipa,
192 			      struct s2_walk_info *wi, struct kvm_s2_trans *out)
193 {
194 	int first_block_level, level, stride, input_size, base_lower_bound;
195 	phys_addr_t base_addr;
196 	unsigned int addr_top, addr_bottom;
197 	u64 desc;  /* page table entry */
198 	int ret;
199 	phys_addr_t paddr;
200 
201 	switch (BIT(wi->pgshift)) {
202 	default:
203 	case SZ_64K:
204 	case SZ_16K:
205 		level = 3 - wi->sl;
206 		first_block_level = 2;
207 		break;
208 	case SZ_4K:
209 		level = 2 - wi->sl;
210 		first_block_level = 1;
211 		break;
212 	}
213 
214 	stride = wi->pgshift - 3;
215 	input_size = get_ia_size(wi);
216 	if (input_size > 48 || input_size < 25)
217 		return -EFAULT;
218 
219 	ret = check_base_s2_limits(wi, level, input_size, stride);
220 	if (WARN_ON(ret))
221 		return ret;
222 
223 	base_lower_bound = 3 + input_size - ((3 - level) * stride +
224 			   wi->pgshift);
225 	base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
226 
227 	if (check_output_size(wi, base_addr)) {
228 		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
229 		return 1;
230 	}
231 
232 	addr_top = input_size - 1;
233 
234 	while (1) {
235 		phys_addr_t index;
236 
237 		addr_bottom = (3 - level) * stride + wi->pgshift;
238 		index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
239 			>> (addr_bottom - 3);
240 
241 		paddr = base_addr | index;
242 		ret = wi->read_desc(paddr, &desc, wi->data);
243 		if (ret < 0)
244 			return ret;
245 
246 		/*
247 		 * Handle reversedescriptors if endianness differs between the
248 		 * host and the guest hypervisor.
249 		 */
250 		if (wi->be)
251 			desc = be64_to_cpu((__force __be64)desc);
252 		else
253 			desc = le64_to_cpu((__force __le64)desc);
254 
255 		/* Check for valid descriptor at this point */
256 		if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
257 			out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
258 			out->upper_attr = desc;
259 			return 1;
260 		}
261 
262 		/* We're at the final level or block translation level */
263 		if ((desc & 3) == 1 || level == 3)
264 			break;
265 
266 		if (check_output_size(wi, desc)) {
267 			out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
268 			out->upper_attr = desc;
269 			return 1;
270 		}
271 
272 		base_addr = desc & GENMASK_ULL(47, wi->pgshift);
273 
274 		level += 1;
275 		addr_top = addr_bottom - 1;
276 	}
277 
278 	if (level < first_block_level) {
279 		out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
280 		out->upper_attr = desc;
281 		return 1;
282 	}
283 
284 	/*
285 	 * We don't use the contiguous bit in the stage-2 ptes, so skip check
286 	 * for misprogramming of the contiguous bit.
287 	 */
288 
289 	if (check_output_size(wi, desc)) {
290 		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
291 		out->upper_attr = desc;
292 		return 1;
293 	}
294 
295 	if (!(desc & BIT(10))) {
296 		out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
297 		out->upper_attr = desc;
298 		return 1;
299 	}
300 
301 	/* Calculate and return the result */
302 	paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
303 		(ipa & GENMASK_ULL(addr_bottom - 1, 0));
304 	out->output = paddr;
305 	out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
306 	out->readable = desc & (0b01 << 6);
307 	out->writable = desc & (0b10 << 6);
308 	out->level = level;
309 	out->upper_attr = desc & GENMASK_ULL(63, 52);
310 	return 0;
311 }
312 
313 static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
314 {
315 	struct kvm_vcpu *vcpu = data;
316 
317 	return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
318 }
319 
320 static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
321 {
322 	wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
323 
324 	switch (vtcr & VTCR_EL2_TG0_MASK) {
325 	case VTCR_EL2_TG0_4K:
326 		wi->pgshift = 12;	 break;
327 	case VTCR_EL2_TG0_16K:
328 		wi->pgshift = 14;	 break;
329 	case VTCR_EL2_TG0_64K:
330 	default:	    /* IMPDEF: treat any other value as 64k */
331 		wi->pgshift = 16;	 break;
332 	}
333 
334 	wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
335 	/* Global limit for now, should eventually be per-VM */
336 	wi->max_oa_bits = min(get_kvm_ipa_limit(),
337 			      ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
338 }
339 
340 int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
341 		       struct kvm_s2_trans *result)
342 {
343 	u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
344 	struct s2_walk_info wi;
345 	int ret;
346 
347 	result->esr = 0;
348 
349 	if (!vcpu_has_nv(vcpu))
350 		return 0;
351 
352 	wi.read_desc = read_guest_s2_desc;
353 	wi.data = vcpu;
354 	wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
355 
356 	vtcr_to_walk_info(vtcr, &wi);
357 
358 	wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
359 
360 	ret = walk_nested_s2_pgd(gipa, &wi, result);
361 	if (ret)
362 		result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
363 
364 	return ret;
365 }
366 
367 struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
368 {
369 	struct kvm *kvm = vcpu->kvm;
370 	bool nested_stage2_enabled;
371 	u64 vttbr, vtcr, hcr;
372 
373 	lockdep_assert_held_write(&kvm->mmu_lock);
374 
375 	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
376 	vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
377 	hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
378 
379 	nested_stage2_enabled = hcr & HCR_VM;
380 
381 	/* Don't consider the CnP bit for the vttbr match */
382 	vttbr &= ~VTTBR_CNP_BIT;
383 
384 	/*
385 	 * Two possibilities when looking up a S2 MMU context:
386 	 *
387 	 * - either S2 is enabled in the guest, and we need a context that is
388 	 *   S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
389 	 *   which makes it safe from a TLB conflict perspective (a broken
390 	 *   guest won't be able to generate them),
391 	 *
392 	 * - or S2 is disabled, and we need a context that is S2-disabled
393 	 *   and matches the VMID only, as all TLBs are tagged by VMID even
394 	 *   if S2 translation is disabled.
395 	 */
396 	for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
397 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
398 
399 		if (!kvm_s2_mmu_valid(mmu))
400 			continue;
401 
402 		if (nested_stage2_enabled &&
403 		    mmu->nested_stage2_enabled &&
404 		    vttbr == mmu->tlb_vttbr &&
405 		    vtcr == mmu->tlb_vtcr)
406 			return mmu;
407 
408 		if (!nested_stage2_enabled &&
409 		    !mmu->nested_stage2_enabled &&
410 		    get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
411 			return mmu;
412 	}
413 	return NULL;
414 }
415 
416 static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
417 {
418 	struct kvm *kvm = vcpu->kvm;
419 	struct kvm_s2_mmu *s2_mmu;
420 	int i;
421 
422 	lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
423 
424 	s2_mmu = lookup_s2_mmu(vcpu);
425 	if (s2_mmu)
426 		goto out;
427 
428 	/*
429 	 * Make sure we don't always search from the same point, or we
430 	 * will always reuse a potentially active context, leaving
431 	 * free contexts unused.
432 	 */
433 	for (i = kvm->arch.nested_mmus_next;
434 	     i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
435 	     i++) {
436 		s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
437 
438 		if (atomic_read(&s2_mmu->refcnt) == 0)
439 			break;
440 	}
441 	BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
442 
443 	/* Set the scene for the next search */
444 	kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
445 
446 	/* Clear the old state */
447 	if (kvm_s2_mmu_valid(s2_mmu))
448 		kvm_stage2_unmap_range(s2_mmu, 0, kvm_phys_size(s2_mmu));
449 
450 	/*
451 	 * The virtual VMID (modulo CnP) will be used as a key when matching
452 	 * an existing kvm_s2_mmu.
453 	 *
454 	 * We cache VTCR at allocation time, once and for all. It'd be great
455 	 * if the guest didn't screw that one up, as this is not very
456 	 * forgiving...
457 	 */
458 	s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
459 	s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
460 	s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
461 
462 out:
463 	atomic_inc(&s2_mmu->refcnt);
464 	return s2_mmu;
465 }
466 
467 void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
468 {
469 	/* CnP being set denotes an invalid entry */
470 	mmu->tlb_vttbr = VTTBR_CNP_BIT;
471 	mmu->nested_stage2_enabled = false;
472 	atomic_set(&mmu->refcnt, 0);
473 }
474 
475 void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
476 {
477 	if (is_hyp_ctxt(vcpu)) {
478 		vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
479 	} else {
480 		write_lock(&vcpu->kvm->mmu_lock);
481 		vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
482 		write_unlock(&vcpu->kvm->mmu_lock);
483 	}
484 }
485 
486 void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
487 {
488 	if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) {
489 		atomic_dec(&vcpu->arch.hw_mmu->refcnt);
490 		vcpu->arch.hw_mmu = NULL;
491 	}
492 }
493 
494 /*
495  * Returns non-zero if permission fault is handled by injecting it to the next
496  * level hypervisor.
497  */
498 int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
499 {
500 	bool forward_fault = false;
501 
502 	trans->esr = 0;
503 
504 	if (!kvm_vcpu_trap_is_permission_fault(vcpu))
505 		return 0;
506 
507 	if (kvm_vcpu_trap_is_iabt(vcpu)) {
508 		forward_fault = !kvm_s2_trans_executable(trans);
509 	} else {
510 		bool write_fault = kvm_is_write_fault(vcpu);
511 
512 		forward_fault = ((write_fault && !trans->writable) ||
513 				 (!write_fault && !trans->readable));
514 	}
515 
516 	if (forward_fault)
517 		trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
518 
519 	return forward_fault;
520 }
521 
522 int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
523 {
524 	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
525 	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
526 
527 	return kvm_inject_nested_sync(vcpu, esr_el2);
528 }
529 
530 void kvm_nested_s2_wp(struct kvm *kvm)
531 {
532 	int i;
533 
534 	lockdep_assert_held_write(&kvm->mmu_lock);
535 
536 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
537 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
538 
539 		if (kvm_s2_mmu_valid(mmu))
540 			kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
541 	}
542 }
543 
544 void kvm_nested_s2_unmap(struct kvm *kvm)
545 {
546 	int i;
547 
548 	lockdep_assert_held_write(&kvm->mmu_lock);
549 
550 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
551 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
552 
553 		if (kvm_s2_mmu_valid(mmu))
554 			kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu));
555 	}
556 }
557 
558 void kvm_nested_s2_flush(struct kvm *kvm)
559 {
560 	int i;
561 
562 	lockdep_assert_held_write(&kvm->mmu_lock);
563 
564 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
565 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
566 
567 		if (kvm_s2_mmu_valid(mmu))
568 			kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
569 	}
570 }
571 
572 void kvm_arch_flush_shadow_all(struct kvm *kvm)
573 {
574 	int i;
575 
576 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
577 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
578 
579 		if (!WARN_ON(atomic_read(&mmu->refcnt)))
580 			kvm_free_stage2_pgd(mmu);
581 	}
582 	kfree(kvm->arch.nested_mmus);
583 	kvm->arch.nested_mmus = NULL;
584 	kvm->arch.nested_mmus_size = 0;
585 	kvm_uninit_stage2_mmu(kvm);
586 }
587 
588 /*
589  * Our emulated CPU doesn't support all the possible features. For the
590  * sake of simplicity (and probably mental sanity), wipe out a number
591  * of feature bits we don't intend to support for the time being.
592  * This list should get updated as new features get added to the NV
593  * support, and new extension to the architecture.
594  */
595 static u64 limit_nv_id_reg(u32 id, u64 val)
596 {
597 	u64 tmp;
598 
599 	switch (id) {
600 	case SYS_ID_AA64ISAR0_EL1:
601 		/* Support everything but TME, O.S. and Range TLBIs */
602 		val &= ~(NV_FTR(ISAR0, TLB)		|
603 			 NV_FTR(ISAR0, TME));
604 		break;
605 
606 	case SYS_ID_AA64ISAR1_EL1:
607 		/* Support everything but Spec Invalidation */
608 		val &= ~(GENMASK_ULL(63, 56)	|
609 			 NV_FTR(ISAR1, SPECRES));
610 		break;
611 
612 	case SYS_ID_AA64PFR0_EL1:
613 		/* No AMU, MPAM, S-EL2, RAS or SVE */
614 		val &= ~(GENMASK_ULL(55, 52)	|
615 			 NV_FTR(PFR0, AMU)	|
616 			 NV_FTR(PFR0, MPAM)	|
617 			 NV_FTR(PFR0, SEL2)	|
618 			 NV_FTR(PFR0, RAS)	|
619 			 NV_FTR(PFR0, SVE)	|
620 			 NV_FTR(PFR0, EL3)	|
621 			 NV_FTR(PFR0, EL2)	|
622 			 NV_FTR(PFR0, EL1));
623 		/* 64bit EL1/EL2/EL3 only */
624 		val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001);
625 		val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001);
626 		val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001);
627 		break;
628 
629 	case SYS_ID_AA64PFR1_EL1:
630 		/* Only support BTI, SSBS, CSV2_frac */
631 		val &= (NV_FTR(PFR1, BT)	|
632 			NV_FTR(PFR1, SSBS)	|
633 			NV_FTR(PFR1, CSV2_frac));
634 		break;
635 
636 	case SYS_ID_AA64MMFR0_EL1:
637 		/* Hide ECV, ExS, Secure Memory */
638 		val &= ~(NV_FTR(MMFR0, ECV)		|
639 			 NV_FTR(MMFR0, EXS)		|
640 			 NV_FTR(MMFR0, TGRAN4_2)	|
641 			 NV_FTR(MMFR0, TGRAN16_2)	|
642 			 NV_FTR(MMFR0, TGRAN64_2)	|
643 			 NV_FTR(MMFR0, SNSMEM));
644 
645 		/* Disallow unsupported S2 page sizes */
646 		switch (PAGE_SIZE) {
647 		case SZ_64K:
648 			val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001);
649 			fallthrough;
650 		case SZ_16K:
651 			val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001);
652 			fallthrough;
653 		case SZ_4K:
654 			/* Support everything */
655 			break;
656 		}
657 		/*
658 		 * Since we can't support a guest S2 page size smaller than
659 		 * the host's own page size (due to KVM only populating its
660 		 * own S2 using the kernel's page size), advertise the
661 		 * limitation using FEAT_GTG.
662 		 */
663 		switch (PAGE_SIZE) {
664 		case SZ_4K:
665 			val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010);
666 			fallthrough;
667 		case SZ_16K:
668 			val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010);
669 			fallthrough;
670 		case SZ_64K:
671 			val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010);
672 			break;
673 		}
674 		/* Cap PARange to 48bits */
675 		tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val);
676 		if (tmp > 0b0101) {
677 			val &= ~NV_FTR(MMFR0, PARANGE);
678 			val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101);
679 		}
680 		break;
681 
682 	case SYS_ID_AA64MMFR1_EL1:
683 		val &= (NV_FTR(MMFR1, HCX)	|
684 			NV_FTR(MMFR1, PAN)	|
685 			NV_FTR(MMFR1, LO)	|
686 			NV_FTR(MMFR1, HPDS)	|
687 			NV_FTR(MMFR1, VH)	|
688 			NV_FTR(MMFR1, VMIDBits));
689 		break;
690 
691 	case SYS_ID_AA64MMFR2_EL1:
692 		val &= ~(NV_FTR(MMFR2, BBM)	|
693 			 NV_FTR(MMFR2, TTL)	|
694 			 GENMASK_ULL(47, 44)	|
695 			 NV_FTR(MMFR2, ST)	|
696 			 NV_FTR(MMFR2, CCIDX)	|
697 			 NV_FTR(MMFR2, VARange));
698 
699 		/* Force TTL support */
700 		val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001);
701 		break;
702 
703 	case SYS_ID_AA64MMFR4_EL1:
704 		val = 0;
705 		if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
706 			val |= FIELD_PREP(NV_FTR(MMFR4, E2H0),
707 					  ID_AA64MMFR4_EL1_E2H0_NI_NV1);
708 		break;
709 
710 	case SYS_ID_AA64DFR0_EL1:
711 		/* Only limited support for PMU, Debug, BPs and WPs */
712 		val &= (NV_FTR(DFR0, PMUVer)	|
713 			NV_FTR(DFR0, WRPs)	|
714 			NV_FTR(DFR0, BRPs)	|
715 			NV_FTR(DFR0, DebugVer));
716 
717 		/* Cap Debug to ARMv8.1 */
718 		tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val);
719 		if (tmp > 0b0111) {
720 			val &= ~NV_FTR(DFR0, DebugVer);
721 			val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111);
722 		}
723 		break;
724 
725 	default:
726 		/* Unknown register, just wipe it clean */
727 		val = 0;
728 		break;
729 	}
730 
731 	return val;
732 }
733 
734 u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr)
735 {
736 	u64 v = ctxt_sys_reg(&vcpu->arch.ctxt, sr);
737 	struct kvm_sysreg_masks *masks;
738 
739 	masks = vcpu->kvm->arch.sysreg_masks;
740 
741 	if (masks) {
742 		sr -= __VNCR_START__;
743 
744 		v &= ~masks->mask[sr].res0;
745 		v |= masks->mask[sr].res1;
746 	}
747 
748 	return v;
749 }
750 
751 static void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
752 {
753 	int i = sr - __VNCR_START__;
754 
755 	kvm->arch.sysreg_masks->mask[i].res0 = res0;
756 	kvm->arch.sysreg_masks->mask[i].res1 = res1;
757 }
758 
759 int kvm_init_nv_sysregs(struct kvm *kvm)
760 {
761 	u64 res0, res1;
762 	int ret = 0;
763 
764 	mutex_lock(&kvm->arch.config_lock);
765 
766 	if (kvm->arch.sysreg_masks)
767 		goto out;
768 
769 	kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
770 					 GFP_KERNEL);
771 	if (!kvm->arch.sysreg_masks) {
772 		ret = -ENOMEM;
773 		goto out;
774 	}
775 
776 	for (int i = 0; i < KVM_ARM_ID_REG_NUM; i++)
777 		kvm->arch.id_regs[i] = limit_nv_id_reg(IDX_IDREG(i),
778 						       kvm->arch.id_regs[i]);
779 
780 	/* VTTBR_EL2 */
781 	res0 = res1 = 0;
782 	if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
783 		res0 |= GENMASK(63, 56);
784 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
785 		res0 |= VTTBR_CNP_BIT;
786 	set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
787 
788 	/* VTCR_EL2 */
789 	res0 = GENMASK(63, 32) | GENMASK(30, 20);
790 	res1 = BIT(31);
791 	set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
792 
793 	/* VMPIDR_EL2 */
794 	res0 = GENMASK(63, 40) | GENMASK(30, 24);
795 	res1 = BIT(31);
796 	set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
797 
798 	/* HCR_EL2 */
799 	res0 = BIT(48);
800 	res1 = HCR_RW;
801 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, TWED, IMP))
802 		res0 |= GENMASK(63, 59);
803 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, MTE2))
804 		res0 |= (HCR_TID5 | HCR_DCT | HCR_ATA);
805 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, TTLBxS))
806 		res0 |= (HCR_TTLBIS | HCR_TTLBOS);
807 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
808 	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
809 		res0 |= HCR_ENSCXT;
810 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, IMP))
811 		res0 |= (HCR_TOCU | HCR_TICAB | HCR_TID4);
812 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
813 		res0 |= HCR_AMVOFFEN;
814 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1))
815 		res0 |= HCR_FIEN;
816 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP))
817 		res0 |= HCR_FWB;
818 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, NV2))
819 		res0 |= HCR_NV2;
820 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, IMP))
821 		res0 |= (HCR_AT | HCR_NV1 | HCR_NV);
822 	if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
823 	      __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
824 		res0 |= (HCR_API | HCR_APK);
825 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP))
826 		res0 |= BIT(39);
827 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
828 		res0 |= (HCR_TEA | HCR_TERR);
829 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
830 		res0 |= HCR_TLOR;
831 	if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP))
832 		res1 |= HCR_E2H;
833 	set_sysreg_masks(kvm, HCR_EL2, res0, res1);
834 
835 	/* HCRX_EL2 */
836 	res0 = HCRX_EL2_RES0;
837 	res1 = HCRX_EL2_RES1;
838 	if (!kvm_has_feat(kvm, ID_AA64ISAR3_EL1, PACM, TRIVIAL_IMP))
839 		res0 |= HCRX_EL2_PACMEn;
840 	if (!kvm_has_feat(kvm, ID_AA64PFR2_EL1, FPMR, IMP))
841 		res0 |= HCRX_EL2_EnFPM;
842 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
843 		res0 |= HCRX_EL2_GCSEn;
844 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, SYSREG_128, IMP))
845 		res0 |= HCRX_EL2_EnIDCP128;
846 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, ADERR, DEV_ASYNC))
847 		res0 |= (HCRX_EL2_EnSDERR | HCRX_EL2_EnSNERR);
848 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, DF2, IMP))
849 		res0 |= HCRX_EL2_TMEA;
850 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
851 		res0 |= HCRX_EL2_D128En;
852 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
853 		res0 |= HCRX_EL2_PTTWI;
854 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP))
855 		res0 |= HCRX_EL2_SCTLR2En;
856 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP))
857 		res0 |= HCRX_EL2_TCR2En;
858 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
859 		res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
860 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, CMOW, IMP))
861 		res0 |= HCRX_EL2_CMOW;
862 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, NMI, IMP))
863 		res0 |= (HCRX_EL2_VFNMI | HCRX_EL2_VINMI | HCRX_EL2_TALLINT);
864 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP) ||
865 	    !(read_sysreg_s(SYS_SMIDR_EL1) & SMIDR_EL1_SMPS))
866 		res0 |= HCRX_EL2_SMPME;
867 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
868 		res0 |= (HCRX_EL2_FGTnXS | HCRX_EL2_FnXS);
869 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V))
870 		res0 |= HCRX_EL2_EnASR;
871 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64))
872 		res0 |= HCRX_EL2_EnALS;
873 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
874 		res0 |= HCRX_EL2_EnAS0;
875 	set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
876 
877 	/* HFG[RW]TR_EL2 */
878 	res0 = res1 = 0;
879 	if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
880 	      __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
881 		res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey |
882 			 HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey |
883 			 HFGxTR_EL2_APIBKey);
884 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
885 		res0 |= (HFGxTR_EL2_LORC_EL1 | HFGxTR_EL2_LOREA_EL1 |
886 			 HFGxTR_EL2_LORID_EL1 | HFGxTR_EL2_LORN_EL1 |
887 			 HFGxTR_EL2_LORSA_EL1);
888 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
889 	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
890 		res0 |= (HFGxTR_EL2_SCXTNUM_EL1 | HFGxTR_EL2_SCXTNUM_EL0);
891 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP))
892 		res0 |= HFGxTR_EL2_ICC_IGRPENn_EL1;
893 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
894 		res0 |= (HFGxTR_EL2_ERRIDR_EL1 | HFGxTR_EL2_ERRSELR_EL1 |
895 			 HFGxTR_EL2_ERXFR_EL1 | HFGxTR_EL2_ERXCTLR_EL1 |
896 			 HFGxTR_EL2_ERXSTATUS_EL1 | HFGxTR_EL2_ERXMISCn_EL1 |
897 			 HFGxTR_EL2_ERXPFGF_EL1 | HFGxTR_EL2_ERXPFGCTL_EL1 |
898 			 HFGxTR_EL2_ERXPFGCDN_EL1 | HFGxTR_EL2_ERXADDR_EL1);
899 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
900 		res0 |= HFGxTR_EL2_nACCDATA_EL1;
901 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
902 		res0 |= (HFGxTR_EL2_nGCS_EL0 | HFGxTR_EL2_nGCS_EL1);
903 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP))
904 		res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0);
905 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
906 		res0 |= HFGxTR_EL2_nRCWMASK_EL1;
907 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
908 		res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1);
909 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP))
910 		res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1);
911 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
912 		res0 |= HFGxTR_EL2_nS2POR_EL1;
913 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
914 		res0 |= (HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nAMAIR2_EL1);
915 	set_sysreg_masks(kvm, HFGRTR_EL2, res0 | __HFGRTR_EL2_RES0, res1);
916 	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | __HFGWTR_EL2_RES0, res1);
917 
918 	/* HDFG[RW]TR_EL2 */
919 	res0 = res1 = 0;
920 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP))
921 		res0 |= HDFGRTR_EL2_OSDLR_EL1;
922 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
923 		res0 |= (HDFGRTR_EL2_PMEVCNTRn_EL0 | HDFGRTR_EL2_PMEVTYPERn_EL0 |
924 			 HDFGRTR_EL2_PMCCFILTR_EL0 | HDFGRTR_EL2_PMCCNTR_EL0 |
925 			 HDFGRTR_EL2_PMCNTEN | HDFGRTR_EL2_PMINTEN |
926 			 HDFGRTR_EL2_PMOVS | HDFGRTR_EL2_PMSELR_EL0 |
927 			 HDFGRTR_EL2_PMMIR_EL1 | HDFGRTR_EL2_PMUSERENR_EL0 |
928 			 HDFGRTR_EL2_PMCEIDn_EL0);
929 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
930 		res0 |= (HDFGRTR_EL2_PMBLIMITR_EL1 | HDFGRTR_EL2_PMBPTR_EL1 |
931 			 HDFGRTR_EL2_PMBSR_EL1 | HDFGRTR_EL2_PMSCR_EL1 |
932 			 HDFGRTR_EL2_PMSEVFR_EL1 | HDFGRTR_EL2_PMSFCR_EL1 |
933 			 HDFGRTR_EL2_PMSICR_EL1 | HDFGRTR_EL2_PMSIDR_EL1 |
934 			 HDFGRTR_EL2_PMSIRR_EL1 | HDFGRTR_EL2_PMSLATFR_EL1 |
935 			 HDFGRTR_EL2_PMBIDR_EL1);
936 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
937 		res0 |= (HDFGRTR_EL2_TRC | HDFGRTR_EL2_TRCAUTHSTATUS |
938 			 HDFGRTR_EL2_TRCAUXCTLR | HDFGRTR_EL2_TRCCLAIM |
939 			 HDFGRTR_EL2_TRCCNTVRn | HDFGRTR_EL2_TRCID |
940 			 HDFGRTR_EL2_TRCIMSPECn | HDFGRTR_EL2_TRCOSLSR |
941 			 HDFGRTR_EL2_TRCPRGCTLR | HDFGRTR_EL2_TRCSEQSTR |
942 			 HDFGRTR_EL2_TRCSSCSRn | HDFGRTR_EL2_TRCSTATR |
943 			 HDFGRTR_EL2_TRCVICTLR);
944 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
945 		res0 |= (HDFGRTR_EL2_TRBBASER_EL1 | HDFGRTR_EL2_TRBIDR_EL1 |
946 			 HDFGRTR_EL2_TRBLIMITR_EL1 | HDFGRTR_EL2_TRBMAR_EL1 |
947 			 HDFGRTR_EL2_TRBPTR_EL1 | HDFGRTR_EL2_TRBSR_EL1 |
948 			 HDFGRTR_EL2_TRBTRG_EL1);
949 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
950 		res0 |= (HDFGRTR_EL2_nBRBIDR | HDFGRTR_EL2_nBRBCTL |
951 			 HDFGRTR_EL2_nBRBDATA);
952 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
953 		res0 |= HDFGRTR_EL2_nPMSNEVFR_EL1;
954 	set_sysreg_masks(kvm, HDFGRTR_EL2, res0 | HDFGRTR_EL2_RES0, res1);
955 
956 	/* Reuse the bits from the read-side and add the write-specific stuff */
957 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
958 		res0 |= (HDFGWTR_EL2_PMCR_EL0 | HDFGWTR_EL2_PMSWINC_EL0);
959 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
960 		res0 |= HDFGWTR_EL2_TRCOSLAR;
961 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
962 		res0 |= HDFGWTR_EL2_TRFCR_EL1;
963 	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | HDFGWTR_EL2_RES0, res1);
964 
965 	/* HFGITR_EL2 */
966 	res0 = HFGITR_EL2_RES0;
967 	res1 = HFGITR_EL2_RES1;
968 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, DPB, DPB2))
969 		res0 |= HFGITR_EL2_DCCVADP;
970 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
971 		res0 |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP);
972 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
973 		res0 |= (HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
974 			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS |
975 			 HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS |
976 			 HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS |
977 			 HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS);
978 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
979 		res0 |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 |
980 			 HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 |
981 			 HFGITR_EL2_TLBIRVAALE1IS | HFGITR_EL2_TLBIRVALE1IS |
982 			 HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS |
983 			 HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
984 			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS);
985 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, IMP))
986 		res0 |= (HFGITR_EL2_CFPRCTX | HFGITR_EL2_DVPRCTX |
987 			 HFGITR_EL2_CPPRCTX);
988 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
989 		res0 |= (HFGITR_EL2_nBRBINJ | HFGITR_EL2_nBRBIALL);
990 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
991 		res0 |= (HFGITR_EL2_nGCSPUSHM_EL1 | HFGITR_EL2_nGCSSTR_EL1 |
992 			 HFGITR_EL2_nGCSEPP);
993 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, COSP_RCTX))
994 		res0 |= HFGITR_EL2_COSPRCTX;
995 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
996 		res0 |= HFGITR_EL2_ATS1E1A;
997 	set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
998 
999 	/* HAFGRTR_EL2 - not a lot to see here */
1000 	res0 = HAFGRTR_EL2_RES0;
1001 	res1 = HAFGRTR_EL2_RES1;
1002 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
1003 		res0 |= ~(res0 | res1);
1004 	set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
1005 out:
1006 	mutex_unlock(&kvm->arch.config_lock);
1007 
1008 	return ret;
1009 }
1010