xref: /linux/arch/arm64/kvm/mmu.c (revision fefe5dc4afeafe896c90d5b20b605f2759343c3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27 
28 static unsigned long __ro_after_init hyp_idmap_start;
29 static unsigned long __ro_after_init hyp_idmap_end;
30 static phys_addr_t __ro_after_init hyp_idmap_vector;
31 
32 static unsigned long __ro_after_init io_map_base;
33 
34 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
35 					   phys_addr_t size)
36 {
37 	phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38 
39 	return (boundary - 1 < end - 1) ? boundary : end;
40 }
41 
42 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
43 {
44 	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
45 
46 	return __stage2_range_addr_end(addr, end, size);
47 }
48 
49 /*
50  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
51  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
52  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
53  * long will also starve other vCPUs. We have to also make sure that the page
54  * tables are not freed while we released the lock.
55  */
56 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
57 			      phys_addr_t end,
58 			      int (*fn)(struct kvm_pgtable *, u64, u64),
59 			      bool resched)
60 {
61 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
62 	int ret;
63 	u64 next;
64 
65 	do {
66 		struct kvm_pgtable *pgt = mmu->pgt;
67 		if (!pgt)
68 			return -EINVAL;
69 
70 		next = stage2_range_addr_end(addr, end);
71 		ret = fn(pgt, addr, next - addr);
72 		if (ret)
73 			break;
74 
75 		if (resched && next != end)
76 			cond_resched_rwlock_write(&kvm->mmu_lock);
77 	} while (addr = next, addr != end);
78 
79 	return ret;
80 }
81 
82 #define stage2_apply_range_resched(mmu, addr, end, fn)			\
83 	stage2_apply_range(mmu, addr, end, fn, true)
84 
85 /*
86  * Get the maximum number of page-tables pages needed to split a range
87  * of blocks into PAGE_SIZE PTEs. It assumes the range is already
88  * mapped at level 2, or at level 1 if allowed.
89  */
90 static int kvm_mmu_split_nr_page_tables(u64 range)
91 {
92 	int n = 0;
93 
94 	if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
95 		n += DIV_ROUND_UP(range, PUD_SIZE);
96 	n += DIV_ROUND_UP(range, PMD_SIZE);
97 	return n;
98 }
99 
100 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
101 {
102 	struct kvm_mmu_memory_cache *cache;
103 	u64 chunk_size, min;
104 
105 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
106 		return true;
107 
108 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
109 	min = kvm_mmu_split_nr_page_tables(chunk_size);
110 	cache = &kvm->arch.mmu.split_page_cache;
111 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
112 }
113 
114 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
115 				    phys_addr_t end)
116 {
117 	struct kvm_mmu_memory_cache *cache;
118 	struct kvm_pgtable *pgt;
119 	int ret, cache_capacity;
120 	u64 next, chunk_size;
121 
122 	lockdep_assert_held_write(&kvm->mmu_lock);
123 
124 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
125 	cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
126 
127 	if (chunk_size == 0)
128 		return 0;
129 
130 	cache = &kvm->arch.mmu.split_page_cache;
131 
132 	do {
133 		if (need_split_memcache_topup_or_resched(kvm)) {
134 			write_unlock(&kvm->mmu_lock);
135 			cond_resched();
136 			/* Eager page splitting is best-effort. */
137 			ret = __kvm_mmu_topup_memory_cache(cache,
138 							   cache_capacity,
139 							   cache_capacity);
140 			write_lock(&kvm->mmu_lock);
141 			if (ret)
142 				break;
143 		}
144 
145 		pgt = kvm->arch.mmu.pgt;
146 		if (!pgt)
147 			return -EINVAL;
148 
149 		next = __stage2_range_addr_end(addr, end, chunk_size);
150 		ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
151 		if (ret)
152 			break;
153 	} while (addr = next, addr != end);
154 
155 	return ret;
156 }
157 
158 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
159 {
160 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
161 }
162 
163 /**
164  * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
165  * @kvm:	pointer to kvm structure.
166  *
167  * Interface to HYP function to flush all VM TLB entries
168  */
169 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
170 {
171 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
172 	return 0;
173 }
174 
175 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
176 				      gfn_t gfn, u64 nr_pages)
177 {
178 	kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
179 				gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
180 	return 0;
181 }
182 
183 static bool kvm_is_device_pfn(unsigned long pfn)
184 {
185 	return !pfn_is_map_memory(pfn);
186 }
187 
188 static void *stage2_memcache_zalloc_page(void *arg)
189 {
190 	struct kvm_mmu_memory_cache *mc = arg;
191 	void *virt;
192 
193 	/* Allocated with __GFP_ZERO, so no need to zero */
194 	virt = kvm_mmu_memory_cache_alloc(mc);
195 	if (virt)
196 		kvm_account_pgtable_pages(virt, 1);
197 	return virt;
198 }
199 
200 static void *kvm_host_zalloc_pages_exact(size_t size)
201 {
202 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
203 }
204 
205 static void *kvm_s2_zalloc_pages_exact(size_t size)
206 {
207 	void *virt = kvm_host_zalloc_pages_exact(size);
208 
209 	if (virt)
210 		kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
211 	return virt;
212 }
213 
214 static void kvm_s2_free_pages_exact(void *virt, size_t size)
215 {
216 	kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
217 	free_pages_exact(virt, size);
218 }
219 
220 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
221 
222 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
223 {
224 	struct page *page = container_of(head, struct page, rcu_head);
225 	void *pgtable = page_to_virt(page);
226 	u32 level = page_private(page);
227 
228 	kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
229 }
230 
231 static void stage2_free_unlinked_table(void *addr, u32 level)
232 {
233 	struct page *page = virt_to_page(addr);
234 
235 	set_page_private(page, (unsigned long)level);
236 	call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
237 }
238 
239 static void kvm_host_get_page(void *addr)
240 {
241 	get_page(virt_to_page(addr));
242 }
243 
244 static void kvm_host_put_page(void *addr)
245 {
246 	put_page(virt_to_page(addr));
247 }
248 
249 static void kvm_s2_put_page(void *addr)
250 {
251 	struct page *p = virt_to_page(addr);
252 	/* Dropping last refcount, the page will be freed */
253 	if (page_count(p) == 1)
254 		kvm_account_pgtable_pages(addr, -1);
255 	put_page(p);
256 }
257 
258 static int kvm_host_page_count(void *addr)
259 {
260 	return page_count(virt_to_page(addr));
261 }
262 
263 static phys_addr_t kvm_host_pa(void *addr)
264 {
265 	return __pa(addr);
266 }
267 
268 static void *kvm_host_va(phys_addr_t phys)
269 {
270 	return __va(phys);
271 }
272 
273 static void clean_dcache_guest_page(void *va, size_t size)
274 {
275 	__clean_dcache_guest_page(va, size);
276 }
277 
278 static void invalidate_icache_guest_page(void *va, size_t size)
279 {
280 	__invalidate_icache_guest_page(va, size);
281 }
282 
283 /*
284  * Unmapping vs dcache management:
285  *
286  * If a guest maps certain memory pages as uncached, all writes will
287  * bypass the data cache and go directly to RAM.  However, the CPUs
288  * can still speculate reads (not writes) and fill cache lines with
289  * data.
290  *
291  * Those cache lines will be *clean* cache lines though, so a
292  * clean+invalidate operation is equivalent to an invalidate
293  * operation, because no cache lines are marked dirty.
294  *
295  * Those clean cache lines could be filled prior to an uncached write
296  * by the guest, and the cache coherent IO subsystem would therefore
297  * end up writing old data to disk.
298  *
299  * This is why right after unmapping a page/section and invalidating
300  * the corresponding TLBs, we flush to make sure the IO subsystem will
301  * never hit in the cache.
302  *
303  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
304  * we then fully enforce cacheability of RAM, no matter what the guest
305  * does.
306  */
307 /**
308  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
309  * @mmu:   The KVM stage-2 MMU pointer
310  * @start: The intermediate physical base address of the range to unmap
311  * @size:  The size of the area to unmap
312  * @may_block: Whether or not we are permitted to block
313  *
314  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
315  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
316  * destroying the VM), otherwise another faulting VCPU may come in and mess
317  * with things behind our backs.
318  */
319 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
320 				 bool may_block)
321 {
322 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
323 	phys_addr_t end = start + size;
324 
325 	lockdep_assert_held_write(&kvm->mmu_lock);
326 	WARN_ON(size & ~PAGE_MASK);
327 	WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
328 				   may_block));
329 }
330 
331 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
332 {
333 	__unmap_stage2_range(mmu, start, size, true);
334 }
335 
336 static void stage2_flush_memslot(struct kvm *kvm,
337 				 struct kvm_memory_slot *memslot)
338 {
339 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
340 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
341 
342 	stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
343 }
344 
345 /**
346  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
347  * @kvm: The struct kvm pointer
348  *
349  * Go through the stage 2 page tables and invalidate any cache lines
350  * backing memory already mapped to the VM.
351  */
352 static void stage2_flush_vm(struct kvm *kvm)
353 {
354 	struct kvm_memslots *slots;
355 	struct kvm_memory_slot *memslot;
356 	int idx, bkt;
357 
358 	idx = srcu_read_lock(&kvm->srcu);
359 	write_lock(&kvm->mmu_lock);
360 
361 	slots = kvm_memslots(kvm);
362 	kvm_for_each_memslot(memslot, bkt, slots)
363 		stage2_flush_memslot(kvm, memslot);
364 
365 	write_unlock(&kvm->mmu_lock);
366 	srcu_read_unlock(&kvm->srcu, idx);
367 }
368 
369 /**
370  * free_hyp_pgds - free Hyp-mode page tables
371  */
372 void __init free_hyp_pgds(void)
373 {
374 	mutex_lock(&kvm_hyp_pgd_mutex);
375 	if (hyp_pgtable) {
376 		kvm_pgtable_hyp_destroy(hyp_pgtable);
377 		kfree(hyp_pgtable);
378 		hyp_pgtable = NULL;
379 	}
380 	mutex_unlock(&kvm_hyp_pgd_mutex);
381 }
382 
383 static bool kvm_host_owns_hyp_mappings(void)
384 {
385 	if (is_kernel_in_hyp_mode())
386 		return false;
387 
388 	if (static_branch_likely(&kvm_protected_mode_initialized))
389 		return false;
390 
391 	/*
392 	 * This can happen at boot time when __create_hyp_mappings() is called
393 	 * after the hyp protection has been enabled, but the static key has
394 	 * not been flipped yet.
395 	 */
396 	if (!hyp_pgtable && is_protected_kvm_enabled())
397 		return false;
398 
399 	WARN_ON(!hyp_pgtable);
400 
401 	return true;
402 }
403 
404 int __create_hyp_mappings(unsigned long start, unsigned long size,
405 			  unsigned long phys, enum kvm_pgtable_prot prot)
406 {
407 	int err;
408 
409 	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
410 		return -EINVAL;
411 
412 	mutex_lock(&kvm_hyp_pgd_mutex);
413 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
414 	mutex_unlock(&kvm_hyp_pgd_mutex);
415 
416 	return err;
417 }
418 
419 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
420 {
421 	if (!is_vmalloc_addr(kaddr)) {
422 		BUG_ON(!virt_addr_valid(kaddr));
423 		return __pa(kaddr);
424 	} else {
425 		return page_to_phys(vmalloc_to_page(kaddr)) +
426 		       offset_in_page(kaddr);
427 	}
428 }
429 
430 struct hyp_shared_pfn {
431 	u64 pfn;
432 	int count;
433 	struct rb_node node;
434 };
435 
436 static DEFINE_MUTEX(hyp_shared_pfns_lock);
437 static struct rb_root hyp_shared_pfns = RB_ROOT;
438 
439 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
440 					      struct rb_node **parent)
441 {
442 	struct hyp_shared_pfn *this;
443 
444 	*node = &hyp_shared_pfns.rb_node;
445 	*parent = NULL;
446 	while (**node) {
447 		this = container_of(**node, struct hyp_shared_pfn, node);
448 		*parent = **node;
449 		if (this->pfn < pfn)
450 			*node = &((**node)->rb_left);
451 		else if (this->pfn > pfn)
452 			*node = &((**node)->rb_right);
453 		else
454 			return this;
455 	}
456 
457 	return NULL;
458 }
459 
460 static int share_pfn_hyp(u64 pfn)
461 {
462 	struct rb_node **node, *parent;
463 	struct hyp_shared_pfn *this;
464 	int ret = 0;
465 
466 	mutex_lock(&hyp_shared_pfns_lock);
467 	this = find_shared_pfn(pfn, &node, &parent);
468 	if (this) {
469 		this->count++;
470 		goto unlock;
471 	}
472 
473 	this = kzalloc(sizeof(*this), GFP_KERNEL);
474 	if (!this) {
475 		ret = -ENOMEM;
476 		goto unlock;
477 	}
478 
479 	this->pfn = pfn;
480 	this->count = 1;
481 	rb_link_node(&this->node, parent, node);
482 	rb_insert_color(&this->node, &hyp_shared_pfns);
483 	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
484 unlock:
485 	mutex_unlock(&hyp_shared_pfns_lock);
486 
487 	return ret;
488 }
489 
490 static int unshare_pfn_hyp(u64 pfn)
491 {
492 	struct rb_node **node, *parent;
493 	struct hyp_shared_pfn *this;
494 	int ret = 0;
495 
496 	mutex_lock(&hyp_shared_pfns_lock);
497 	this = find_shared_pfn(pfn, &node, &parent);
498 	if (WARN_ON(!this)) {
499 		ret = -ENOENT;
500 		goto unlock;
501 	}
502 
503 	this->count--;
504 	if (this->count)
505 		goto unlock;
506 
507 	rb_erase(&this->node, &hyp_shared_pfns);
508 	kfree(this);
509 	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
510 unlock:
511 	mutex_unlock(&hyp_shared_pfns_lock);
512 
513 	return ret;
514 }
515 
516 int kvm_share_hyp(void *from, void *to)
517 {
518 	phys_addr_t start, end, cur;
519 	u64 pfn;
520 	int ret;
521 
522 	if (is_kernel_in_hyp_mode())
523 		return 0;
524 
525 	/*
526 	 * The share hcall maps things in the 'fixed-offset' region of the hyp
527 	 * VA space, so we can only share physically contiguous data-structures
528 	 * for now.
529 	 */
530 	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
531 		return -EINVAL;
532 
533 	if (kvm_host_owns_hyp_mappings())
534 		return create_hyp_mappings(from, to, PAGE_HYP);
535 
536 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
537 	end = PAGE_ALIGN(__pa(to));
538 	for (cur = start; cur < end; cur += PAGE_SIZE) {
539 		pfn = __phys_to_pfn(cur);
540 		ret = share_pfn_hyp(pfn);
541 		if (ret)
542 			return ret;
543 	}
544 
545 	return 0;
546 }
547 
548 void kvm_unshare_hyp(void *from, void *to)
549 {
550 	phys_addr_t start, end, cur;
551 	u64 pfn;
552 
553 	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
554 		return;
555 
556 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
557 	end = PAGE_ALIGN(__pa(to));
558 	for (cur = start; cur < end; cur += PAGE_SIZE) {
559 		pfn = __phys_to_pfn(cur);
560 		WARN_ON(unshare_pfn_hyp(pfn));
561 	}
562 }
563 
564 /**
565  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
566  * @from:	The virtual kernel start address of the range
567  * @to:		The virtual kernel end address of the range (exclusive)
568  * @prot:	The protection to be applied to this range
569  *
570  * The same virtual address as the kernel virtual address is also used
571  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
572  * physical pages.
573  */
574 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
575 {
576 	phys_addr_t phys_addr;
577 	unsigned long virt_addr;
578 	unsigned long start = kern_hyp_va((unsigned long)from);
579 	unsigned long end = kern_hyp_va((unsigned long)to);
580 
581 	if (is_kernel_in_hyp_mode())
582 		return 0;
583 
584 	if (!kvm_host_owns_hyp_mappings())
585 		return -EPERM;
586 
587 	start = start & PAGE_MASK;
588 	end = PAGE_ALIGN(end);
589 
590 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
591 		int err;
592 
593 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
594 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
595 					    prot);
596 		if (err)
597 			return err;
598 	}
599 
600 	return 0;
601 }
602 
603 static int __hyp_alloc_private_va_range(unsigned long base)
604 {
605 	lockdep_assert_held(&kvm_hyp_pgd_mutex);
606 
607 	if (!PAGE_ALIGNED(base))
608 		return -EINVAL;
609 
610 	/*
611 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
612 	 * allocating the new area, as it would indicate we've
613 	 * overflowed the idmap/IO address range.
614 	 */
615 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
616 		return -ENOMEM;
617 
618 	io_map_base = base;
619 
620 	return 0;
621 }
622 
623 /**
624  * hyp_alloc_private_va_range - Allocates a private VA range.
625  * @size:	The size of the VA range to reserve.
626  * @haddr:	The hypervisor virtual start address of the allocation.
627  *
628  * The private virtual address (VA) range is allocated below io_map_base
629  * and aligned based on the order of @size.
630  *
631  * Return: 0 on success or negative error code on failure.
632  */
633 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
634 {
635 	unsigned long base;
636 	int ret = 0;
637 
638 	mutex_lock(&kvm_hyp_pgd_mutex);
639 
640 	/*
641 	 * This assumes that we have enough space below the idmap
642 	 * page to allocate our VAs. If not, the check in
643 	 * __hyp_alloc_private_va_range() will kick. A potential
644 	 * alternative would be to detect that overflow and switch
645 	 * to an allocation above the idmap.
646 	 *
647 	 * The allocated size is always a multiple of PAGE_SIZE.
648 	 */
649 	size = PAGE_ALIGN(size);
650 	base = io_map_base - size;
651 	ret = __hyp_alloc_private_va_range(base);
652 
653 	mutex_unlock(&kvm_hyp_pgd_mutex);
654 
655 	return ret;
656 }
657 
658 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
659 					unsigned long *haddr,
660 					enum kvm_pgtable_prot prot)
661 {
662 	unsigned long addr;
663 	int ret = 0;
664 
665 	if (!kvm_host_owns_hyp_mappings()) {
666 		addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
667 					 phys_addr, size, prot);
668 		if (IS_ERR_VALUE(addr))
669 			return addr;
670 		*haddr = addr;
671 
672 		return 0;
673 	}
674 
675 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
676 	ret = hyp_alloc_private_va_range(size, &addr);
677 	if (ret)
678 		return ret;
679 
680 	ret = __create_hyp_mappings(addr, size, phys_addr, prot);
681 	if (ret)
682 		return ret;
683 
684 	*haddr = addr + offset_in_page(phys_addr);
685 	return ret;
686 }
687 
688 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
689 {
690 	unsigned long base;
691 	size_t size;
692 	int ret;
693 
694 	mutex_lock(&kvm_hyp_pgd_mutex);
695 	/*
696 	 * Efficient stack verification using the PAGE_SHIFT bit implies
697 	 * an alignment of our allocation on the order of the size.
698 	 */
699 	size = PAGE_SIZE * 2;
700 	base = ALIGN_DOWN(io_map_base - size, size);
701 
702 	ret = __hyp_alloc_private_va_range(base);
703 
704 	mutex_unlock(&kvm_hyp_pgd_mutex);
705 
706 	if (ret) {
707 		kvm_err("Cannot allocate hyp stack guard page\n");
708 		return ret;
709 	}
710 
711 	/*
712 	 * Since the stack grows downwards, map the stack to the page
713 	 * at the higher address and leave the lower guard page
714 	 * unbacked.
715 	 *
716 	 * Any valid stack address now has the PAGE_SHIFT bit as 1
717 	 * and addresses corresponding to the guard page have the
718 	 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
719 	 */
720 	ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr,
721 				    PAGE_HYP);
722 	if (ret)
723 		kvm_err("Cannot map hyp stack\n");
724 
725 	*haddr = base + size;
726 
727 	return ret;
728 }
729 
730 /**
731  * create_hyp_io_mappings - Map IO into both kernel and HYP
732  * @phys_addr:	The physical start address which gets mapped
733  * @size:	Size of the region being mapped
734  * @kaddr:	Kernel VA for this mapping
735  * @haddr:	HYP VA for this mapping
736  */
737 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
738 			   void __iomem **kaddr,
739 			   void __iomem **haddr)
740 {
741 	unsigned long addr;
742 	int ret;
743 
744 	if (is_protected_kvm_enabled())
745 		return -EPERM;
746 
747 	*kaddr = ioremap(phys_addr, size);
748 	if (!*kaddr)
749 		return -ENOMEM;
750 
751 	if (is_kernel_in_hyp_mode()) {
752 		*haddr = *kaddr;
753 		return 0;
754 	}
755 
756 	ret = __create_hyp_private_mapping(phys_addr, size,
757 					   &addr, PAGE_HYP_DEVICE);
758 	if (ret) {
759 		iounmap(*kaddr);
760 		*kaddr = NULL;
761 		*haddr = NULL;
762 		return ret;
763 	}
764 
765 	*haddr = (void __iomem *)addr;
766 	return 0;
767 }
768 
769 /**
770  * create_hyp_exec_mappings - Map an executable range into HYP
771  * @phys_addr:	The physical start address which gets mapped
772  * @size:	Size of the region being mapped
773  * @haddr:	HYP VA for this mapping
774  */
775 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
776 			     void **haddr)
777 {
778 	unsigned long addr;
779 	int ret;
780 
781 	BUG_ON(is_kernel_in_hyp_mode());
782 
783 	ret = __create_hyp_private_mapping(phys_addr, size,
784 					   &addr, PAGE_HYP_EXEC);
785 	if (ret) {
786 		*haddr = NULL;
787 		return ret;
788 	}
789 
790 	*haddr = (void *)addr;
791 	return 0;
792 }
793 
794 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
795 	/* We shouldn't need any other callback to walk the PT */
796 	.phys_to_virt		= kvm_host_va,
797 };
798 
799 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
800 {
801 	struct kvm_pgtable pgt = {
802 		.pgd		= (kvm_pteref_t)kvm->mm->pgd,
803 		.ia_bits	= vabits_actual,
804 		.start_level	= (KVM_PGTABLE_MAX_LEVELS -
805 				   CONFIG_PGTABLE_LEVELS),
806 		.mm_ops		= &kvm_user_mm_ops,
807 	};
808 	unsigned long flags;
809 	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
810 	u32 level = ~0;
811 	int ret;
812 
813 	/*
814 	 * Disable IRQs so that we hazard against a concurrent
815 	 * teardown of the userspace page tables (which relies on
816 	 * IPI-ing threads).
817 	 */
818 	local_irq_save(flags);
819 	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
820 	local_irq_restore(flags);
821 
822 	if (ret)
823 		return ret;
824 
825 	/*
826 	 * Not seeing an error, but not updating level? Something went
827 	 * deeply wrong...
828 	 */
829 	if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS))
830 		return -EFAULT;
831 
832 	/* Oops, the userspace PTs are gone... Replay the fault */
833 	if (!kvm_pte_valid(pte))
834 		return -EAGAIN;
835 
836 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
837 }
838 
839 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
840 	.zalloc_page		= stage2_memcache_zalloc_page,
841 	.zalloc_pages_exact	= kvm_s2_zalloc_pages_exact,
842 	.free_pages_exact	= kvm_s2_free_pages_exact,
843 	.free_unlinked_table	= stage2_free_unlinked_table,
844 	.get_page		= kvm_host_get_page,
845 	.put_page		= kvm_s2_put_page,
846 	.page_count		= kvm_host_page_count,
847 	.phys_to_virt		= kvm_host_va,
848 	.virt_to_phys		= kvm_host_pa,
849 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
850 	.icache_inval_pou	= invalidate_icache_guest_page,
851 };
852 
853 /**
854  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
855  * @kvm:	The pointer to the KVM structure
856  * @mmu:	The pointer to the s2 MMU structure
857  * @type:	The machine type of the virtual machine
858  *
859  * Allocates only the stage-2 HW PGD level table(s).
860  * Note we don't need locking here as this is only called when the VM is
861  * created, which can only be done once.
862  */
863 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
864 {
865 	u32 kvm_ipa_limit = get_kvm_ipa_limit();
866 	int cpu, err;
867 	struct kvm_pgtable *pgt;
868 	u64 mmfr0, mmfr1;
869 	u32 phys_shift;
870 
871 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
872 		return -EINVAL;
873 
874 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
875 	if (is_protected_kvm_enabled()) {
876 		phys_shift = kvm_ipa_limit;
877 	} else if (phys_shift) {
878 		if (phys_shift > kvm_ipa_limit ||
879 		    phys_shift < ARM64_MIN_PARANGE_BITS)
880 			return -EINVAL;
881 	} else {
882 		phys_shift = KVM_PHYS_SHIFT;
883 		if (phys_shift > kvm_ipa_limit) {
884 			pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
885 				     current->comm);
886 			return -EINVAL;
887 		}
888 	}
889 
890 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
891 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
892 	kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
893 
894 	if (mmu->pgt != NULL) {
895 		kvm_err("kvm_arch already initialized?\n");
896 		return -EINVAL;
897 	}
898 
899 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
900 	if (!pgt)
901 		return -ENOMEM;
902 
903 	mmu->arch = &kvm->arch;
904 	err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
905 	if (err)
906 		goto out_free_pgtable;
907 
908 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
909 	if (!mmu->last_vcpu_ran) {
910 		err = -ENOMEM;
911 		goto out_destroy_pgtable;
912 	}
913 
914 	for_each_possible_cpu(cpu)
915 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
916 
917 	 /* The eager page splitting is disabled by default */
918 	mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
919 	mmu->split_page_cache.gfp_zero = __GFP_ZERO;
920 
921 	mmu->pgt = pgt;
922 	mmu->pgd_phys = __pa(pgt->pgd);
923 	return 0;
924 
925 out_destroy_pgtable:
926 	kvm_pgtable_stage2_destroy(pgt);
927 out_free_pgtable:
928 	kfree(pgt);
929 	return err;
930 }
931 
932 void kvm_uninit_stage2_mmu(struct kvm *kvm)
933 {
934 	kvm_free_stage2_pgd(&kvm->arch.mmu);
935 	kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
936 }
937 
938 static void stage2_unmap_memslot(struct kvm *kvm,
939 				 struct kvm_memory_slot *memslot)
940 {
941 	hva_t hva = memslot->userspace_addr;
942 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
943 	phys_addr_t size = PAGE_SIZE * memslot->npages;
944 	hva_t reg_end = hva + size;
945 
946 	/*
947 	 * A memory region could potentially cover multiple VMAs, and any holes
948 	 * between them, so iterate over all of them to find out if we should
949 	 * unmap any of them.
950 	 *
951 	 *     +--------------------------------------------+
952 	 * +---------------+----------------+   +----------------+
953 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
954 	 * +---------------+----------------+   +----------------+
955 	 *     |               memory region                |
956 	 *     +--------------------------------------------+
957 	 */
958 	do {
959 		struct vm_area_struct *vma;
960 		hva_t vm_start, vm_end;
961 
962 		vma = find_vma_intersection(current->mm, hva, reg_end);
963 		if (!vma)
964 			break;
965 
966 		/*
967 		 * Take the intersection of this VMA with the memory region
968 		 */
969 		vm_start = max(hva, vma->vm_start);
970 		vm_end = min(reg_end, vma->vm_end);
971 
972 		if (!(vma->vm_flags & VM_PFNMAP)) {
973 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
974 			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
975 		}
976 		hva = vm_end;
977 	} while (hva < reg_end);
978 }
979 
980 /**
981  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
982  * @kvm: The struct kvm pointer
983  *
984  * Go through the memregions and unmap any regular RAM
985  * backing memory already mapped to the VM.
986  */
987 void stage2_unmap_vm(struct kvm *kvm)
988 {
989 	struct kvm_memslots *slots;
990 	struct kvm_memory_slot *memslot;
991 	int idx, bkt;
992 
993 	idx = srcu_read_lock(&kvm->srcu);
994 	mmap_read_lock(current->mm);
995 	write_lock(&kvm->mmu_lock);
996 
997 	slots = kvm_memslots(kvm);
998 	kvm_for_each_memslot(memslot, bkt, slots)
999 		stage2_unmap_memslot(kvm, memslot);
1000 
1001 	write_unlock(&kvm->mmu_lock);
1002 	mmap_read_unlock(current->mm);
1003 	srcu_read_unlock(&kvm->srcu, idx);
1004 }
1005 
1006 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1007 {
1008 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1009 	struct kvm_pgtable *pgt = NULL;
1010 
1011 	write_lock(&kvm->mmu_lock);
1012 	pgt = mmu->pgt;
1013 	if (pgt) {
1014 		mmu->pgd_phys = 0;
1015 		mmu->pgt = NULL;
1016 		free_percpu(mmu->last_vcpu_ran);
1017 	}
1018 	write_unlock(&kvm->mmu_lock);
1019 
1020 	if (pgt) {
1021 		kvm_pgtable_stage2_destroy(pgt);
1022 		kfree(pgt);
1023 	}
1024 }
1025 
1026 static void hyp_mc_free_fn(void *addr, void *unused)
1027 {
1028 	free_page((unsigned long)addr);
1029 }
1030 
1031 static void *hyp_mc_alloc_fn(void *unused)
1032 {
1033 	return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1034 }
1035 
1036 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1037 {
1038 	if (is_protected_kvm_enabled())
1039 		__free_hyp_memcache(mc, hyp_mc_free_fn,
1040 				    kvm_host_va, NULL);
1041 }
1042 
1043 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1044 {
1045 	if (!is_protected_kvm_enabled())
1046 		return 0;
1047 
1048 	return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1049 				    kvm_host_pa, NULL);
1050 }
1051 
1052 /**
1053  * kvm_phys_addr_ioremap - map a device range to guest IPA
1054  *
1055  * @kvm:	The KVM pointer
1056  * @guest_ipa:	The IPA at which to insert the mapping
1057  * @pa:		The physical address of the device
1058  * @size:	The size of the mapping
1059  * @writable:   Whether or not to create a writable mapping
1060  */
1061 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1062 			  phys_addr_t pa, unsigned long size, bool writable)
1063 {
1064 	phys_addr_t addr;
1065 	int ret = 0;
1066 	struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1067 	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
1068 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1069 				     KVM_PGTABLE_PROT_R |
1070 				     (writable ? KVM_PGTABLE_PROT_W : 0);
1071 
1072 	if (is_protected_kvm_enabled())
1073 		return -EPERM;
1074 
1075 	size += offset_in_page(guest_ipa);
1076 	guest_ipa &= PAGE_MASK;
1077 
1078 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1079 		ret = kvm_mmu_topup_memory_cache(&cache,
1080 						 kvm_mmu_cache_min_pages(kvm));
1081 		if (ret)
1082 			break;
1083 
1084 		write_lock(&kvm->mmu_lock);
1085 		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
1086 					     &cache, 0);
1087 		write_unlock(&kvm->mmu_lock);
1088 		if (ret)
1089 			break;
1090 
1091 		pa += PAGE_SIZE;
1092 	}
1093 
1094 	kvm_mmu_free_memory_cache(&cache);
1095 	return ret;
1096 }
1097 
1098 /**
1099  * stage2_wp_range() - write protect stage2 memory region range
1100  * @mmu:        The KVM stage-2 MMU pointer
1101  * @addr:	Start address of range
1102  * @end:	End address of range
1103  */
1104 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1105 {
1106 	stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
1107 }
1108 
1109 /**
1110  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1111  * @kvm:	The KVM pointer
1112  * @slot:	The memory slot to write protect
1113  *
1114  * Called to start logging dirty pages after memory region
1115  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1116  * all present PUD, PMD and PTEs are write protected in the memory region.
1117  * Afterwards read of dirty page log can be called.
1118  *
1119  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1120  * serializing operations for VM memory regions.
1121  */
1122 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1123 {
1124 	struct kvm_memslots *slots = kvm_memslots(kvm);
1125 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1126 	phys_addr_t start, end;
1127 
1128 	if (WARN_ON_ONCE(!memslot))
1129 		return;
1130 
1131 	start = memslot->base_gfn << PAGE_SHIFT;
1132 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1133 
1134 	write_lock(&kvm->mmu_lock);
1135 	stage2_wp_range(&kvm->arch.mmu, start, end);
1136 	write_unlock(&kvm->mmu_lock);
1137 	kvm_flush_remote_tlbs_memslot(kvm, memslot);
1138 }
1139 
1140 /**
1141  * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1142  *				   pages for memory slot
1143  * @kvm:	The KVM pointer
1144  * @slot:	The memory slot to split
1145  *
1146  * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1147  * serializing operations for VM memory regions.
1148  */
1149 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1150 {
1151 	struct kvm_memslots *slots;
1152 	struct kvm_memory_slot *memslot;
1153 	phys_addr_t start, end;
1154 
1155 	lockdep_assert_held(&kvm->slots_lock);
1156 
1157 	slots = kvm_memslots(kvm);
1158 	memslot = id_to_memslot(slots, slot);
1159 
1160 	start = memslot->base_gfn << PAGE_SHIFT;
1161 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1162 
1163 	write_lock(&kvm->mmu_lock);
1164 	kvm_mmu_split_huge_pages(kvm, start, end);
1165 	write_unlock(&kvm->mmu_lock);
1166 }
1167 
1168 /*
1169  * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1170  * @kvm:	The KVM pointer
1171  * @slot:	The memory slot associated with mask
1172  * @gfn_offset:	The gfn offset in memory slot
1173  * @mask:	The mask of pages at offset 'gfn_offset' in this memory
1174  *		slot to enable dirty logging on
1175  *
1176  * Writes protect selected pages to enable dirty logging, and then
1177  * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1178  */
1179 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1180 		struct kvm_memory_slot *slot,
1181 		gfn_t gfn_offset, unsigned long mask)
1182 {
1183 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1184 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1185 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1186 
1187 	lockdep_assert_held_write(&kvm->mmu_lock);
1188 
1189 	stage2_wp_range(&kvm->arch.mmu, start, end);
1190 
1191 	/*
1192 	 * Eager-splitting is done when manual-protect is set.  We
1193 	 * also check for initially-all-set because we can avoid
1194 	 * eager-splitting if initially-all-set is false.
1195 	 * Initially-all-set equal false implies that huge-pages were
1196 	 * already split when enabling dirty logging: no need to do it
1197 	 * again.
1198 	 */
1199 	if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1200 		kvm_mmu_split_huge_pages(kvm, start, end);
1201 }
1202 
1203 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1204 {
1205 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1206 }
1207 
1208 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1209 					       unsigned long hva,
1210 					       unsigned long map_size)
1211 {
1212 	gpa_t gpa_start;
1213 	hva_t uaddr_start, uaddr_end;
1214 	size_t size;
1215 
1216 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1217 	if (map_size == PAGE_SIZE)
1218 		return true;
1219 
1220 	size = memslot->npages * PAGE_SIZE;
1221 
1222 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1223 
1224 	uaddr_start = memslot->userspace_addr;
1225 	uaddr_end = uaddr_start + size;
1226 
1227 	/*
1228 	 * Pages belonging to memslots that don't have the same alignment
1229 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1230 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1231 	 *
1232 	 * Consider a layout like the following:
1233 	 *
1234 	 *    memslot->userspace_addr:
1235 	 *    +-----+--------------------+--------------------+---+
1236 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1237 	 *    +-----+--------------------+--------------------+---+
1238 	 *
1239 	 *    memslot->base_gfn << PAGE_SHIFT:
1240 	 *      +---+--------------------+--------------------+-----+
1241 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1242 	 *      +---+--------------------+--------------------+-----+
1243 	 *
1244 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1245 	 * mapping:
1246 	 *   d -> f
1247 	 *   e -> g
1248 	 *   f -> h
1249 	 */
1250 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1251 		return false;
1252 
1253 	/*
1254 	 * Next, let's make sure we're not trying to map anything not covered
1255 	 * by the memslot. This means we have to prohibit block size mappings
1256 	 * for the beginning and end of a non-block aligned and non-block sized
1257 	 * memory slot (illustrated by the head and tail parts of the
1258 	 * userspace view above containing pages 'abcde' and 'xyz',
1259 	 * respectively).
1260 	 *
1261 	 * Note that it doesn't matter if we do the check using the
1262 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1263 	 * the check above) and equally sized.
1264 	 */
1265 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1266 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1267 }
1268 
1269 /*
1270  * Check if the given hva is backed by a transparent huge page (THP) and
1271  * whether it can be mapped using block mapping in stage2. If so, adjust
1272  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1273  * supported. This will need to be updated to support other THP sizes.
1274  *
1275  * Returns the size of the mapping.
1276  */
1277 static long
1278 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1279 			    unsigned long hva, kvm_pfn_t *pfnp,
1280 			    phys_addr_t *ipap)
1281 {
1282 	kvm_pfn_t pfn = *pfnp;
1283 
1284 	/*
1285 	 * Make sure the adjustment is done only for THP pages. Also make
1286 	 * sure that the HVA and IPA are sufficiently aligned and that the
1287 	 * block map is contained within the memslot.
1288 	 */
1289 	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1290 		int sz = get_user_mapping_size(kvm, hva);
1291 
1292 		if (sz < 0)
1293 			return sz;
1294 
1295 		if (sz < PMD_SIZE)
1296 			return PAGE_SIZE;
1297 
1298 		/*
1299 		 * The address we faulted on is backed by a transparent huge
1300 		 * page.  However, because we map the compound huge page and
1301 		 * not the individual tail page, we need to transfer the
1302 		 * refcount to the head page.  We have to be careful that the
1303 		 * THP doesn't start to split while we are adjusting the
1304 		 * refcounts.
1305 		 *
1306 		 * We are sure this doesn't happen, because mmu_invalidate_retry
1307 		 * was successful and we are holding the mmu_lock, so if this
1308 		 * THP is trying to split, it will be blocked in the mmu
1309 		 * notifier before touching any of the pages, specifically
1310 		 * before being able to call __split_huge_page_refcount().
1311 		 *
1312 		 * We can therefore safely transfer the refcount from PG_tail
1313 		 * to PG_head and switch the pfn from a tail page to the head
1314 		 * page accordingly.
1315 		 */
1316 		*ipap &= PMD_MASK;
1317 		kvm_release_pfn_clean(pfn);
1318 		pfn &= ~(PTRS_PER_PMD - 1);
1319 		get_page(pfn_to_page(pfn));
1320 		*pfnp = pfn;
1321 
1322 		return PMD_SIZE;
1323 	}
1324 
1325 	/* Use page mapping if we cannot use block mapping. */
1326 	return PAGE_SIZE;
1327 }
1328 
1329 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1330 {
1331 	unsigned long pa;
1332 
1333 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1334 		return huge_page_shift(hstate_vma(vma));
1335 
1336 	if (!(vma->vm_flags & VM_PFNMAP))
1337 		return PAGE_SHIFT;
1338 
1339 	VM_BUG_ON(is_vm_hugetlb_page(vma));
1340 
1341 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1342 
1343 #ifndef __PAGETABLE_PMD_FOLDED
1344 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1345 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1346 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1347 		return PUD_SHIFT;
1348 #endif
1349 
1350 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1351 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1352 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1353 		return PMD_SHIFT;
1354 
1355 	return PAGE_SHIFT;
1356 }
1357 
1358 /*
1359  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1360  * able to see the page's tags and therefore they must be initialised first. If
1361  * PG_mte_tagged is set, tags have already been initialised.
1362  *
1363  * The race in the test/set of the PG_mte_tagged flag is handled by:
1364  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1365  *   racing to santise the same page
1366  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1367  *   an mprotect() to add VM_MTE
1368  */
1369 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1370 			      unsigned long size)
1371 {
1372 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1373 	struct page *page = pfn_to_page(pfn);
1374 
1375 	if (!kvm_has_mte(kvm))
1376 		return;
1377 
1378 	for (i = 0; i < nr_pages; i++, page++) {
1379 		if (try_page_mte_tagging(page)) {
1380 			mte_clear_page_tags(page_address(page));
1381 			set_page_mte_tagged(page);
1382 		}
1383 	}
1384 }
1385 
1386 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1387 {
1388 	return vma->vm_flags & VM_MTE_ALLOWED;
1389 }
1390 
1391 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1392 			  struct kvm_memory_slot *memslot, unsigned long hva,
1393 			  unsigned long fault_status)
1394 {
1395 	int ret = 0;
1396 	bool write_fault, writable, force_pte = false;
1397 	bool exec_fault, mte_allowed;
1398 	bool device = false;
1399 	unsigned long mmu_seq;
1400 	struct kvm *kvm = vcpu->kvm;
1401 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1402 	struct vm_area_struct *vma;
1403 	short vma_shift;
1404 	gfn_t gfn;
1405 	kvm_pfn_t pfn;
1406 	bool logging_active = memslot_is_logging(memslot);
1407 	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1408 	long vma_pagesize, fault_granule;
1409 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1410 	struct kvm_pgtable *pgt;
1411 
1412 	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1413 	write_fault = kvm_is_write_fault(vcpu);
1414 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1415 	VM_BUG_ON(write_fault && exec_fault);
1416 
1417 	if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) {
1418 		kvm_err("Unexpected L2 read permission error\n");
1419 		return -EFAULT;
1420 	}
1421 
1422 	/*
1423 	 * Permission faults just need to update the existing leaf entry,
1424 	 * and so normally don't require allocations from the memcache. The
1425 	 * only exception to this is when dirty logging is enabled at runtime
1426 	 * and a write fault needs to collapse a block entry into a table.
1427 	 */
1428 	if (fault_status != ESR_ELx_FSC_PERM ||
1429 	    (logging_active && write_fault)) {
1430 		ret = kvm_mmu_topup_memory_cache(memcache,
1431 						 kvm_mmu_cache_min_pages(kvm));
1432 		if (ret)
1433 			return ret;
1434 	}
1435 
1436 	/*
1437 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1438 	 * get block mapping for device MMIO region.
1439 	 */
1440 	mmap_read_lock(current->mm);
1441 	vma = vma_lookup(current->mm, hva);
1442 	if (unlikely(!vma)) {
1443 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1444 		mmap_read_unlock(current->mm);
1445 		return -EFAULT;
1446 	}
1447 
1448 	/*
1449 	 * logging_active is guaranteed to never be true for VM_PFNMAP
1450 	 * memslots.
1451 	 */
1452 	if (logging_active) {
1453 		force_pte = true;
1454 		vma_shift = PAGE_SHIFT;
1455 	} else {
1456 		vma_shift = get_vma_page_shift(vma, hva);
1457 	}
1458 
1459 	switch (vma_shift) {
1460 #ifndef __PAGETABLE_PMD_FOLDED
1461 	case PUD_SHIFT:
1462 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1463 			break;
1464 		fallthrough;
1465 #endif
1466 	case CONT_PMD_SHIFT:
1467 		vma_shift = PMD_SHIFT;
1468 		fallthrough;
1469 	case PMD_SHIFT:
1470 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1471 			break;
1472 		fallthrough;
1473 	case CONT_PTE_SHIFT:
1474 		vma_shift = PAGE_SHIFT;
1475 		force_pte = true;
1476 		fallthrough;
1477 	case PAGE_SHIFT:
1478 		break;
1479 	default:
1480 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1481 	}
1482 
1483 	vma_pagesize = 1UL << vma_shift;
1484 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1485 		fault_ipa &= ~(vma_pagesize - 1);
1486 
1487 	gfn = fault_ipa >> PAGE_SHIFT;
1488 	mte_allowed = kvm_vma_mte_allowed(vma);
1489 
1490 	/* Don't use the VMA after the unlock -- it may have vanished */
1491 	vma = NULL;
1492 
1493 	/*
1494 	 * Read mmu_invalidate_seq so that KVM can detect if the results of
1495 	 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1496 	 * acquiring kvm->mmu_lock.
1497 	 *
1498 	 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1499 	 * with the smp_wmb() in kvm_mmu_invalidate_end().
1500 	 */
1501 	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1502 	mmap_read_unlock(current->mm);
1503 
1504 	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1505 				   write_fault, &writable, NULL);
1506 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1507 		kvm_send_hwpoison_signal(hva, vma_shift);
1508 		return 0;
1509 	}
1510 	if (is_error_noslot_pfn(pfn))
1511 		return -EFAULT;
1512 
1513 	if (kvm_is_device_pfn(pfn)) {
1514 		/*
1515 		 * If the page was identified as device early by looking at
1516 		 * the VMA flags, vma_pagesize is already representing the
1517 		 * largest quantity we can map.  If instead it was mapped
1518 		 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1519 		 * and must not be upgraded.
1520 		 *
1521 		 * In both cases, we don't let transparent_hugepage_adjust()
1522 		 * change things at the last minute.
1523 		 */
1524 		device = true;
1525 	} else if (logging_active && !write_fault) {
1526 		/*
1527 		 * Only actually map the page as writable if this was a write
1528 		 * fault.
1529 		 */
1530 		writable = false;
1531 	}
1532 
1533 	if (exec_fault && device)
1534 		return -ENOEXEC;
1535 
1536 	read_lock(&kvm->mmu_lock);
1537 	pgt = vcpu->arch.hw_mmu->pgt;
1538 	if (mmu_invalidate_retry(kvm, mmu_seq))
1539 		goto out_unlock;
1540 
1541 	/*
1542 	 * If we are not forced to use page mapping, check if we are
1543 	 * backed by a THP and thus use block mapping if possible.
1544 	 */
1545 	if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1546 		if (fault_status ==  ESR_ELx_FSC_PERM &&
1547 		    fault_granule > PAGE_SIZE)
1548 			vma_pagesize = fault_granule;
1549 		else
1550 			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1551 								   hva, &pfn,
1552 								   &fault_ipa);
1553 
1554 		if (vma_pagesize < 0) {
1555 			ret = vma_pagesize;
1556 			goto out_unlock;
1557 		}
1558 	}
1559 
1560 	if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) {
1561 		/* Check the VMM hasn't introduced a new disallowed VMA */
1562 		if (mte_allowed) {
1563 			sanitise_mte_tags(kvm, pfn, vma_pagesize);
1564 		} else {
1565 			ret = -EFAULT;
1566 			goto out_unlock;
1567 		}
1568 	}
1569 
1570 	if (writable)
1571 		prot |= KVM_PGTABLE_PROT_W;
1572 
1573 	if (exec_fault)
1574 		prot |= KVM_PGTABLE_PROT_X;
1575 
1576 	if (device)
1577 		prot |= KVM_PGTABLE_PROT_DEVICE;
1578 	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1579 		prot |= KVM_PGTABLE_PROT_X;
1580 
1581 	/*
1582 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1583 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1584 	 * kvm_pgtable_stage2_map() should be called to change block size.
1585 	 */
1586 	if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule)
1587 		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1588 	else
1589 		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1590 					     __pfn_to_phys(pfn), prot,
1591 					     memcache,
1592 					     KVM_PGTABLE_WALK_HANDLE_FAULT |
1593 					     KVM_PGTABLE_WALK_SHARED);
1594 
1595 	/* Mark the page dirty only if the fault is handled successfully */
1596 	if (writable && !ret) {
1597 		kvm_set_pfn_dirty(pfn);
1598 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1599 	}
1600 
1601 out_unlock:
1602 	read_unlock(&kvm->mmu_lock);
1603 	kvm_release_pfn_clean(pfn);
1604 	return ret != -EAGAIN ? ret : 0;
1605 }
1606 
1607 /* Resolve the access fault by making the page young again. */
1608 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1609 {
1610 	kvm_pte_t pte;
1611 	struct kvm_s2_mmu *mmu;
1612 
1613 	trace_kvm_access_fault(fault_ipa);
1614 
1615 	read_lock(&vcpu->kvm->mmu_lock);
1616 	mmu = vcpu->arch.hw_mmu;
1617 	pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1618 	read_unlock(&vcpu->kvm->mmu_lock);
1619 
1620 	if (kvm_pte_valid(pte))
1621 		kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1622 }
1623 
1624 /**
1625  * kvm_handle_guest_abort - handles all 2nd stage aborts
1626  * @vcpu:	the VCPU pointer
1627  *
1628  * Any abort that gets to the host is almost guaranteed to be caused by a
1629  * missing second stage translation table entry, which can mean that either the
1630  * guest simply needs more memory and we must allocate an appropriate page or it
1631  * can mean that the guest tried to access I/O memory, which is emulated by user
1632  * space. The distinction is based on the IPA causing the fault and whether this
1633  * memory region has been registered as standard RAM by user space.
1634  */
1635 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1636 {
1637 	unsigned long fault_status;
1638 	phys_addr_t fault_ipa;
1639 	struct kvm_memory_slot *memslot;
1640 	unsigned long hva;
1641 	bool is_iabt, write_fault, writable;
1642 	gfn_t gfn;
1643 	int ret, idx;
1644 
1645 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1646 
1647 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1648 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1649 
1650 	if (fault_status == ESR_ELx_FSC_FAULT) {
1651 		/* Beyond sanitised PARange (which is the IPA limit) */
1652 		if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1653 			kvm_inject_size_fault(vcpu);
1654 			return 1;
1655 		}
1656 
1657 		/* Falls between the IPA range and the PARange? */
1658 		if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1659 			fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1660 
1661 			if (is_iabt)
1662 				kvm_inject_pabt(vcpu, fault_ipa);
1663 			else
1664 				kvm_inject_dabt(vcpu, fault_ipa);
1665 			return 1;
1666 		}
1667 	}
1668 
1669 	/* Synchronous External Abort? */
1670 	if (kvm_vcpu_abt_issea(vcpu)) {
1671 		/*
1672 		 * For RAS the host kernel may handle this abort.
1673 		 * There is no need to pass the error into the guest.
1674 		 */
1675 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1676 			kvm_inject_vabt(vcpu);
1677 
1678 		return 1;
1679 	}
1680 
1681 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1682 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1683 
1684 	/* Check the stage-2 fault is trans. fault or write fault */
1685 	if (fault_status != ESR_ELx_FSC_FAULT &&
1686 	    fault_status != ESR_ELx_FSC_PERM &&
1687 	    fault_status != ESR_ELx_FSC_ACCESS) {
1688 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1689 			kvm_vcpu_trap_get_class(vcpu),
1690 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1691 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1692 		return -EFAULT;
1693 	}
1694 
1695 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1696 
1697 	gfn = fault_ipa >> PAGE_SHIFT;
1698 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1699 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1700 	write_fault = kvm_is_write_fault(vcpu);
1701 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1702 		/*
1703 		 * The guest has put either its instructions or its page-tables
1704 		 * somewhere it shouldn't have. Userspace won't be able to do
1705 		 * anything about this (there's no syndrome for a start), so
1706 		 * re-inject the abort back into the guest.
1707 		 */
1708 		if (is_iabt) {
1709 			ret = -ENOEXEC;
1710 			goto out;
1711 		}
1712 
1713 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1714 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1715 			ret = 1;
1716 			goto out_unlock;
1717 		}
1718 
1719 		/*
1720 		 * Check for a cache maintenance operation. Since we
1721 		 * ended-up here, we know it is outside of any memory
1722 		 * slot. But we can't find out if that is for a device,
1723 		 * or if the guest is just being stupid. The only thing
1724 		 * we know for sure is that this range cannot be cached.
1725 		 *
1726 		 * So let's assume that the guest is just being
1727 		 * cautious, and skip the instruction.
1728 		 */
1729 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1730 			kvm_incr_pc(vcpu);
1731 			ret = 1;
1732 			goto out_unlock;
1733 		}
1734 
1735 		/*
1736 		 * The IPA is reported as [MAX:12], so we need to
1737 		 * complement it with the bottom 12 bits from the
1738 		 * faulting VA. This is always 12 bits, irrespective
1739 		 * of the page size.
1740 		 */
1741 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1742 		ret = io_mem_abort(vcpu, fault_ipa);
1743 		goto out_unlock;
1744 	}
1745 
1746 	/* Userspace should not be able to register out-of-bounds IPAs */
1747 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1748 
1749 	if (fault_status == ESR_ELx_FSC_ACCESS) {
1750 		handle_access_fault(vcpu, fault_ipa);
1751 		ret = 1;
1752 		goto out_unlock;
1753 	}
1754 
1755 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1756 	if (ret == 0)
1757 		ret = 1;
1758 out:
1759 	if (ret == -ENOEXEC) {
1760 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1761 		ret = 1;
1762 	}
1763 out_unlock:
1764 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1765 	return ret;
1766 }
1767 
1768 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1769 {
1770 	if (!kvm->arch.mmu.pgt)
1771 		return false;
1772 
1773 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1774 			     (range->end - range->start) << PAGE_SHIFT,
1775 			     range->may_block);
1776 
1777 	return false;
1778 }
1779 
1780 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1781 {
1782 	kvm_pfn_t pfn = pte_pfn(range->arg.pte);
1783 
1784 	if (!kvm->arch.mmu.pgt)
1785 		return false;
1786 
1787 	WARN_ON(range->end - range->start != 1);
1788 
1789 	/*
1790 	 * If the page isn't tagged, defer to user_mem_abort() for sanitising
1791 	 * the MTE tags. The S2 pte should have been unmapped by
1792 	 * mmu_notifier_invalidate_range_end().
1793 	 */
1794 	if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
1795 		return false;
1796 
1797 	/*
1798 	 * We've moved a page around, probably through CoW, so let's treat
1799 	 * it just like a translation fault and the map handler will clean
1800 	 * the cache to the PoC.
1801 	 *
1802 	 * The MMU notifiers will have unmapped a huge PMD before calling
1803 	 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1804 	 * therefore we never need to clear out a huge PMD through this
1805 	 * calling path and a memcache is not required.
1806 	 */
1807 	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1808 			       PAGE_SIZE, __pfn_to_phys(pfn),
1809 			       KVM_PGTABLE_PROT_R, NULL, 0);
1810 
1811 	return false;
1812 }
1813 
1814 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1815 {
1816 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1817 
1818 	if (!kvm->arch.mmu.pgt)
1819 		return false;
1820 
1821 	return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1822 						   range->start << PAGE_SHIFT,
1823 						   size, true);
1824 }
1825 
1826 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1827 {
1828 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1829 
1830 	if (!kvm->arch.mmu.pgt)
1831 		return false;
1832 
1833 	return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1834 						   range->start << PAGE_SHIFT,
1835 						   size, false);
1836 }
1837 
1838 phys_addr_t kvm_mmu_get_httbr(void)
1839 {
1840 	return __pa(hyp_pgtable->pgd);
1841 }
1842 
1843 phys_addr_t kvm_get_idmap_vector(void)
1844 {
1845 	return hyp_idmap_vector;
1846 }
1847 
1848 static int kvm_map_idmap_text(void)
1849 {
1850 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1851 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1852 					PAGE_HYP_EXEC);
1853 	if (err)
1854 		kvm_err("Failed to idmap %lx-%lx\n",
1855 			hyp_idmap_start, hyp_idmap_end);
1856 
1857 	return err;
1858 }
1859 
1860 static void *kvm_hyp_zalloc_page(void *arg)
1861 {
1862 	return (void *)get_zeroed_page(GFP_KERNEL);
1863 }
1864 
1865 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1866 	.zalloc_page		= kvm_hyp_zalloc_page,
1867 	.get_page		= kvm_host_get_page,
1868 	.put_page		= kvm_host_put_page,
1869 	.phys_to_virt		= kvm_host_va,
1870 	.virt_to_phys		= kvm_host_pa,
1871 };
1872 
1873 int __init kvm_mmu_init(u32 *hyp_va_bits)
1874 {
1875 	int err;
1876 	u32 idmap_bits;
1877 	u32 kernel_bits;
1878 
1879 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1880 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1881 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1882 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1883 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1884 
1885 	/*
1886 	 * We rely on the linker script to ensure at build time that the HYP
1887 	 * init code does not cross a page boundary.
1888 	 */
1889 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1890 
1891 	/*
1892 	 * The ID map may be configured to use an extended virtual address
1893 	 * range. This is only the case if system RAM is out of range for the
1894 	 * currently configured page size and VA_BITS_MIN, in which case we will
1895 	 * also need the extended virtual range for the HYP ID map, or we won't
1896 	 * be able to enable the EL2 MMU.
1897 	 *
1898 	 * However, in some cases the ID map may be configured for fewer than
1899 	 * the number of VA bits used by the regular kernel stage 1. This
1900 	 * happens when VA_BITS=52 and the kernel image is placed in PA space
1901 	 * below 48 bits.
1902 	 *
1903 	 * At EL2, there is only one TTBR register, and we can't switch between
1904 	 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
1905 	 * line: we need to use the extended range with *both* our translation
1906 	 * tables.
1907 	 *
1908 	 * So use the maximum of the idmap VA bits and the regular kernel stage
1909 	 * 1 VA bits to assure that the hypervisor can both ID map its code page
1910 	 * and map any kernel memory.
1911 	 */
1912 	idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1913 	kernel_bits = vabits_actual;
1914 	*hyp_va_bits = max(idmap_bits, kernel_bits);
1915 
1916 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1917 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1918 	kvm_debug("HYP VA range: %lx:%lx\n",
1919 		  kern_hyp_va(PAGE_OFFSET),
1920 		  kern_hyp_va((unsigned long)high_memory - 1));
1921 
1922 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1923 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1924 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1925 		/*
1926 		 * The idmap page is intersecting with the VA space,
1927 		 * it is not safe to continue further.
1928 		 */
1929 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1930 		err = -EINVAL;
1931 		goto out;
1932 	}
1933 
1934 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1935 	if (!hyp_pgtable) {
1936 		kvm_err("Hyp mode page-table not allocated\n");
1937 		err = -ENOMEM;
1938 		goto out;
1939 	}
1940 
1941 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1942 	if (err)
1943 		goto out_free_pgtable;
1944 
1945 	err = kvm_map_idmap_text();
1946 	if (err)
1947 		goto out_destroy_pgtable;
1948 
1949 	io_map_base = hyp_idmap_start;
1950 	return 0;
1951 
1952 out_destroy_pgtable:
1953 	kvm_pgtable_hyp_destroy(hyp_pgtable);
1954 out_free_pgtable:
1955 	kfree(hyp_pgtable);
1956 	hyp_pgtable = NULL;
1957 out:
1958 	return err;
1959 }
1960 
1961 void kvm_arch_commit_memory_region(struct kvm *kvm,
1962 				   struct kvm_memory_slot *old,
1963 				   const struct kvm_memory_slot *new,
1964 				   enum kvm_mr_change change)
1965 {
1966 	bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
1967 
1968 	/*
1969 	 * At this point memslot has been committed and there is an
1970 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1971 	 * memory slot is write protected.
1972 	 */
1973 	if (log_dirty_pages) {
1974 
1975 		if (change == KVM_MR_DELETE)
1976 			return;
1977 
1978 		/*
1979 		 * Huge and normal pages are write-protected and split
1980 		 * on either of these two cases:
1981 		 *
1982 		 * 1. with initial-all-set: gradually with CLEAR ioctls,
1983 		 */
1984 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1985 			return;
1986 		/*
1987 		 * or
1988 		 * 2. without initial-all-set: all in one shot when
1989 		 *    enabling dirty logging.
1990 		 */
1991 		kvm_mmu_wp_memory_region(kvm, new->id);
1992 		kvm_mmu_split_memory_region(kvm, new->id);
1993 	} else {
1994 		/*
1995 		 * Free any leftovers from the eager page splitting cache. Do
1996 		 * this when deleting, moving, disabling dirty logging, or
1997 		 * creating the memslot (a nop). Doing it for deletes makes
1998 		 * sure we don't leak memory, and there's no need to keep the
1999 		 * cache around for any of the other cases.
2000 		 */
2001 		kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2002 	}
2003 }
2004 
2005 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2006 				   const struct kvm_memory_slot *old,
2007 				   struct kvm_memory_slot *new,
2008 				   enum kvm_mr_change change)
2009 {
2010 	hva_t hva, reg_end;
2011 	int ret = 0;
2012 
2013 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2014 			change != KVM_MR_FLAGS_ONLY)
2015 		return 0;
2016 
2017 	/*
2018 	 * Prevent userspace from creating a memory region outside of the IPA
2019 	 * space addressable by the KVM guest IPA space.
2020 	 */
2021 	if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
2022 		return -EFAULT;
2023 
2024 	hva = new->userspace_addr;
2025 	reg_end = hva + (new->npages << PAGE_SHIFT);
2026 
2027 	mmap_read_lock(current->mm);
2028 	/*
2029 	 * A memory region could potentially cover multiple VMAs, and any holes
2030 	 * between them, so iterate over all of them.
2031 	 *
2032 	 *     +--------------------------------------------+
2033 	 * +---------------+----------------+   +----------------+
2034 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2035 	 * +---------------+----------------+   +----------------+
2036 	 *     |               memory region                |
2037 	 *     +--------------------------------------------+
2038 	 */
2039 	do {
2040 		struct vm_area_struct *vma;
2041 
2042 		vma = find_vma_intersection(current->mm, hva, reg_end);
2043 		if (!vma)
2044 			break;
2045 
2046 		if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2047 			ret = -EINVAL;
2048 			break;
2049 		}
2050 
2051 		if (vma->vm_flags & VM_PFNMAP) {
2052 			/* IO region dirty page logging not allowed */
2053 			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2054 				ret = -EINVAL;
2055 				break;
2056 			}
2057 		}
2058 		hva = min(reg_end, vma->vm_end);
2059 	} while (hva < reg_end);
2060 
2061 	mmap_read_unlock(current->mm);
2062 	return ret;
2063 }
2064 
2065 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2066 {
2067 }
2068 
2069 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2070 {
2071 }
2072 
2073 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2074 {
2075 	kvm_uninit_stage2_mmu(kvm);
2076 }
2077 
2078 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2079 				   struct kvm_memory_slot *slot)
2080 {
2081 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2082 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2083 
2084 	write_lock(&kvm->mmu_lock);
2085 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2086 	write_unlock(&kvm->mmu_lock);
2087 }
2088 
2089 /*
2090  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2091  *
2092  * Main problems:
2093  * - S/W ops are local to a CPU (not broadcast)
2094  * - We have line migration behind our back (speculation)
2095  * - System caches don't support S/W at all (damn!)
2096  *
2097  * In the face of the above, the best we can do is to try and convert
2098  * S/W ops to VA ops. Because the guest is not allowed to infer the
2099  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2100  * which is a rather good thing for us.
2101  *
2102  * Also, it is only used when turning caches on/off ("The expected
2103  * usage of the cache maintenance instructions that operate by set/way
2104  * is associated with the cache maintenance instructions associated
2105  * with the powerdown and powerup of caches, if this is required by
2106  * the implementation.").
2107  *
2108  * We use the following policy:
2109  *
2110  * - If we trap a S/W operation, we enable VM trapping to detect
2111  *   caches being turned on/off, and do a full clean.
2112  *
2113  * - We flush the caches on both caches being turned on and off.
2114  *
2115  * - Once the caches are enabled, we stop trapping VM ops.
2116  */
2117 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2118 {
2119 	unsigned long hcr = *vcpu_hcr(vcpu);
2120 
2121 	/*
2122 	 * If this is the first time we do a S/W operation
2123 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2124 	 * VM trapping.
2125 	 *
2126 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2127 	 * Caches to be turned off. At that point, we'll be able to
2128 	 * clean the caches again.
2129 	 */
2130 	if (!(hcr & HCR_TVM)) {
2131 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2132 					vcpu_has_cache_enabled(vcpu));
2133 		stage2_flush_vm(vcpu->kvm);
2134 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2135 	}
2136 }
2137 
2138 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2139 {
2140 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2141 
2142 	/*
2143 	 * If switching the MMU+caches on, need to invalidate the caches.
2144 	 * If switching it off, need to clean the caches.
2145 	 * Clean + invalidate does the trick always.
2146 	 */
2147 	if (now_enabled != was_enabled)
2148 		stage2_flush_vm(vcpu->kvm);
2149 
2150 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2151 	if (now_enabled)
2152 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2153 
2154 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2155 }
2156