1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long hyp_idmap_start; 29 static unsigned long hyp_idmap_end; 30 static phys_addr_t hyp_idmap_vector; 31 32 static unsigned long io_map_base; 33 34 35 /* 36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 39 * long will also starve other vCPUs. We have to also make sure that the page 40 * tables are not freed while we released the lock. 41 */ 42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr, 43 phys_addr_t end, 44 int (*fn)(struct kvm_pgtable *, u64, u64), 45 bool resched) 46 { 47 int ret; 48 u64 next; 49 50 do { 51 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 52 if (!pgt) 53 return -EINVAL; 54 55 next = stage2_pgd_addr_end(kvm, addr, end); 56 ret = fn(pgt, addr, next - addr); 57 if (ret) 58 break; 59 60 if (resched && next != end) 61 cond_resched_rwlock_write(&kvm->mmu_lock); 62 } while (addr = next, addr != end); 63 64 return ret; 65 } 66 67 #define stage2_apply_range_resched(kvm, addr, end, fn) \ 68 stage2_apply_range(kvm, addr, end, fn, true) 69 70 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 71 { 72 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 73 } 74 75 /** 76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 77 * @kvm: pointer to kvm structure. 78 * 79 * Interface to HYP function to flush all VM TLB entries 80 */ 81 void kvm_flush_remote_tlbs(struct kvm *kvm) 82 { 83 ++kvm->stat.generic.remote_tlb_flush_requests; 84 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 85 } 86 87 static bool kvm_is_device_pfn(unsigned long pfn) 88 { 89 return !pfn_is_map_memory(pfn); 90 } 91 92 static void *stage2_memcache_zalloc_page(void *arg) 93 { 94 struct kvm_mmu_memory_cache *mc = arg; 95 void *virt; 96 97 /* Allocated with __GFP_ZERO, so no need to zero */ 98 virt = kvm_mmu_memory_cache_alloc(mc); 99 if (virt) 100 kvm_account_pgtable_pages(virt, 1); 101 return virt; 102 } 103 104 static void *kvm_host_zalloc_pages_exact(size_t size) 105 { 106 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 107 } 108 109 static void *kvm_s2_zalloc_pages_exact(size_t size) 110 { 111 void *virt = kvm_host_zalloc_pages_exact(size); 112 113 if (virt) 114 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT)); 115 return virt; 116 } 117 118 static void kvm_s2_free_pages_exact(void *virt, size_t size) 119 { 120 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT)); 121 free_pages_exact(virt, size); 122 } 123 124 static void kvm_host_get_page(void *addr) 125 { 126 get_page(virt_to_page(addr)); 127 } 128 129 static void kvm_host_put_page(void *addr) 130 { 131 put_page(virt_to_page(addr)); 132 } 133 134 static void kvm_s2_put_page(void *addr) 135 { 136 struct page *p = virt_to_page(addr); 137 /* Dropping last refcount, the page will be freed */ 138 if (page_count(p) == 1) 139 kvm_account_pgtable_pages(addr, -1); 140 put_page(p); 141 } 142 143 static int kvm_host_page_count(void *addr) 144 { 145 return page_count(virt_to_page(addr)); 146 } 147 148 static phys_addr_t kvm_host_pa(void *addr) 149 { 150 return __pa(addr); 151 } 152 153 static void *kvm_host_va(phys_addr_t phys) 154 { 155 return __va(phys); 156 } 157 158 static void clean_dcache_guest_page(void *va, size_t size) 159 { 160 __clean_dcache_guest_page(va, size); 161 } 162 163 static void invalidate_icache_guest_page(void *va, size_t size) 164 { 165 __invalidate_icache_guest_page(va, size); 166 } 167 168 /* 169 * Unmapping vs dcache management: 170 * 171 * If a guest maps certain memory pages as uncached, all writes will 172 * bypass the data cache and go directly to RAM. However, the CPUs 173 * can still speculate reads (not writes) and fill cache lines with 174 * data. 175 * 176 * Those cache lines will be *clean* cache lines though, so a 177 * clean+invalidate operation is equivalent to an invalidate 178 * operation, because no cache lines are marked dirty. 179 * 180 * Those clean cache lines could be filled prior to an uncached write 181 * by the guest, and the cache coherent IO subsystem would therefore 182 * end up writing old data to disk. 183 * 184 * This is why right after unmapping a page/section and invalidating 185 * the corresponding TLBs, we flush to make sure the IO subsystem will 186 * never hit in the cache. 187 * 188 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 189 * we then fully enforce cacheability of RAM, no matter what the guest 190 * does. 191 */ 192 /** 193 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 194 * @mmu: The KVM stage-2 MMU pointer 195 * @start: The intermediate physical base address of the range to unmap 196 * @size: The size of the area to unmap 197 * @may_block: Whether or not we are permitted to block 198 * 199 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 200 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 201 * destroying the VM), otherwise another faulting VCPU may come in and mess 202 * with things behind our backs. 203 */ 204 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 205 bool may_block) 206 { 207 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 208 phys_addr_t end = start + size; 209 210 lockdep_assert_held_write(&kvm->mmu_lock); 211 WARN_ON(size & ~PAGE_MASK); 212 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap, 213 may_block)); 214 } 215 216 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 217 { 218 __unmap_stage2_range(mmu, start, size, true); 219 } 220 221 static void stage2_flush_memslot(struct kvm *kvm, 222 struct kvm_memory_slot *memslot) 223 { 224 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 225 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 226 227 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush); 228 } 229 230 /** 231 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 232 * @kvm: The struct kvm pointer 233 * 234 * Go through the stage 2 page tables and invalidate any cache lines 235 * backing memory already mapped to the VM. 236 */ 237 static void stage2_flush_vm(struct kvm *kvm) 238 { 239 struct kvm_memslots *slots; 240 struct kvm_memory_slot *memslot; 241 int idx, bkt; 242 243 idx = srcu_read_lock(&kvm->srcu); 244 write_lock(&kvm->mmu_lock); 245 246 slots = kvm_memslots(kvm); 247 kvm_for_each_memslot(memslot, bkt, slots) 248 stage2_flush_memslot(kvm, memslot); 249 250 write_unlock(&kvm->mmu_lock); 251 srcu_read_unlock(&kvm->srcu, idx); 252 } 253 254 /** 255 * free_hyp_pgds - free Hyp-mode page tables 256 */ 257 void free_hyp_pgds(void) 258 { 259 mutex_lock(&kvm_hyp_pgd_mutex); 260 if (hyp_pgtable) { 261 kvm_pgtable_hyp_destroy(hyp_pgtable); 262 kfree(hyp_pgtable); 263 hyp_pgtable = NULL; 264 } 265 mutex_unlock(&kvm_hyp_pgd_mutex); 266 } 267 268 static bool kvm_host_owns_hyp_mappings(void) 269 { 270 if (is_kernel_in_hyp_mode()) 271 return false; 272 273 if (static_branch_likely(&kvm_protected_mode_initialized)) 274 return false; 275 276 /* 277 * This can happen at boot time when __create_hyp_mappings() is called 278 * after the hyp protection has been enabled, but the static key has 279 * not been flipped yet. 280 */ 281 if (!hyp_pgtable && is_protected_kvm_enabled()) 282 return false; 283 284 WARN_ON(!hyp_pgtable); 285 286 return true; 287 } 288 289 int __create_hyp_mappings(unsigned long start, unsigned long size, 290 unsigned long phys, enum kvm_pgtable_prot prot) 291 { 292 int err; 293 294 if (WARN_ON(!kvm_host_owns_hyp_mappings())) 295 return -EINVAL; 296 297 mutex_lock(&kvm_hyp_pgd_mutex); 298 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 299 mutex_unlock(&kvm_hyp_pgd_mutex); 300 301 return err; 302 } 303 304 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 305 { 306 if (!is_vmalloc_addr(kaddr)) { 307 BUG_ON(!virt_addr_valid(kaddr)); 308 return __pa(kaddr); 309 } else { 310 return page_to_phys(vmalloc_to_page(kaddr)) + 311 offset_in_page(kaddr); 312 } 313 } 314 315 struct hyp_shared_pfn { 316 u64 pfn; 317 int count; 318 struct rb_node node; 319 }; 320 321 static DEFINE_MUTEX(hyp_shared_pfns_lock); 322 static struct rb_root hyp_shared_pfns = RB_ROOT; 323 324 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node, 325 struct rb_node **parent) 326 { 327 struct hyp_shared_pfn *this; 328 329 *node = &hyp_shared_pfns.rb_node; 330 *parent = NULL; 331 while (**node) { 332 this = container_of(**node, struct hyp_shared_pfn, node); 333 *parent = **node; 334 if (this->pfn < pfn) 335 *node = &((**node)->rb_left); 336 else if (this->pfn > pfn) 337 *node = &((**node)->rb_right); 338 else 339 return this; 340 } 341 342 return NULL; 343 } 344 345 static int share_pfn_hyp(u64 pfn) 346 { 347 struct rb_node **node, *parent; 348 struct hyp_shared_pfn *this; 349 int ret = 0; 350 351 mutex_lock(&hyp_shared_pfns_lock); 352 this = find_shared_pfn(pfn, &node, &parent); 353 if (this) { 354 this->count++; 355 goto unlock; 356 } 357 358 this = kzalloc(sizeof(*this), GFP_KERNEL); 359 if (!this) { 360 ret = -ENOMEM; 361 goto unlock; 362 } 363 364 this->pfn = pfn; 365 this->count = 1; 366 rb_link_node(&this->node, parent, node); 367 rb_insert_color(&this->node, &hyp_shared_pfns); 368 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1); 369 unlock: 370 mutex_unlock(&hyp_shared_pfns_lock); 371 372 return ret; 373 } 374 375 static int unshare_pfn_hyp(u64 pfn) 376 { 377 struct rb_node **node, *parent; 378 struct hyp_shared_pfn *this; 379 int ret = 0; 380 381 mutex_lock(&hyp_shared_pfns_lock); 382 this = find_shared_pfn(pfn, &node, &parent); 383 if (WARN_ON(!this)) { 384 ret = -ENOENT; 385 goto unlock; 386 } 387 388 this->count--; 389 if (this->count) 390 goto unlock; 391 392 rb_erase(&this->node, &hyp_shared_pfns); 393 kfree(this); 394 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1); 395 unlock: 396 mutex_unlock(&hyp_shared_pfns_lock); 397 398 return ret; 399 } 400 401 int kvm_share_hyp(void *from, void *to) 402 { 403 phys_addr_t start, end, cur; 404 u64 pfn; 405 int ret; 406 407 if (is_kernel_in_hyp_mode()) 408 return 0; 409 410 /* 411 * The share hcall maps things in the 'fixed-offset' region of the hyp 412 * VA space, so we can only share physically contiguous data-structures 413 * for now. 414 */ 415 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to)) 416 return -EINVAL; 417 418 if (kvm_host_owns_hyp_mappings()) 419 return create_hyp_mappings(from, to, PAGE_HYP); 420 421 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 422 end = PAGE_ALIGN(__pa(to)); 423 for (cur = start; cur < end; cur += PAGE_SIZE) { 424 pfn = __phys_to_pfn(cur); 425 ret = share_pfn_hyp(pfn); 426 if (ret) 427 return ret; 428 } 429 430 return 0; 431 } 432 433 void kvm_unshare_hyp(void *from, void *to) 434 { 435 phys_addr_t start, end, cur; 436 u64 pfn; 437 438 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from) 439 return; 440 441 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 442 end = PAGE_ALIGN(__pa(to)); 443 for (cur = start; cur < end; cur += PAGE_SIZE) { 444 pfn = __phys_to_pfn(cur); 445 WARN_ON(unshare_pfn_hyp(pfn)); 446 } 447 } 448 449 /** 450 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 451 * @from: The virtual kernel start address of the range 452 * @to: The virtual kernel end address of the range (exclusive) 453 * @prot: The protection to be applied to this range 454 * 455 * The same virtual address as the kernel virtual address is also used 456 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 457 * physical pages. 458 */ 459 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 460 { 461 phys_addr_t phys_addr; 462 unsigned long virt_addr; 463 unsigned long start = kern_hyp_va((unsigned long)from); 464 unsigned long end = kern_hyp_va((unsigned long)to); 465 466 if (is_kernel_in_hyp_mode()) 467 return 0; 468 469 if (!kvm_host_owns_hyp_mappings()) 470 return -EPERM; 471 472 start = start & PAGE_MASK; 473 end = PAGE_ALIGN(end); 474 475 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 476 int err; 477 478 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 479 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 480 prot); 481 if (err) 482 return err; 483 } 484 485 return 0; 486 } 487 488 489 /** 490 * hyp_alloc_private_va_range - Allocates a private VA range. 491 * @size: The size of the VA range to reserve. 492 * @haddr: The hypervisor virtual start address of the allocation. 493 * 494 * The private virtual address (VA) range is allocated below io_map_base 495 * and aligned based on the order of @size. 496 * 497 * Return: 0 on success or negative error code on failure. 498 */ 499 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr) 500 { 501 unsigned long base; 502 int ret = 0; 503 504 mutex_lock(&kvm_hyp_pgd_mutex); 505 506 /* 507 * This assumes that we have enough space below the idmap 508 * page to allocate our VAs. If not, the check below will 509 * kick. A potential alternative would be to detect that 510 * overflow and switch to an allocation above the idmap. 511 * 512 * The allocated size is always a multiple of PAGE_SIZE. 513 */ 514 base = io_map_base - PAGE_ALIGN(size); 515 516 /* Align the allocation based on the order of its size */ 517 base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size)); 518 519 /* 520 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 521 * allocating the new area, as it would indicate we've 522 * overflowed the idmap/IO address range. 523 */ 524 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 525 ret = -ENOMEM; 526 else 527 *haddr = io_map_base = base; 528 529 mutex_unlock(&kvm_hyp_pgd_mutex); 530 531 return ret; 532 } 533 534 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 535 unsigned long *haddr, 536 enum kvm_pgtable_prot prot) 537 { 538 unsigned long addr; 539 int ret = 0; 540 541 if (!kvm_host_owns_hyp_mappings()) { 542 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 543 phys_addr, size, prot); 544 if (IS_ERR_VALUE(addr)) 545 return addr; 546 *haddr = addr; 547 548 return 0; 549 } 550 551 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 552 ret = hyp_alloc_private_va_range(size, &addr); 553 if (ret) 554 return ret; 555 556 ret = __create_hyp_mappings(addr, size, phys_addr, prot); 557 if (ret) 558 return ret; 559 560 *haddr = addr + offset_in_page(phys_addr); 561 return ret; 562 } 563 564 /** 565 * create_hyp_io_mappings - Map IO into both kernel and HYP 566 * @phys_addr: The physical start address which gets mapped 567 * @size: Size of the region being mapped 568 * @kaddr: Kernel VA for this mapping 569 * @haddr: HYP VA for this mapping 570 */ 571 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 572 void __iomem **kaddr, 573 void __iomem **haddr) 574 { 575 unsigned long addr; 576 int ret; 577 578 if (is_protected_kvm_enabled()) 579 return -EPERM; 580 581 *kaddr = ioremap(phys_addr, size); 582 if (!*kaddr) 583 return -ENOMEM; 584 585 if (is_kernel_in_hyp_mode()) { 586 *haddr = *kaddr; 587 return 0; 588 } 589 590 ret = __create_hyp_private_mapping(phys_addr, size, 591 &addr, PAGE_HYP_DEVICE); 592 if (ret) { 593 iounmap(*kaddr); 594 *kaddr = NULL; 595 *haddr = NULL; 596 return ret; 597 } 598 599 *haddr = (void __iomem *)addr; 600 return 0; 601 } 602 603 /** 604 * create_hyp_exec_mappings - Map an executable range into HYP 605 * @phys_addr: The physical start address which gets mapped 606 * @size: Size of the region being mapped 607 * @haddr: HYP VA for this mapping 608 */ 609 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 610 void **haddr) 611 { 612 unsigned long addr; 613 int ret; 614 615 BUG_ON(is_kernel_in_hyp_mode()); 616 617 ret = __create_hyp_private_mapping(phys_addr, size, 618 &addr, PAGE_HYP_EXEC); 619 if (ret) { 620 *haddr = NULL; 621 return ret; 622 } 623 624 *haddr = (void *)addr; 625 return 0; 626 } 627 628 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { 629 /* We shouldn't need any other callback to walk the PT */ 630 .phys_to_virt = kvm_host_va, 631 }; 632 633 static int get_user_mapping_size(struct kvm *kvm, u64 addr) 634 { 635 struct kvm_pgtable pgt = { 636 .pgd = (kvm_pte_t *)kvm->mm->pgd, 637 .ia_bits = VA_BITS, 638 .start_level = (KVM_PGTABLE_MAX_LEVELS - 639 CONFIG_PGTABLE_LEVELS), 640 .mm_ops = &kvm_user_mm_ops, 641 }; 642 kvm_pte_t pte = 0; /* Keep GCC quiet... */ 643 u32 level = ~0; 644 int ret; 645 646 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); 647 VM_BUG_ON(ret); 648 VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS); 649 VM_BUG_ON(!(pte & PTE_VALID)); 650 651 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); 652 } 653 654 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 655 .zalloc_page = stage2_memcache_zalloc_page, 656 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact, 657 .free_pages_exact = kvm_s2_free_pages_exact, 658 .get_page = kvm_host_get_page, 659 .put_page = kvm_s2_put_page, 660 .page_count = kvm_host_page_count, 661 .phys_to_virt = kvm_host_va, 662 .virt_to_phys = kvm_host_pa, 663 .dcache_clean_inval_poc = clean_dcache_guest_page, 664 .icache_inval_pou = invalidate_icache_guest_page, 665 }; 666 667 /** 668 * kvm_init_stage2_mmu - Initialise a S2 MMU structure 669 * @kvm: The pointer to the KVM structure 670 * @mmu: The pointer to the s2 MMU structure 671 * 672 * Allocates only the stage-2 HW PGD level table(s). 673 * Note we don't need locking here as this is only called when the VM is 674 * created, which can only be done once. 675 */ 676 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) 677 { 678 int cpu, err; 679 struct kvm_pgtable *pgt; 680 681 if (mmu->pgt != NULL) { 682 kvm_err("kvm_arch already initialized?\n"); 683 return -EINVAL; 684 } 685 686 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); 687 if (!pgt) 688 return -ENOMEM; 689 690 mmu->arch = &kvm->arch; 691 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops); 692 if (err) 693 goto out_free_pgtable; 694 695 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 696 if (!mmu->last_vcpu_ran) { 697 err = -ENOMEM; 698 goto out_destroy_pgtable; 699 } 700 701 for_each_possible_cpu(cpu) 702 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 703 704 mmu->pgt = pgt; 705 mmu->pgd_phys = __pa(pgt->pgd); 706 return 0; 707 708 out_destroy_pgtable: 709 kvm_pgtable_stage2_destroy(pgt); 710 out_free_pgtable: 711 kfree(pgt); 712 return err; 713 } 714 715 static void stage2_unmap_memslot(struct kvm *kvm, 716 struct kvm_memory_slot *memslot) 717 { 718 hva_t hva = memslot->userspace_addr; 719 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 720 phys_addr_t size = PAGE_SIZE * memslot->npages; 721 hva_t reg_end = hva + size; 722 723 /* 724 * A memory region could potentially cover multiple VMAs, and any holes 725 * between them, so iterate over all of them to find out if we should 726 * unmap any of them. 727 * 728 * +--------------------------------------------+ 729 * +---------------+----------------+ +----------------+ 730 * | : VMA 1 | VMA 2 | | VMA 3 : | 731 * +---------------+----------------+ +----------------+ 732 * | memory region | 733 * +--------------------------------------------+ 734 */ 735 do { 736 struct vm_area_struct *vma; 737 hva_t vm_start, vm_end; 738 739 vma = find_vma_intersection(current->mm, hva, reg_end); 740 if (!vma) 741 break; 742 743 /* 744 * Take the intersection of this VMA with the memory region 745 */ 746 vm_start = max(hva, vma->vm_start); 747 vm_end = min(reg_end, vma->vm_end); 748 749 if (!(vma->vm_flags & VM_PFNMAP)) { 750 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 751 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 752 } 753 hva = vm_end; 754 } while (hva < reg_end); 755 } 756 757 /** 758 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 759 * @kvm: The struct kvm pointer 760 * 761 * Go through the memregions and unmap any regular RAM 762 * backing memory already mapped to the VM. 763 */ 764 void stage2_unmap_vm(struct kvm *kvm) 765 { 766 struct kvm_memslots *slots; 767 struct kvm_memory_slot *memslot; 768 int idx, bkt; 769 770 idx = srcu_read_lock(&kvm->srcu); 771 mmap_read_lock(current->mm); 772 write_lock(&kvm->mmu_lock); 773 774 slots = kvm_memslots(kvm); 775 kvm_for_each_memslot(memslot, bkt, slots) 776 stage2_unmap_memslot(kvm, memslot); 777 778 write_unlock(&kvm->mmu_lock); 779 mmap_read_unlock(current->mm); 780 srcu_read_unlock(&kvm->srcu, idx); 781 } 782 783 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 784 { 785 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 786 struct kvm_pgtable *pgt = NULL; 787 788 write_lock(&kvm->mmu_lock); 789 pgt = mmu->pgt; 790 if (pgt) { 791 mmu->pgd_phys = 0; 792 mmu->pgt = NULL; 793 free_percpu(mmu->last_vcpu_ran); 794 } 795 write_unlock(&kvm->mmu_lock); 796 797 if (pgt) { 798 kvm_pgtable_stage2_destroy(pgt); 799 kfree(pgt); 800 } 801 } 802 803 /** 804 * kvm_phys_addr_ioremap - map a device range to guest IPA 805 * 806 * @kvm: The KVM pointer 807 * @guest_ipa: The IPA at which to insert the mapping 808 * @pa: The physical address of the device 809 * @size: The size of the mapping 810 * @writable: Whether or not to create a writable mapping 811 */ 812 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 813 phys_addr_t pa, unsigned long size, bool writable) 814 { 815 phys_addr_t addr; 816 int ret = 0; 817 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO }; 818 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 819 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 820 KVM_PGTABLE_PROT_R | 821 (writable ? KVM_PGTABLE_PROT_W : 0); 822 823 if (is_protected_kvm_enabled()) 824 return -EPERM; 825 826 size += offset_in_page(guest_ipa); 827 guest_ipa &= PAGE_MASK; 828 829 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 830 ret = kvm_mmu_topup_memory_cache(&cache, 831 kvm_mmu_cache_min_pages(kvm)); 832 if (ret) 833 break; 834 835 write_lock(&kvm->mmu_lock); 836 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 837 &cache); 838 write_unlock(&kvm->mmu_lock); 839 if (ret) 840 break; 841 842 pa += PAGE_SIZE; 843 } 844 845 kvm_mmu_free_memory_cache(&cache); 846 return ret; 847 } 848 849 /** 850 * stage2_wp_range() - write protect stage2 memory region range 851 * @mmu: The KVM stage-2 MMU pointer 852 * @addr: Start address of range 853 * @end: End address of range 854 */ 855 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 856 { 857 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 858 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect); 859 } 860 861 /** 862 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 863 * @kvm: The KVM pointer 864 * @slot: The memory slot to write protect 865 * 866 * Called to start logging dirty pages after memory region 867 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 868 * all present PUD, PMD and PTEs are write protected in the memory region. 869 * Afterwards read of dirty page log can be called. 870 * 871 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 872 * serializing operations for VM memory regions. 873 */ 874 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 875 { 876 struct kvm_memslots *slots = kvm_memslots(kvm); 877 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 878 phys_addr_t start, end; 879 880 if (WARN_ON_ONCE(!memslot)) 881 return; 882 883 start = memslot->base_gfn << PAGE_SHIFT; 884 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 885 886 write_lock(&kvm->mmu_lock); 887 stage2_wp_range(&kvm->arch.mmu, start, end); 888 write_unlock(&kvm->mmu_lock); 889 kvm_flush_remote_tlbs(kvm); 890 } 891 892 /** 893 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 894 * @kvm: The KVM pointer 895 * @slot: The memory slot associated with mask 896 * @gfn_offset: The gfn offset in memory slot 897 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 898 * slot to be write protected 899 * 900 * Walks bits set in mask write protects the associated pte's. Caller must 901 * acquire kvm_mmu_lock. 902 */ 903 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 904 struct kvm_memory_slot *slot, 905 gfn_t gfn_offset, unsigned long mask) 906 { 907 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 908 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 909 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 910 911 stage2_wp_range(&kvm->arch.mmu, start, end); 912 } 913 914 /* 915 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 916 * dirty pages. 917 * 918 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 919 * enable dirty logging for them. 920 */ 921 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 922 struct kvm_memory_slot *slot, 923 gfn_t gfn_offset, unsigned long mask) 924 { 925 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 926 } 927 928 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 929 { 930 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 931 } 932 933 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 934 unsigned long hva, 935 unsigned long map_size) 936 { 937 gpa_t gpa_start; 938 hva_t uaddr_start, uaddr_end; 939 size_t size; 940 941 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 942 if (map_size == PAGE_SIZE) 943 return true; 944 945 size = memslot->npages * PAGE_SIZE; 946 947 gpa_start = memslot->base_gfn << PAGE_SHIFT; 948 949 uaddr_start = memslot->userspace_addr; 950 uaddr_end = uaddr_start + size; 951 952 /* 953 * Pages belonging to memslots that don't have the same alignment 954 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 955 * PMD/PUD entries, because we'll end up mapping the wrong pages. 956 * 957 * Consider a layout like the following: 958 * 959 * memslot->userspace_addr: 960 * +-----+--------------------+--------------------+---+ 961 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 962 * +-----+--------------------+--------------------+---+ 963 * 964 * memslot->base_gfn << PAGE_SHIFT: 965 * +---+--------------------+--------------------+-----+ 966 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 967 * +---+--------------------+--------------------+-----+ 968 * 969 * If we create those stage-2 blocks, we'll end up with this incorrect 970 * mapping: 971 * d -> f 972 * e -> g 973 * f -> h 974 */ 975 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 976 return false; 977 978 /* 979 * Next, let's make sure we're not trying to map anything not covered 980 * by the memslot. This means we have to prohibit block size mappings 981 * for the beginning and end of a non-block aligned and non-block sized 982 * memory slot (illustrated by the head and tail parts of the 983 * userspace view above containing pages 'abcde' and 'xyz', 984 * respectively). 985 * 986 * Note that it doesn't matter if we do the check using the 987 * userspace_addr or the base_gfn, as both are equally aligned (per 988 * the check above) and equally sized. 989 */ 990 return (hva & ~(map_size - 1)) >= uaddr_start && 991 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 992 } 993 994 /* 995 * Check if the given hva is backed by a transparent huge page (THP) and 996 * whether it can be mapped using block mapping in stage2. If so, adjust 997 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 998 * supported. This will need to be updated to support other THP sizes. 999 * 1000 * Returns the size of the mapping. 1001 */ 1002 static unsigned long 1003 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, 1004 unsigned long hva, kvm_pfn_t *pfnp, 1005 phys_addr_t *ipap) 1006 { 1007 kvm_pfn_t pfn = *pfnp; 1008 1009 /* 1010 * Make sure the adjustment is done only for THP pages. Also make 1011 * sure that the HVA and IPA are sufficiently aligned and that the 1012 * block map is contained within the memslot. 1013 */ 1014 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) && 1015 get_user_mapping_size(kvm, hva) >= PMD_SIZE) { 1016 /* 1017 * The address we faulted on is backed by a transparent huge 1018 * page. However, because we map the compound huge page and 1019 * not the individual tail page, we need to transfer the 1020 * refcount to the head page. We have to be careful that the 1021 * THP doesn't start to split while we are adjusting the 1022 * refcounts. 1023 * 1024 * We are sure this doesn't happen, because mmu_invalidate_retry 1025 * was successful and we are holding the mmu_lock, so if this 1026 * THP is trying to split, it will be blocked in the mmu 1027 * notifier before touching any of the pages, specifically 1028 * before being able to call __split_huge_page_refcount(). 1029 * 1030 * We can therefore safely transfer the refcount from PG_tail 1031 * to PG_head and switch the pfn from a tail page to the head 1032 * page accordingly. 1033 */ 1034 *ipap &= PMD_MASK; 1035 kvm_release_pfn_clean(pfn); 1036 pfn &= ~(PTRS_PER_PMD - 1); 1037 get_page(pfn_to_page(pfn)); 1038 *pfnp = pfn; 1039 1040 return PMD_SIZE; 1041 } 1042 1043 /* Use page mapping if we cannot use block mapping. */ 1044 return PAGE_SIZE; 1045 } 1046 1047 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) 1048 { 1049 unsigned long pa; 1050 1051 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) 1052 return huge_page_shift(hstate_vma(vma)); 1053 1054 if (!(vma->vm_flags & VM_PFNMAP)) 1055 return PAGE_SHIFT; 1056 1057 VM_BUG_ON(is_vm_hugetlb_page(vma)); 1058 1059 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); 1060 1061 #ifndef __PAGETABLE_PMD_FOLDED 1062 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && 1063 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && 1064 ALIGN(hva, PUD_SIZE) <= vma->vm_end) 1065 return PUD_SHIFT; 1066 #endif 1067 1068 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && 1069 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && 1070 ALIGN(hva, PMD_SIZE) <= vma->vm_end) 1071 return PMD_SHIFT; 1072 1073 return PAGE_SHIFT; 1074 } 1075 1076 /* 1077 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be 1078 * able to see the page's tags and therefore they must be initialised first. If 1079 * PG_mte_tagged is set, tags have already been initialised. 1080 * 1081 * The race in the test/set of the PG_mte_tagged flag is handled by: 1082 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs 1083 * racing to santise the same page 1084 * - mmap_lock protects between a VM faulting a page in and the VMM performing 1085 * an mprotect() to add VM_MTE 1086 */ 1087 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, 1088 unsigned long size) 1089 { 1090 unsigned long i, nr_pages = size >> PAGE_SHIFT; 1091 struct page *page; 1092 1093 if (!kvm_has_mte(kvm)) 1094 return 0; 1095 1096 /* 1097 * pfn_to_online_page() is used to reject ZONE_DEVICE pages 1098 * that may not support tags. 1099 */ 1100 page = pfn_to_online_page(pfn); 1101 1102 if (!page) 1103 return -EFAULT; 1104 1105 for (i = 0; i < nr_pages; i++, page++) { 1106 if (!test_bit(PG_mte_tagged, &page->flags)) { 1107 mte_clear_page_tags(page_address(page)); 1108 set_bit(PG_mte_tagged, &page->flags); 1109 } 1110 } 1111 1112 return 0; 1113 } 1114 1115 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1116 struct kvm_memory_slot *memslot, unsigned long hva, 1117 unsigned long fault_status) 1118 { 1119 int ret = 0; 1120 bool write_fault, writable, force_pte = false; 1121 bool exec_fault; 1122 bool device = false; 1123 bool shared; 1124 unsigned long mmu_seq; 1125 struct kvm *kvm = vcpu->kvm; 1126 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1127 struct vm_area_struct *vma; 1128 short vma_shift; 1129 gfn_t gfn; 1130 kvm_pfn_t pfn; 1131 bool logging_active = memslot_is_logging(memslot); 1132 bool use_read_lock = false; 1133 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); 1134 unsigned long vma_pagesize, fault_granule; 1135 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 1136 struct kvm_pgtable *pgt; 1137 1138 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); 1139 write_fault = kvm_is_write_fault(vcpu); 1140 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 1141 VM_BUG_ON(write_fault && exec_fault); 1142 1143 if (fault_status == FSC_PERM && !write_fault && !exec_fault) { 1144 kvm_err("Unexpected L2 read permission error\n"); 1145 return -EFAULT; 1146 } 1147 1148 /* 1149 * Let's check if we will get back a huge page backed by hugetlbfs, or 1150 * get block mapping for device MMIO region. 1151 */ 1152 mmap_read_lock(current->mm); 1153 vma = vma_lookup(current->mm, hva); 1154 if (unlikely(!vma)) { 1155 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1156 mmap_read_unlock(current->mm); 1157 return -EFAULT; 1158 } 1159 1160 /* 1161 * logging_active is guaranteed to never be true for VM_PFNMAP 1162 * memslots. 1163 */ 1164 if (logging_active) { 1165 force_pte = true; 1166 vma_shift = PAGE_SHIFT; 1167 use_read_lock = (fault_status == FSC_PERM && write_fault && 1168 fault_granule == PAGE_SIZE); 1169 } else { 1170 vma_shift = get_vma_page_shift(vma, hva); 1171 } 1172 1173 shared = (vma->vm_flags & VM_SHARED); 1174 1175 switch (vma_shift) { 1176 #ifndef __PAGETABLE_PMD_FOLDED 1177 case PUD_SHIFT: 1178 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 1179 break; 1180 fallthrough; 1181 #endif 1182 case CONT_PMD_SHIFT: 1183 vma_shift = PMD_SHIFT; 1184 fallthrough; 1185 case PMD_SHIFT: 1186 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 1187 break; 1188 fallthrough; 1189 case CONT_PTE_SHIFT: 1190 vma_shift = PAGE_SHIFT; 1191 force_pte = true; 1192 fallthrough; 1193 case PAGE_SHIFT: 1194 break; 1195 default: 1196 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 1197 } 1198 1199 vma_pagesize = 1UL << vma_shift; 1200 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 1201 fault_ipa &= ~(vma_pagesize - 1); 1202 1203 gfn = fault_ipa >> PAGE_SHIFT; 1204 mmap_read_unlock(current->mm); 1205 1206 /* 1207 * Permission faults just need to update the existing leaf entry, 1208 * and so normally don't require allocations from the memcache. The 1209 * only exception to this is when dirty logging is enabled at runtime 1210 * and a write fault needs to collapse a block entry into a table. 1211 */ 1212 if (fault_status != FSC_PERM || (logging_active && write_fault)) { 1213 ret = kvm_mmu_topup_memory_cache(memcache, 1214 kvm_mmu_cache_min_pages(kvm)); 1215 if (ret) 1216 return ret; 1217 } 1218 1219 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 1220 /* 1221 * Ensure the read of mmu_invalidate_seq happens before we call 1222 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 1223 * the page we just got a reference to gets unmapped before we have a 1224 * chance to grab the mmu_lock, which ensure that if the page gets 1225 * unmapped afterwards, the call to kvm_unmap_gfn will take it away 1226 * from us again properly. This smp_rmb() interacts with the smp_wmb() 1227 * in kvm_mmu_notifier_invalidate_<page|range_end>. 1228 * 1229 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is 1230 * used to avoid unnecessary overhead introduced to locate the memory 1231 * slot because it's always fixed even @gfn is adjusted for huge pages. 1232 */ 1233 smp_rmb(); 1234 1235 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 1236 write_fault, &writable, NULL); 1237 if (pfn == KVM_PFN_ERR_HWPOISON) { 1238 kvm_send_hwpoison_signal(hva, vma_shift); 1239 return 0; 1240 } 1241 if (is_error_noslot_pfn(pfn)) 1242 return -EFAULT; 1243 1244 if (kvm_is_device_pfn(pfn)) { 1245 /* 1246 * If the page was identified as device early by looking at 1247 * the VMA flags, vma_pagesize is already representing the 1248 * largest quantity we can map. If instead it was mapped 1249 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE 1250 * and must not be upgraded. 1251 * 1252 * In both cases, we don't let transparent_hugepage_adjust() 1253 * change things at the last minute. 1254 */ 1255 device = true; 1256 } else if (logging_active && !write_fault) { 1257 /* 1258 * Only actually map the page as writable if this was a write 1259 * fault. 1260 */ 1261 writable = false; 1262 } 1263 1264 if (exec_fault && device) 1265 return -ENOEXEC; 1266 1267 /* 1268 * To reduce MMU contentions and enhance concurrency during dirty 1269 * logging dirty logging, only acquire read lock for permission 1270 * relaxation. 1271 */ 1272 if (use_read_lock) 1273 read_lock(&kvm->mmu_lock); 1274 else 1275 write_lock(&kvm->mmu_lock); 1276 pgt = vcpu->arch.hw_mmu->pgt; 1277 if (mmu_invalidate_retry(kvm, mmu_seq)) 1278 goto out_unlock; 1279 1280 /* 1281 * If we are not forced to use page mapping, check if we are 1282 * backed by a THP and thus use block mapping if possible. 1283 */ 1284 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { 1285 if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE) 1286 vma_pagesize = fault_granule; 1287 else 1288 vma_pagesize = transparent_hugepage_adjust(kvm, memslot, 1289 hva, &pfn, 1290 &fault_ipa); 1291 } 1292 1293 if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) { 1294 /* Check the VMM hasn't introduced a new VM_SHARED VMA */ 1295 if (!shared) 1296 ret = sanitise_mte_tags(kvm, pfn, vma_pagesize); 1297 else 1298 ret = -EFAULT; 1299 if (ret) 1300 goto out_unlock; 1301 } 1302 1303 if (writable) 1304 prot |= KVM_PGTABLE_PROT_W; 1305 1306 if (exec_fault) 1307 prot |= KVM_PGTABLE_PROT_X; 1308 1309 if (device) 1310 prot |= KVM_PGTABLE_PROT_DEVICE; 1311 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 1312 prot |= KVM_PGTABLE_PROT_X; 1313 1314 /* 1315 * Under the premise of getting a FSC_PERM fault, we just need to relax 1316 * permissions only if vma_pagesize equals fault_granule. Otherwise, 1317 * kvm_pgtable_stage2_map() should be called to change block size. 1318 */ 1319 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) { 1320 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 1321 } else { 1322 WARN_ONCE(use_read_lock, "Attempted stage-2 map outside of write lock\n"); 1323 1324 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 1325 __pfn_to_phys(pfn), prot, 1326 memcache); 1327 } 1328 1329 /* Mark the page dirty only if the fault is handled successfully */ 1330 if (writable && !ret) { 1331 kvm_set_pfn_dirty(pfn); 1332 mark_page_dirty_in_slot(kvm, memslot, gfn); 1333 } 1334 1335 out_unlock: 1336 if (use_read_lock) 1337 read_unlock(&kvm->mmu_lock); 1338 else 1339 write_unlock(&kvm->mmu_lock); 1340 kvm_set_pfn_accessed(pfn); 1341 kvm_release_pfn_clean(pfn); 1342 return ret != -EAGAIN ? ret : 0; 1343 } 1344 1345 /* Resolve the access fault by making the page young again. */ 1346 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1347 { 1348 pte_t pte; 1349 kvm_pte_t kpte; 1350 struct kvm_s2_mmu *mmu; 1351 1352 trace_kvm_access_fault(fault_ipa); 1353 1354 write_lock(&vcpu->kvm->mmu_lock); 1355 mmu = vcpu->arch.hw_mmu; 1356 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1357 write_unlock(&vcpu->kvm->mmu_lock); 1358 1359 pte = __pte(kpte); 1360 if (pte_valid(pte)) 1361 kvm_set_pfn_accessed(pte_pfn(pte)); 1362 } 1363 1364 /** 1365 * kvm_handle_guest_abort - handles all 2nd stage aborts 1366 * @vcpu: the VCPU pointer 1367 * 1368 * Any abort that gets to the host is almost guaranteed to be caused by a 1369 * missing second stage translation table entry, which can mean that either the 1370 * guest simply needs more memory and we must allocate an appropriate page or it 1371 * can mean that the guest tried to access I/O memory, which is emulated by user 1372 * space. The distinction is based on the IPA causing the fault and whether this 1373 * memory region has been registered as standard RAM by user space. 1374 */ 1375 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1376 { 1377 unsigned long fault_status; 1378 phys_addr_t fault_ipa; 1379 struct kvm_memory_slot *memslot; 1380 unsigned long hva; 1381 bool is_iabt, write_fault, writable; 1382 gfn_t gfn; 1383 int ret, idx; 1384 1385 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 1386 1387 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1388 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1389 1390 if (fault_status == FSC_FAULT) { 1391 /* Beyond sanitised PARange (which is the IPA limit) */ 1392 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) { 1393 kvm_inject_size_fault(vcpu); 1394 return 1; 1395 } 1396 1397 /* Falls between the IPA range and the PARange? */ 1398 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) { 1399 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); 1400 1401 if (is_iabt) 1402 kvm_inject_pabt(vcpu, fault_ipa); 1403 else 1404 kvm_inject_dabt(vcpu, fault_ipa); 1405 return 1; 1406 } 1407 } 1408 1409 /* Synchronous External Abort? */ 1410 if (kvm_vcpu_abt_issea(vcpu)) { 1411 /* 1412 * For RAS the host kernel may handle this abort. 1413 * There is no need to pass the error into the guest. 1414 */ 1415 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1416 kvm_inject_vabt(vcpu); 1417 1418 return 1; 1419 } 1420 1421 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1422 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1423 1424 /* Check the stage-2 fault is trans. fault or write fault */ 1425 if (fault_status != FSC_FAULT && fault_status != FSC_PERM && 1426 fault_status != FSC_ACCESS) { 1427 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1428 kvm_vcpu_trap_get_class(vcpu), 1429 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1430 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1431 return -EFAULT; 1432 } 1433 1434 idx = srcu_read_lock(&vcpu->kvm->srcu); 1435 1436 gfn = fault_ipa >> PAGE_SHIFT; 1437 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1438 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1439 write_fault = kvm_is_write_fault(vcpu); 1440 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1441 /* 1442 * The guest has put either its instructions or its page-tables 1443 * somewhere it shouldn't have. Userspace won't be able to do 1444 * anything about this (there's no syndrome for a start), so 1445 * re-inject the abort back into the guest. 1446 */ 1447 if (is_iabt) { 1448 ret = -ENOEXEC; 1449 goto out; 1450 } 1451 1452 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1453 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1454 ret = 1; 1455 goto out_unlock; 1456 } 1457 1458 /* 1459 * Check for a cache maintenance operation. Since we 1460 * ended-up here, we know it is outside of any memory 1461 * slot. But we can't find out if that is for a device, 1462 * or if the guest is just being stupid. The only thing 1463 * we know for sure is that this range cannot be cached. 1464 * 1465 * So let's assume that the guest is just being 1466 * cautious, and skip the instruction. 1467 */ 1468 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1469 kvm_incr_pc(vcpu); 1470 ret = 1; 1471 goto out_unlock; 1472 } 1473 1474 /* 1475 * The IPA is reported as [MAX:12], so we need to 1476 * complement it with the bottom 12 bits from the 1477 * faulting VA. This is always 12 bits, irrespective 1478 * of the page size. 1479 */ 1480 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1481 ret = io_mem_abort(vcpu, fault_ipa); 1482 goto out_unlock; 1483 } 1484 1485 /* Userspace should not be able to register out-of-bounds IPAs */ 1486 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1487 1488 if (fault_status == FSC_ACCESS) { 1489 handle_access_fault(vcpu, fault_ipa); 1490 ret = 1; 1491 goto out_unlock; 1492 } 1493 1494 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1495 if (ret == 0) 1496 ret = 1; 1497 out: 1498 if (ret == -ENOEXEC) { 1499 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1500 ret = 1; 1501 } 1502 out_unlock: 1503 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1504 return ret; 1505 } 1506 1507 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1508 { 1509 if (!kvm->arch.mmu.pgt) 1510 return false; 1511 1512 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1513 (range->end - range->start) << PAGE_SHIFT, 1514 range->may_block); 1515 1516 return false; 1517 } 1518 1519 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1520 { 1521 kvm_pfn_t pfn = pte_pfn(range->pte); 1522 int ret; 1523 1524 if (!kvm->arch.mmu.pgt) 1525 return false; 1526 1527 WARN_ON(range->end - range->start != 1); 1528 1529 ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE); 1530 if (ret) 1531 return false; 1532 1533 /* 1534 * We've moved a page around, probably through CoW, so let's treat 1535 * it just like a translation fault and the map handler will clean 1536 * the cache to the PoC. 1537 * 1538 * The MMU notifiers will have unmapped a huge PMD before calling 1539 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and 1540 * therefore we never need to clear out a huge PMD through this 1541 * calling path and a memcache is not required. 1542 */ 1543 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT, 1544 PAGE_SIZE, __pfn_to_phys(pfn), 1545 KVM_PGTABLE_PROT_R, NULL); 1546 1547 return false; 1548 } 1549 1550 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1551 { 1552 u64 size = (range->end - range->start) << PAGE_SHIFT; 1553 kvm_pte_t kpte; 1554 pte_t pte; 1555 1556 if (!kvm->arch.mmu.pgt) 1557 return false; 1558 1559 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1560 1561 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, 1562 range->start << PAGE_SHIFT); 1563 pte = __pte(kpte); 1564 return pte_valid(pte) && pte_young(pte); 1565 } 1566 1567 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1568 { 1569 if (!kvm->arch.mmu.pgt) 1570 return false; 1571 1572 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, 1573 range->start << PAGE_SHIFT); 1574 } 1575 1576 phys_addr_t kvm_mmu_get_httbr(void) 1577 { 1578 return __pa(hyp_pgtable->pgd); 1579 } 1580 1581 phys_addr_t kvm_get_idmap_vector(void) 1582 { 1583 return hyp_idmap_vector; 1584 } 1585 1586 static int kvm_map_idmap_text(void) 1587 { 1588 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1589 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1590 PAGE_HYP_EXEC); 1591 if (err) 1592 kvm_err("Failed to idmap %lx-%lx\n", 1593 hyp_idmap_start, hyp_idmap_end); 1594 1595 return err; 1596 } 1597 1598 static void *kvm_hyp_zalloc_page(void *arg) 1599 { 1600 return (void *)get_zeroed_page(GFP_KERNEL); 1601 } 1602 1603 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1604 .zalloc_page = kvm_hyp_zalloc_page, 1605 .get_page = kvm_host_get_page, 1606 .put_page = kvm_host_put_page, 1607 .phys_to_virt = kvm_host_va, 1608 .virt_to_phys = kvm_host_pa, 1609 }; 1610 1611 int kvm_mmu_init(u32 *hyp_va_bits) 1612 { 1613 int err; 1614 1615 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1616 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1617 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1618 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1619 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1620 1621 /* 1622 * We rely on the linker script to ensure at build time that the HYP 1623 * init code does not cross a page boundary. 1624 */ 1625 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1626 1627 *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1628 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 1629 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1630 kvm_debug("HYP VA range: %lx:%lx\n", 1631 kern_hyp_va(PAGE_OFFSET), 1632 kern_hyp_va((unsigned long)high_memory - 1)); 1633 1634 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1635 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1636 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1637 /* 1638 * The idmap page is intersecting with the VA space, 1639 * it is not safe to continue further. 1640 */ 1641 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1642 err = -EINVAL; 1643 goto out; 1644 } 1645 1646 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1647 if (!hyp_pgtable) { 1648 kvm_err("Hyp mode page-table not allocated\n"); 1649 err = -ENOMEM; 1650 goto out; 1651 } 1652 1653 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 1654 if (err) 1655 goto out_free_pgtable; 1656 1657 err = kvm_map_idmap_text(); 1658 if (err) 1659 goto out_destroy_pgtable; 1660 1661 io_map_base = hyp_idmap_start; 1662 return 0; 1663 1664 out_destroy_pgtable: 1665 kvm_pgtable_hyp_destroy(hyp_pgtable); 1666 out_free_pgtable: 1667 kfree(hyp_pgtable); 1668 hyp_pgtable = NULL; 1669 out: 1670 return err; 1671 } 1672 1673 void kvm_arch_commit_memory_region(struct kvm *kvm, 1674 struct kvm_memory_slot *old, 1675 const struct kvm_memory_slot *new, 1676 enum kvm_mr_change change) 1677 { 1678 /* 1679 * At this point memslot has been committed and there is an 1680 * allocated dirty_bitmap[], dirty pages will be tracked while the 1681 * memory slot is write protected. 1682 */ 1683 if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1684 /* 1685 * If we're with initial-all-set, we don't need to write 1686 * protect any pages because they're all reported as dirty. 1687 * Huge pages and normal pages will be write protect gradually. 1688 */ 1689 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1690 kvm_mmu_wp_memory_region(kvm, new->id); 1691 } 1692 } 1693 } 1694 1695 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1696 const struct kvm_memory_slot *old, 1697 struct kvm_memory_slot *new, 1698 enum kvm_mr_change change) 1699 { 1700 hva_t hva, reg_end; 1701 int ret = 0; 1702 1703 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 1704 change != KVM_MR_FLAGS_ONLY) 1705 return 0; 1706 1707 /* 1708 * Prevent userspace from creating a memory region outside of the IPA 1709 * space addressable by the KVM guest IPA space. 1710 */ 1711 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) 1712 return -EFAULT; 1713 1714 hva = new->userspace_addr; 1715 reg_end = hva + (new->npages << PAGE_SHIFT); 1716 1717 mmap_read_lock(current->mm); 1718 /* 1719 * A memory region could potentially cover multiple VMAs, and any holes 1720 * between them, so iterate over all of them. 1721 * 1722 * +--------------------------------------------+ 1723 * +---------------+----------------+ +----------------+ 1724 * | : VMA 1 | VMA 2 | | VMA 3 : | 1725 * +---------------+----------------+ +----------------+ 1726 * | memory region | 1727 * +--------------------------------------------+ 1728 */ 1729 do { 1730 struct vm_area_struct *vma; 1731 1732 vma = find_vma_intersection(current->mm, hva, reg_end); 1733 if (!vma) 1734 break; 1735 1736 /* 1737 * VM_SHARED mappings are not allowed with MTE to avoid races 1738 * when updating the PG_mte_tagged page flag, see 1739 * sanitise_mte_tags for more details. 1740 */ 1741 if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) { 1742 ret = -EINVAL; 1743 break; 1744 } 1745 1746 if (vma->vm_flags & VM_PFNMAP) { 1747 /* IO region dirty page logging not allowed */ 1748 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1749 ret = -EINVAL; 1750 break; 1751 } 1752 } 1753 hva = min(reg_end, vma->vm_end); 1754 } while (hva < reg_end); 1755 1756 mmap_read_unlock(current->mm); 1757 return ret; 1758 } 1759 1760 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1761 { 1762 } 1763 1764 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 1765 { 1766 } 1767 1768 void kvm_arch_flush_shadow_all(struct kvm *kvm) 1769 { 1770 kvm_free_stage2_pgd(&kvm->arch.mmu); 1771 } 1772 1773 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1774 struct kvm_memory_slot *slot) 1775 { 1776 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 1777 phys_addr_t size = slot->npages << PAGE_SHIFT; 1778 1779 write_lock(&kvm->mmu_lock); 1780 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 1781 write_unlock(&kvm->mmu_lock); 1782 } 1783 1784 /* 1785 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 1786 * 1787 * Main problems: 1788 * - S/W ops are local to a CPU (not broadcast) 1789 * - We have line migration behind our back (speculation) 1790 * - System caches don't support S/W at all (damn!) 1791 * 1792 * In the face of the above, the best we can do is to try and convert 1793 * S/W ops to VA ops. Because the guest is not allowed to infer the 1794 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 1795 * which is a rather good thing for us. 1796 * 1797 * Also, it is only used when turning caches on/off ("The expected 1798 * usage of the cache maintenance instructions that operate by set/way 1799 * is associated with the cache maintenance instructions associated 1800 * with the powerdown and powerup of caches, if this is required by 1801 * the implementation."). 1802 * 1803 * We use the following policy: 1804 * 1805 * - If we trap a S/W operation, we enable VM trapping to detect 1806 * caches being turned on/off, and do a full clean. 1807 * 1808 * - We flush the caches on both caches being turned on and off. 1809 * 1810 * - Once the caches are enabled, we stop trapping VM ops. 1811 */ 1812 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 1813 { 1814 unsigned long hcr = *vcpu_hcr(vcpu); 1815 1816 /* 1817 * If this is the first time we do a S/W operation 1818 * (i.e. HCR_TVM not set) flush the whole memory, and set the 1819 * VM trapping. 1820 * 1821 * Otherwise, rely on the VM trapping to wait for the MMU + 1822 * Caches to be turned off. At that point, we'll be able to 1823 * clean the caches again. 1824 */ 1825 if (!(hcr & HCR_TVM)) { 1826 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 1827 vcpu_has_cache_enabled(vcpu)); 1828 stage2_flush_vm(vcpu->kvm); 1829 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 1830 } 1831 } 1832 1833 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 1834 { 1835 bool now_enabled = vcpu_has_cache_enabled(vcpu); 1836 1837 /* 1838 * If switching the MMU+caches on, need to invalidate the caches. 1839 * If switching it off, need to clean the caches. 1840 * Clean + invalidate does the trick always. 1841 */ 1842 if (now_enabled != was_enabled) 1843 stage2_flush_vm(vcpu->kvm); 1844 1845 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 1846 if (now_enabled) 1847 *vcpu_hcr(vcpu) &= ~HCR_TVM; 1848 1849 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 1850 } 1851