xref: /linux/arch/arm64/kvm/mmu.c (revision cc8c418b4fc09ed58ddd27b8e90ec797e9ca1e67)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27 
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31 
32 static unsigned long io_map_base;
33 
34 
35 /*
36  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39  * long will also starve other vCPUs. We have to also make sure that the page
40  * tables are not freed while we released the lock.
41  */
42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43 			      phys_addr_t end,
44 			      int (*fn)(struct kvm_pgtable *, u64, u64),
45 			      bool resched)
46 {
47 	int ret;
48 	u64 next;
49 
50 	do {
51 		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52 		if (!pgt)
53 			return -EINVAL;
54 
55 		next = stage2_pgd_addr_end(kvm, addr, end);
56 		ret = fn(pgt, addr, next - addr);
57 		if (ret)
58 			break;
59 
60 		if (resched && next != end)
61 			cond_resched_rwlock_write(&kvm->mmu_lock);
62 	} while (addr = next, addr != end);
63 
64 	return ret;
65 }
66 
67 #define stage2_apply_range_resched(kvm, addr, end, fn)			\
68 	stage2_apply_range(kvm, addr, end, fn, true)
69 
70 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71 {
72 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 }
74 
75 /**
76  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77  * @kvm:	pointer to kvm structure.
78  *
79  * Interface to HYP function to flush all VM TLB entries
80  */
81 void kvm_flush_remote_tlbs(struct kvm *kvm)
82 {
83 	++kvm->stat.generic.remote_tlb_flush_requests;
84 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
85 }
86 
87 static bool kvm_is_device_pfn(unsigned long pfn)
88 {
89 	return !pfn_is_map_memory(pfn);
90 }
91 
92 static void *stage2_memcache_zalloc_page(void *arg)
93 {
94 	struct kvm_mmu_memory_cache *mc = arg;
95 	void *virt;
96 
97 	/* Allocated with __GFP_ZERO, so no need to zero */
98 	virt = kvm_mmu_memory_cache_alloc(mc);
99 	if (virt)
100 		kvm_account_pgtable_pages(virt, 1);
101 	return virt;
102 }
103 
104 static void *kvm_host_zalloc_pages_exact(size_t size)
105 {
106 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
107 }
108 
109 static void *kvm_s2_zalloc_pages_exact(size_t size)
110 {
111 	void *virt = kvm_host_zalloc_pages_exact(size);
112 
113 	if (virt)
114 		kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
115 	return virt;
116 }
117 
118 static void kvm_s2_free_pages_exact(void *virt, size_t size)
119 {
120 	kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
121 	free_pages_exact(virt, size);
122 }
123 
124 static void kvm_host_get_page(void *addr)
125 {
126 	get_page(virt_to_page(addr));
127 }
128 
129 static void kvm_host_put_page(void *addr)
130 {
131 	put_page(virt_to_page(addr));
132 }
133 
134 static void kvm_s2_put_page(void *addr)
135 {
136 	struct page *p = virt_to_page(addr);
137 	/* Dropping last refcount, the page will be freed */
138 	if (page_count(p) == 1)
139 		kvm_account_pgtable_pages(addr, -1);
140 	put_page(p);
141 }
142 
143 static int kvm_host_page_count(void *addr)
144 {
145 	return page_count(virt_to_page(addr));
146 }
147 
148 static phys_addr_t kvm_host_pa(void *addr)
149 {
150 	return __pa(addr);
151 }
152 
153 static void *kvm_host_va(phys_addr_t phys)
154 {
155 	return __va(phys);
156 }
157 
158 static void clean_dcache_guest_page(void *va, size_t size)
159 {
160 	__clean_dcache_guest_page(va, size);
161 }
162 
163 static void invalidate_icache_guest_page(void *va, size_t size)
164 {
165 	__invalidate_icache_guest_page(va, size);
166 }
167 
168 /*
169  * Unmapping vs dcache management:
170  *
171  * If a guest maps certain memory pages as uncached, all writes will
172  * bypass the data cache and go directly to RAM.  However, the CPUs
173  * can still speculate reads (not writes) and fill cache lines with
174  * data.
175  *
176  * Those cache lines will be *clean* cache lines though, so a
177  * clean+invalidate operation is equivalent to an invalidate
178  * operation, because no cache lines are marked dirty.
179  *
180  * Those clean cache lines could be filled prior to an uncached write
181  * by the guest, and the cache coherent IO subsystem would therefore
182  * end up writing old data to disk.
183  *
184  * This is why right after unmapping a page/section and invalidating
185  * the corresponding TLBs, we flush to make sure the IO subsystem will
186  * never hit in the cache.
187  *
188  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
189  * we then fully enforce cacheability of RAM, no matter what the guest
190  * does.
191  */
192 /**
193  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
194  * @mmu:   The KVM stage-2 MMU pointer
195  * @start: The intermediate physical base address of the range to unmap
196  * @size:  The size of the area to unmap
197  * @may_block: Whether or not we are permitted to block
198  *
199  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
200  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
201  * destroying the VM), otherwise another faulting VCPU may come in and mess
202  * with things behind our backs.
203  */
204 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
205 				 bool may_block)
206 {
207 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
208 	phys_addr_t end = start + size;
209 
210 	lockdep_assert_held_write(&kvm->mmu_lock);
211 	WARN_ON(size & ~PAGE_MASK);
212 	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
213 				   may_block));
214 }
215 
216 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
217 {
218 	__unmap_stage2_range(mmu, start, size, true);
219 }
220 
221 static void stage2_flush_memslot(struct kvm *kvm,
222 				 struct kvm_memory_slot *memslot)
223 {
224 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
225 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
226 
227 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
228 }
229 
230 /**
231  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
232  * @kvm: The struct kvm pointer
233  *
234  * Go through the stage 2 page tables and invalidate any cache lines
235  * backing memory already mapped to the VM.
236  */
237 static void stage2_flush_vm(struct kvm *kvm)
238 {
239 	struct kvm_memslots *slots;
240 	struct kvm_memory_slot *memslot;
241 	int idx, bkt;
242 
243 	idx = srcu_read_lock(&kvm->srcu);
244 	write_lock(&kvm->mmu_lock);
245 
246 	slots = kvm_memslots(kvm);
247 	kvm_for_each_memslot(memslot, bkt, slots)
248 		stage2_flush_memslot(kvm, memslot);
249 
250 	write_unlock(&kvm->mmu_lock);
251 	srcu_read_unlock(&kvm->srcu, idx);
252 }
253 
254 /**
255  * free_hyp_pgds - free Hyp-mode page tables
256  */
257 void free_hyp_pgds(void)
258 {
259 	mutex_lock(&kvm_hyp_pgd_mutex);
260 	if (hyp_pgtable) {
261 		kvm_pgtable_hyp_destroy(hyp_pgtable);
262 		kfree(hyp_pgtable);
263 		hyp_pgtable = NULL;
264 	}
265 	mutex_unlock(&kvm_hyp_pgd_mutex);
266 }
267 
268 static bool kvm_host_owns_hyp_mappings(void)
269 {
270 	if (is_kernel_in_hyp_mode())
271 		return false;
272 
273 	if (static_branch_likely(&kvm_protected_mode_initialized))
274 		return false;
275 
276 	/*
277 	 * This can happen at boot time when __create_hyp_mappings() is called
278 	 * after the hyp protection has been enabled, but the static key has
279 	 * not been flipped yet.
280 	 */
281 	if (!hyp_pgtable && is_protected_kvm_enabled())
282 		return false;
283 
284 	WARN_ON(!hyp_pgtable);
285 
286 	return true;
287 }
288 
289 int __create_hyp_mappings(unsigned long start, unsigned long size,
290 			  unsigned long phys, enum kvm_pgtable_prot prot)
291 {
292 	int err;
293 
294 	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
295 		return -EINVAL;
296 
297 	mutex_lock(&kvm_hyp_pgd_mutex);
298 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
299 	mutex_unlock(&kvm_hyp_pgd_mutex);
300 
301 	return err;
302 }
303 
304 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
305 {
306 	if (!is_vmalloc_addr(kaddr)) {
307 		BUG_ON(!virt_addr_valid(kaddr));
308 		return __pa(kaddr);
309 	} else {
310 		return page_to_phys(vmalloc_to_page(kaddr)) +
311 		       offset_in_page(kaddr);
312 	}
313 }
314 
315 struct hyp_shared_pfn {
316 	u64 pfn;
317 	int count;
318 	struct rb_node node;
319 };
320 
321 static DEFINE_MUTEX(hyp_shared_pfns_lock);
322 static struct rb_root hyp_shared_pfns = RB_ROOT;
323 
324 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
325 					      struct rb_node **parent)
326 {
327 	struct hyp_shared_pfn *this;
328 
329 	*node = &hyp_shared_pfns.rb_node;
330 	*parent = NULL;
331 	while (**node) {
332 		this = container_of(**node, struct hyp_shared_pfn, node);
333 		*parent = **node;
334 		if (this->pfn < pfn)
335 			*node = &((**node)->rb_left);
336 		else if (this->pfn > pfn)
337 			*node = &((**node)->rb_right);
338 		else
339 			return this;
340 	}
341 
342 	return NULL;
343 }
344 
345 static int share_pfn_hyp(u64 pfn)
346 {
347 	struct rb_node **node, *parent;
348 	struct hyp_shared_pfn *this;
349 	int ret = 0;
350 
351 	mutex_lock(&hyp_shared_pfns_lock);
352 	this = find_shared_pfn(pfn, &node, &parent);
353 	if (this) {
354 		this->count++;
355 		goto unlock;
356 	}
357 
358 	this = kzalloc(sizeof(*this), GFP_KERNEL);
359 	if (!this) {
360 		ret = -ENOMEM;
361 		goto unlock;
362 	}
363 
364 	this->pfn = pfn;
365 	this->count = 1;
366 	rb_link_node(&this->node, parent, node);
367 	rb_insert_color(&this->node, &hyp_shared_pfns);
368 	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
369 unlock:
370 	mutex_unlock(&hyp_shared_pfns_lock);
371 
372 	return ret;
373 }
374 
375 static int unshare_pfn_hyp(u64 pfn)
376 {
377 	struct rb_node **node, *parent;
378 	struct hyp_shared_pfn *this;
379 	int ret = 0;
380 
381 	mutex_lock(&hyp_shared_pfns_lock);
382 	this = find_shared_pfn(pfn, &node, &parent);
383 	if (WARN_ON(!this)) {
384 		ret = -ENOENT;
385 		goto unlock;
386 	}
387 
388 	this->count--;
389 	if (this->count)
390 		goto unlock;
391 
392 	rb_erase(&this->node, &hyp_shared_pfns);
393 	kfree(this);
394 	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
395 unlock:
396 	mutex_unlock(&hyp_shared_pfns_lock);
397 
398 	return ret;
399 }
400 
401 int kvm_share_hyp(void *from, void *to)
402 {
403 	phys_addr_t start, end, cur;
404 	u64 pfn;
405 	int ret;
406 
407 	if (is_kernel_in_hyp_mode())
408 		return 0;
409 
410 	/*
411 	 * The share hcall maps things in the 'fixed-offset' region of the hyp
412 	 * VA space, so we can only share physically contiguous data-structures
413 	 * for now.
414 	 */
415 	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
416 		return -EINVAL;
417 
418 	if (kvm_host_owns_hyp_mappings())
419 		return create_hyp_mappings(from, to, PAGE_HYP);
420 
421 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
422 	end = PAGE_ALIGN(__pa(to));
423 	for (cur = start; cur < end; cur += PAGE_SIZE) {
424 		pfn = __phys_to_pfn(cur);
425 		ret = share_pfn_hyp(pfn);
426 		if (ret)
427 			return ret;
428 	}
429 
430 	return 0;
431 }
432 
433 void kvm_unshare_hyp(void *from, void *to)
434 {
435 	phys_addr_t start, end, cur;
436 	u64 pfn;
437 
438 	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
439 		return;
440 
441 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
442 	end = PAGE_ALIGN(__pa(to));
443 	for (cur = start; cur < end; cur += PAGE_SIZE) {
444 		pfn = __phys_to_pfn(cur);
445 		WARN_ON(unshare_pfn_hyp(pfn));
446 	}
447 }
448 
449 /**
450  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
451  * @from:	The virtual kernel start address of the range
452  * @to:		The virtual kernel end address of the range (exclusive)
453  * @prot:	The protection to be applied to this range
454  *
455  * The same virtual address as the kernel virtual address is also used
456  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
457  * physical pages.
458  */
459 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
460 {
461 	phys_addr_t phys_addr;
462 	unsigned long virt_addr;
463 	unsigned long start = kern_hyp_va((unsigned long)from);
464 	unsigned long end = kern_hyp_va((unsigned long)to);
465 
466 	if (is_kernel_in_hyp_mode())
467 		return 0;
468 
469 	if (!kvm_host_owns_hyp_mappings())
470 		return -EPERM;
471 
472 	start = start & PAGE_MASK;
473 	end = PAGE_ALIGN(end);
474 
475 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
476 		int err;
477 
478 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
479 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
480 					    prot);
481 		if (err)
482 			return err;
483 	}
484 
485 	return 0;
486 }
487 
488 
489 /**
490  * hyp_alloc_private_va_range - Allocates a private VA range.
491  * @size:	The size of the VA range to reserve.
492  * @haddr:	The hypervisor virtual start address of the allocation.
493  *
494  * The private virtual address (VA) range is allocated below io_map_base
495  * and aligned based on the order of @size.
496  *
497  * Return: 0 on success or negative error code on failure.
498  */
499 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
500 {
501 	unsigned long base;
502 	int ret = 0;
503 
504 	mutex_lock(&kvm_hyp_pgd_mutex);
505 
506 	/*
507 	 * This assumes that we have enough space below the idmap
508 	 * page to allocate our VAs. If not, the check below will
509 	 * kick. A potential alternative would be to detect that
510 	 * overflow and switch to an allocation above the idmap.
511 	 *
512 	 * The allocated size is always a multiple of PAGE_SIZE.
513 	 */
514 	base = io_map_base - PAGE_ALIGN(size);
515 
516 	/* Align the allocation based on the order of its size */
517 	base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size));
518 
519 	/*
520 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
521 	 * allocating the new area, as it would indicate we've
522 	 * overflowed the idmap/IO address range.
523 	 */
524 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
525 		ret = -ENOMEM;
526 	else
527 		*haddr = io_map_base = base;
528 
529 	mutex_unlock(&kvm_hyp_pgd_mutex);
530 
531 	return ret;
532 }
533 
534 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
535 					unsigned long *haddr,
536 					enum kvm_pgtable_prot prot)
537 {
538 	unsigned long addr;
539 	int ret = 0;
540 
541 	if (!kvm_host_owns_hyp_mappings()) {
542 		addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
543 					 phys_addr, size, prot);
544 		if (IS_ERR_VALUE(addr))
545 			return addr;
546 		*haddr = addr;
547 
548 		return 0;
549 	}
550 
551 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
552 	ret = hyp_alloc_private_va_range(size, &addr);
553 	if (ret)
554 		return ret;
555 
556 	ret = __create_hyp_mappings(addr, size, phys_addr, prot);
557 	if (ret)
558 		return ret;
559 
560 	*haddr = addr + offset_in_page(phys_addr);
561 	return ret;
562 }
563 
564 /**
565  * create_hyp_io_mappings - Map IO into both kernel and HYP
566  * @phys_addr:	The physical start address which gets mapped
567  * @size:	Size of the region being mapped
568  * @kaddr:	Kernel VA for this mapping
569  * @haddr:	HYP VA for this mapping
570  */
571 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
572 			   void __iomem **kaddr,
573 			   void __iomem **haddr)
574 {
575 	unsigned long addr;
576 	int ret;
577 
578 	if (is_protected_kvm_enabled())
579 		return -EPERM;
580 
581 	*kaddr = ioremap(phys_addr, size);
582 	if (!*kaddr)
583 		return -ENOMEM;
584 
585 	if (is_kernel_in_hyp_mode()) {
586 		*haddr = *kaddr;
587 		return 0;
588 	}
589 
590 	ret = __create_hyp_private_mapping(phys_addr, size,
591 					   &addr, PAGE_HYP_DEVICE);
592 	if (ret) {
593 		iounmap(*kaddr);
594 		*kaddr = NULL;
595 		*haddr = NULL;
596 		return ret;
597 	}
598 
599 	*haddr = (void __iomem *)addr;
600 	return 0;
601 }
602 
603 /**
604  * create_hyp_exec_mappings - Map an executable range into HYP
605  * @phys_addr:	The physical start address which gets mapped
606  * @size:	Size of the region being mapped
607  * @haddr:	HYP VA for this mapping
608  */
609 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
610 			     void **haddr)
611 {
612 	unsigned long addr;
613 	int ret;
614 
615 	BUG_ON(is_kernel_in_hyp_mode());
616 
617 	ret = __create_hyp_private_mapping(phys_addr, size,
618 					   &addr, PAGE_HYP_EXEC);
619 	if (ret) {
620 		*haddr = NULL;
621 		return ret;
622 	}
623 
624 	*haddr = (void *)addr;
625 	return 0;
626 }
627 
628 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
629 	/* We shouldn't need any other callback to walk the PT */
630 	.phys_to_virt		= kvm_host_va,
631 };
632 
633 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
634 {
635 	struct kvm_pgtable pgt = {
636 		.pgd		= (kvm_pte_t *)kvm->mm->pgd,
637 		.ia_bits	= VA_BITS,
638 		.start_level	= (KVM_PGTABLE_MAX_LEVELS -
639 				   CONFIG_PGTABLE_LEVELS),
640 		.mm_ops		= &kvm_user_mm_ops,
641 	};
642 	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
643 	u32 level = ~0;
644 	int ret;
645 
646 	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
647 	VM_BUG_ON(ret);
648 	VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
649 	VM_BUG_ON(!(pte & PTE_VALID));
650 
651 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
652 }
653 
654 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
655 	.zalloc_page		= stage2_memcache_zalloc_page,
656 	.zalloc_pages_exact	= kvm_s2_zalloc_pages_exact,
657 	.free_pages_exact	= kvm_s2_free_pages_exact,
658 	.get_page		= kvm_host_get_page,
659 	.put_page		= kvm_s2_put_page,
660 	.page_count		= kvm_host_page_count,
661 	.phys_to_virt		= kvm_host_va,
662 	.virt_to_phys		= kvm_host_pa,
663 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
664 	.icache_inval_pou	= invalidate_icache_guest_page,
665 };
666 
667 /**
668  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
669  * @kvm:	The pointer to the KVM structure
670  * @mmu:	The pointer to the s2 MMU structure
671  *
672  * Allocates only the stage-2 HW PGD level table(s).
673  * Note we don't need locking here as this is only called when the VM is
674  * created, which can only be done once.
675  */
676 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
677 {
678 	int cpu, err;
679 	struct kvm_pgtable *pgt;
680 
681 	if (mmu->pgt != NULL) {
682 		kvm_err("kvm_arch already initialized?\n");
683 		return -EINVAL;
684 	}
685 
686 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
687 	if (!pgt)
688 		return -ENOMEM;
689 
690 	mmu->arch = &kvm->arch;
691 	err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
692 	if (err)
693 		goto out_free_pgtable;
694 
695 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
696 	if (!mmu->last_vcpu_ran) {
697 		err = -ENOMEM;
698 		goto out_destroy_pgtable;
699 	}
700 
701 	for_each_possible_cpu(cpu)
702 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
703 
704 	mmu->pgt = pgt;
705 	mmu->pgd_phys = __pa(pgt->pgd);
706 	return 0;
707 
708 out_destroy_pgtable:
709 	kvm_pgtable_stage2_destroy(pgt);
710 out_free_pgtable:
711 	kfree(pgt);
712 	return err;
713 }
714 
715 static void stage2_unmap_memslot(struct kvm *kvm,
716 				 struct kvm_memory_slot *memslot)
717 {
718 	hva_t hva = memslot->userspace_addr;
719 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
720 	phys_addr_t size = PAGE_SIZE * memslot->npages;
721 	hva_t reg_end = hva + size;
722 
723 	/*
724 	 * A memory region could potentially cover multiple VMAs, and any holes
725 	 * between them, so iterate over all of them to find out if we should
726 	 * unmap any of them.
727 	 *
728 	 *     +--------------------------------------------+
729 	 * +---------------+----------------+   +----------------+
730 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
731 	 * +---------------+----------------+   +----------------+
732 	 *     |               memory region                |
733 	 *     +--------------------------------------------+
734 	 */
735 	do {
736 		struct vm_area_struct *vma;
737 		hva_t vm_start, vm_end;
738 
739 		vma = find_vma_intersection(current->mm, hva, reg_end);
740 		if (!vma)
741 			break;
742 
743 		/*
744 		 * Take the intersection of this VMA with the memory region
745 		 */
746 		vm_start = max(hva, vma->vm_start);
747 		vm_end = min(reg_end, vma->vm_end);
748 
749 		if (!(vma->vm_flags & VM_PFNMAP)) {
750 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
751 			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
752 		}
753 		hva = vm_end;
754 	} while (hva < reg_end);
755 }
756 
757 /**
758  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
759  * @kvm: The struct kvm pointer
760  *
761  * Go through the memregions and unmap any regular RAM
762  * backing memory already mapped to the VM.
763  */
764 void stage2_unmap_vm(struct kvm *kvm)
765 {
766 	struct kvm_memslots *slots;
767 	struct kvm_memory_slot *memslot;
768 	int idx, bkt;
769 
770 	idx = srcu_read_lock(&kvm->srcu);
771 	mmap_read_lock(current->mm);
772 	write_lock(&kvm->mmu_lock);
773 
774 	slots = kvm_memslots(kvm);
775 	kvm_for_each_memslot(memslot, bkt, slots)
776 		stage2_unmap_memslot(kvm, memslot);
777 
778 	write_unlock(&kvm->mmu_lock);
779 	mmap_read_unlock(current->mm);
780 	srcu_read_unlock(&kvm->srcu, idx);
781 }
782 
783 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
784 {
785 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
786 	struct kvm_pgtable *pgt = NULL;
787 
788 	write_lock(&kvm->mmu_lock);
789 	pgt = mmu->pgt;
790 	if (pgt) {
791 		mmu->pgd_phys = 0;
792 		mmu->pgt = NULL;
793 		free_percpu(mmu->last_vcpu_ran);
794 	}
795 	write_unlock(&kvm->mmu_lock);
796 
797 	if (pgt) {
798 		kvm_pgtable_stage2_destroy(pgt);
799 		kfree(pgt);
800 	}
801 }
802 
803 /**
804  * kvm_phys_addr_ioremap - map a device range to guest IPA
805  *
806  * @kvm:	The KVM pointer
807  * @guest_ipa:	The IPA at which to insert the mapping
808  * @pa:		The physical address of the device
809  * @size:	The size of the mapping
810  * @writable:   Whether or not to create a writable mapping
811  */
812 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
813 			  phys_addr_t pa, unsigned long size, bool writable)
814 {
815 	phys_addr_t addr;
816 	int ret = 0;
817 	struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
818 	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
819 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
820 				     KVM_PGTABLE_PROT_R |
821 				     (writable ? KVM_PGTABLE_PROT_W : 0);
822 
823 	if (is_protected_kvm_enabled())
824 		return -EPERM;
825 
826 	size += offset_in_page(guest_ipa);
827 	guest_ipa &= PAGE_MASK;
828 
829 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
830 		ret = kvm_mmu_topup_memory_cache(&cache,
831 						 kvm_mmu_cache_min_pages(kvm));
832 		if (ret)
833 			break;
834 
835 		write_lock(&kvm->mmu_lock);
836 		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
837 					     &cache);
838 		write_unlock(&kvm->mmu_lock);
839 		if (ret)
840 			break;
841 
842 		pa += PAGE_SIZE;
843 	}
844 
845 	kvm_mmu_free_memory_cache(&cache);
846 	return ret;
847 }
848 
849 /**
850  * stage2_wp_range() - write protect stage2 memory region range
851  * @mmu:        The KVM stage-2 MMU pointer
852  * @addr:	Start address of range
853  * @end:	End address of range
854  */
855 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
856 {
857 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
858 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
859 }
860 
861 /**
862  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
863  * @kvm:	The KVM pointer
864  * @slot:	The memory slot to write protect
865  *
866  * Called to start logging dirty pages after memory region
867  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
868  * all present PUD, PMD and PTEs are write protected in the memory region.
869  * Afterwards read of dirty page log can be called.
870  *
871  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
872  * serializing operations for VM memory regions.
873  */
874 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
875 {
876 	struct kvm_memslots *slots = kvm_memslots(kvm);
877 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
878 	phys_addr_t start, end;
879 
880 	if (WARN_ON_ONCE(!memslot))
881 		return;
882 
883 	start = memslot->base_gfn << PAGE_SHIFT;
884 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
885 
886 	write_lock(&kvm->mmu_lock);
887 	stage2_wp_range(&kvm->arch.mmu, start, end);
888 	write_unlock(&kvm->mmu_lock);
889 	kvm_flush_remote_tlbs(kvm);
890 }
891 
892 /**
893  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
894  * @kvm:	The KVM pointer
895  * @slot:	The memory slot associated with mask
896  * @gfn_offset:	The gfn offset in memory slot
897  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
898  *		slot to be write protected
899  *
900  * Walks bits set in mask write protects the associated pte's. Caller must
901  * acquire kvm_mmu_lock.
902  */
903 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
904 		struct kvm_memory_slot *slot,
905 		gfn_t gfn_offset, unsigned long mask)
906 {
907 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
908 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
909 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
910 
911 	stage2_wp_range(&kvm->arch.mmu, start, end);
912 }
913 
914 /*
915  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
916  * dirty pages.
917  *
918  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
919  * enable dirty logging for them.
920  */
921 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
922 		struct kvm_memory_slot *slot,
923 		gfn_t gfn_offset, unsigned long mask)
924 {
925 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
926 }
927 
928 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
929 {
930 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
931 }
932 
933 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
934 					       unsigned long hva,
935 					       unsigned long map_size)
936 {
937 	gpa_t gpa_start;
938 	hva_t uaddr_start, uaddr_end;
939 	size_t size;
940 
941 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
942 	if (map_size == PAGE_SIZE)
943 		return true;
944 
945 	size = memslot->npages * PAGE_SIZE;
946 
947 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
948 
949 	uaddr_start = memslot->userspace_addr;
950 	uaddr_end = uaddr_start + size;
951 
952 	/*
953 	 * Pages belonging to memslots that don't have the same alignment
954 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
955 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
956 	 *
957 	 * Consider a layout like the following:
958 	 *
959 	 *    memslot->userspace_addr:
960 	 *    +-----+--------------------+--------------------+---+
961 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
962 	 *    +-----+--------------------+--------------------+---+
963 	 *
964 	 *    memslot->base_gfn << PAGE_SHIFT:
965 	 *      +---+--------------------+--------------------+-----+
966 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
967 	 *      +---+--------------------+--------------------+-----+
968 	 *
969 	 * If we create those stage-2 blocks, we'll end up with this incorrect
970 	 * mapping:
971 	 *   d -> f
972 	 *   e -> g
973 	 *   f -> h
974 	 */
975 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
976 		return false;
977 
978 	/*
979 	 * Next, let's make sure we're not trying to map anything not covered
980 	 * by the memslot. This means we have to prohibit block size mappings
981 	 * for the beginning and end of a non-block aligned and non-block sized
982 	 * memory slot (illustrated by the head and tail parts of the
983 	 * userspace view above containing pages 'abcde' and 'xyz',
984 	 * respectively).
985 	 *
986 	 * Note that it doesn't matter if we do the check using the
987 	 * userspace_addr or the base_gfn, as both are equally aligned (per
988 	 * the check above) and equally sized.
989 	 */
990 	return (hva & ~(map_size - 1)) >= uaddr_start &&
991 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
992 }
993 
994 /*
995  * Check if the given hva is backed by a transparent huge page (THP) and
996  * whether it can be mapped using block mapping in stage2. If so, adjust
997  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
998  * supported. This will need to be updated to support other THP sizes.
999  *
1000  * Returns the size of the mapping.
1001  */
1002 static unsigned long
1003 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1004 			    unsigned long hva, kvm_pfn_t *pfnp,
1005 			    phys_addr_t *ipap)
1006 {
1007 	kvm_pfn_t pfn = *pfnp;
1008 
1009 	/*
1010 	 * Make sure the adjustment is done only for THP pages. Also make
1011 	 * sure that the HVA and IPA are sufficiently aligned and that the
1012 	 * block map is contained within the memslot.
1013 	 */
1014 	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1015 	    get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
1016 		/*
1017 		 * The address we faulted on is backed by a transparent huge
1018 		 * page.  However, because we map the compound huge page and
1019 		 * not the individual tail page, we need to transfer the
1020 		 * refcount to the head page.  We have to be careful that the
1021 		 * THP doesn't start to split while we are adjusting the
1022 		 * refcounts.
1023 		 *
1024 		 * We are sure this doesn't happen, because mmu_invalidate_retry
1025 		 * was successful and we are holding the mmu_lock, so if this
1026 		 * THP is trying to split, it will be blocked in the mmu
1027 		 * notifier before touching any of the pages, specifically
1028 		 * before being able to call __split_huge_page_refcount().
1029 		 *
1030 		 * We can therefore safely transfer the refcount from PG_tail
1031 		 * to PG_head and switch the pfn from a tail page to the head
1032 		 * page accordingly.
1033 		 */
1034 		*ipap &= PMD_MASK;
1035 		kvm_release_pfn_clean(pfn);
1036 		pfn &= ~(PTRS_PER_PMD - 1);
1037 		get_page(pfn_to_page(pfn));
1038 		*pfnp = pfn;
1039 
1040 		return PMD_SIZE;
1041 	}
1042 
1043 	/* Use page mapping if we cannot use block mapping. */
1044 	return PAGE_SIZE;
1045 }
1046 
1047 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1048 {
1049 	unsigned long pa;
1050 
1051 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1052 		return huge_page_shift(hstate_vma(vma));
1053 
1054 	if (!(vma->vm_flags & VM_PFNMAP))
1055 		return PAGE_SHIFT;
1056 
1057 	VM_BUG_ON(is_vm_hugetlb_page(vma));
1058 
1059 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1060 
1061 #ifndef __PAGETABLE_PMD_FOLDED
1062 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1063 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1064 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1065 		return PUD_SHIFT;
1066 #endif
1067 
1068 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1069 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1070 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1071 		return PMD_SHIFT;
1072 
1073 	return PAGE_SHIFT;
1074 }
1075 
1076 /*
1077  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1078  * able to see the page's tags and therefore they must be initialised first. If
1079  * PG_mte_tagged is set, tags have already been initialised.
1080  *
1081  * The race in the test/set of the PG_mte_tagged flag is handled by:
1082  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1083  *   racing to santise the same page
1084  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1085  *   an mprotect() to add VM_MTE
1086  */
1087 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1088 			     unsigned long size)
1089 {
1090 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1091 	struct page *page;
1092 
1093 	if (!kvm_has_mte(kvm))
1094 		return 0;
1095 
1096 	/*
1097 	 * pfn_to_online_page() is used to reject ZONE_DEVICE pages
1098 	 * that may not support tags.
1099 	 */
1100 	page = pfn_to_online_page(pfn);
1101 
1102 	if (!page)
1103 		return -EFAULT;
1104 
1105 	for (i = 0; i < nr_pages; i++, page++) {
1106 		if (!test_bit(PG_mte_tagged, &page->flags)) {
1107 			mte_clear_page_tags(page_address(page));
1108 			set_bit(PG_mte_tagged, &page->flags);
1109 		}
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1116 			  struct kvm_memory_slot *memslot, unsigned long hva,
1117 			  unsigned long fault_status)
1118 {
1119 	int ret = 0;
1120 	bool write_fault, writable, force_pte = false;
1121 	bool exec_fault;
1122 	bool device = false;
1123 	bool shared;
1124 	unsigned long mmu_seq;
1125 	struct kvm *kvm = vcpu->kvm;
1126 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1127 	struct vm_area_struct *vma;
1128 	short vma_shift;
1129 	gfn_t gfn;
1130 	kvm_pfn_t pfn;
1131 	bool logging_active = memslot_is_logging(memslot);
1132 	bool use_read_lock = false;
1133 	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1134 	unsigned long vma_pagesize, fault_granule;
1135 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1136 	struct kvm_pgtable *pgt;
1137 
1138 	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1139 	write_fault = kvm_is_write_fault(vcpu);
1140 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1141 	VM_BUG_ON(write_fault && exec_fault);
1142 
1143 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1144 		kvm_err("Unexpected L2 read permission error\n");
1145 		return -EFAULT;
1146 	}
1147 
1148 	/*
1149 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1150 	 * get block mapping for device MMIO region.
1151 	 */
1152 	mmap_read_lock(current->mm);
1153 	vma = vma_lookup(current->mm, hva);
1154 	if (unlikely(!vma)) {
1155 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1156 		mmap_read_unlock(current->mm);
1157 		return -EFAULT;
1158 	}
1159 
1160 	/*
1161 	 * logging_active is guaranteed to never be true for VM_PFNMAP
1162 	 * memslots.
1163 	 */
1164 	if (logging_active) {
1165 		force_pte = true;
1166 		vma_shift = PAGE_SHIFT;
1167 		use_read_lock = (fault_status == FSC_PERM && write_fault &&
1168 				 fault_granule == PAGE_SIZE);
1169 	} else {
1170 		vma_shift = get_vma_page_shift(vma, hva);
1171 	}
1172 
1173 	shared = (vma->vm_flags & VM_SHARED);
1174 
1175 	switch (vma_shift) {
1176 #ifndef __PAGETABLE_PMD_FOLDED
1177 	case PUD_SHIFT:
1178 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1179 			break;
1180 		fallthrough;
1181 #endif
1182 	case CONT_PMD_SHIFT:
1183 		vma_shift = PMD_SHIFT;
1184 		fallthrough;
1185 	case PMD_SHIFT:
1186 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1187 			break;
1188 		fallthrough;
1189 	case CONT_PTE_SHIFT:
1190 		vma_shift = PAGE_SHIFT;
1191 		force_pte = true;
1192 		fallthrough;
1193 	case PAGE_SHIFT:
1194 		break;
1195 	default:
1196 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1197 	}
1198 
1199 	vma_pagesize = 1UL << vma_shift;
1200 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1201 		fault_ipa &= ~(vma_pagesize - 1);
1202 
1203 	gfn = fault_ipa >> PAGE_SHIFT;
1204 	mmap_read_unlock(current->mm);
1205 
1206 	/*
1207 	 * Permission faults just need to update the existing leaf entry,
1208 	 * and so normally don't require allocations from the memcache. The
1209 	 * only exception to this is when dirty logging is enabled at runtime
1210 	 * and a write fault needs to collapse a block entry into a table.
1211 	 */
1212 	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
1213 		ret = kvm_mmu_topup_memory_cache(memcache,
1214 						 kvm_mmu_cache_min_pages(kvm));
1215 		if (ret)
1216 			return ret;
1217 	}
1218 
1219 	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1220 	/*
1221 	 * Ensure the read of mmu_invalidate_seq happens before we call
1222 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1223 	 * the page we just got a reference to gets unmapped before we have a
1224 	 * chance to grab the mmu_lock, which ensure that if the page gets
1225 	 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1226 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1227 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1228 	 *
1229 	 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1230 	 * used to avoid unnecessary overhead introduced to locate the memory
1231 	 * slot because it's always fixed even @gfn is adjusted for huge pages.
1232 	 */
1233 	smp_rmb();
1234 
1235 	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
1236 				   write_fault, &writable, NULL);
1237 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1238 		kvm_send_hwpoison_signal(hva, vma_shift);
1239 		return 0;
1240 	}
1241 	if (is_error_noslot_pfn(pfn))
1242 		return -EFAULT;
1243 
1244 	if (kvm_is_device_pfn(pfn)) {
1245 		/*
1246 		 * If the page was identified as device early by looking at
1247 		 * the VMA flags, vma_pagesize is already representing the
1248 		 * largest quantity we can map.  If instead it was mapped
1249 		 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1250 		 * and must not be upgraded.
1251 		 *
1252 		 * In both cases, we don't let transparent_hugepage_adjust()
1253 		 * change things at the last minute.
1254 		 */
1255 		device = true;
1256 	} else if (logging_active && !write_fault) {
1257 		/*
1258 		 * Only actually map the page as writable if this was a write
1259 		 * fault.
1260 		 */
1261 		writable = false;
1262 	}
1263 
1264 	if (exec_fault && device)
1265 		return -ENOEXEC;
1266 
1267 	/*
1268 	 * To reduce MMU contentions and enhance concurrency during dirty
1269 	 * logging dirty logging, only acquire read lock for permission
1270 	 * relaxation.
1271 	 */
1272 	if (use_read_lock)
1273 		read_lock(&kvm->mmu_lock);
1274 	else
1275 		write_lock(&kvm->mmu_lock);
1276 	pgt = vcpu->arch.hw_mmu->pgt;
1277 	if (mmu_invalidate_retry(kvm, mmu_seq))
1278 		goto out_unlock;
1279 
1280 	/*
1281 	 * If we are not forced to use page mapping, check if we are
1282 	 * backed by a THP and thus use block mapping if possible.
1283 	 */
1284 	if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1285 		if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE)
1286 			vma_pagesize = fault_granule;
1287 		else
1288 			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1289 								   hva, &pfn,
1290 								   &fault_ipa);
1291 	}
1292 
1293 	if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1294 		/* Check the VMM hasn't introduced a new VM_SHARED VMA */
1295 		if (!shared)
1296 			ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
1297 		else
1298 			ret = -EFAULT;
1299 		if (ret)
1300 			goto out_unlock;
1301 	}
1302 
1303 	if (writable)
1304 		prot |= KVM_PGTABLE_PROT_W;
1305 
1306 	if (exec_fault)
1307 		prot |= KVM_PGTABLE_PROT_X;
1308 
1309 	if (device)
1310 		prot |= KVM_PGTABLE_PROT_DEVICE;
1311 	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1312 		prot |= KVM_PGTABLE_PROT_X;
1313 
1314 	/*
1315 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1316 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1317 	 * kvm_pgtable_stage2_map() should be called to change block size.
1318 	 */
1319 	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1320 		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1321 	} else {
1322 		WARN_ONCE(use_read_lock, "Attempted stage-2 map outside of write lock\n");
1323 
1324 		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1325 					     __pfn_to_phys(pfn), prot,
1326 					     memcache);
1327 	}
1328 
1329 	/* Mark the page dirty only if the fault is handled successfully */
1330 	if (writable && !ret) {
1331 		kvm_set_pfn_dirty(pfn);
1332 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1333 	}
1334 
1335 out_unlock:
1336 	if (use_read_lock)
1337 		read_unlock(&kvm->mmu_lock);
1338 	else
1339 		write_unlock(&kvm->mmu_lock);
1340 	kvm_set_pfn_accessed(pfn);
1341 	kvm_release_pfn_clean(pfn);
1342 	return ret != -EAGAIN ? ret : 0;
1343 }
1344 
1345 /* Resolve the access fault by making the page young again. */
1346 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1347 {
1348 	pte_t pte;
1349 	kvm_pte_t kpte;
1350 	struct kvm_s2_mmu *mmu;
1351 
1352 	trace_kvm_access_fault(fault_ipa);
1353 
1354 	write_lock(&vcpu->kvm->mmu_lock);
1355 	mmu = vcpu->arch.hw_mmu;
1356 	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1357 	write_unlock(&vcpu->kvm->mmu_lock);
1358 
1359 	pte = __pte(kpte);
1360 	if (pte_valid(pte))
1361 		kvm_set_pfn_accessed(pte_pfn(pte));
1362 }
1363 
1364 /**
1365  * kvm_handle_guest_abort - handles all 2nd stage aborts
1366  * @vcpu:	the VCPU pointer
1367  *
1368  * Any abort that gets to the host is almost guaranteed to be caused by a
1369  * missing second stage translation table entry, which can mean that either the
1370  * guest simply needs more memory and we must allocate an appropriate page or it
1371  * can mean that the guest tried to access I/O memory, which is emulated by user
1372  * space. The distinction is based on the IPA causing the fault and whether this
1373  * memory region has been registered as standard RAM by user space.
1374  */
1375 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1376 {
1377 	unsigned long fault_status;
1378 	phys_addr_t fault_ipa;
1379 	struct kvm_memory_slot *memslot;
1380 	unsigned long hva;
1381 	bool is_iabt, write_fault, writable;
1382 	gfn_t gfn;
1383 	int ret, idx;
1384 
1385 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1386 
1387 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1388 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1389 
1390 	if (fault_status == FSC_FAULT) {
1391 		/* Beyond sanitised PARange (which is the IPA limit) */
1392 		if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1393 			kvm_inject_size_fault(vcpu);
1394 			return 1;
1395 		}
1396 
1397 		/* Falls between the IPA range and the PARange? */
1398 		if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1399 			fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1400 
1401 			if (is_iabt)
1402 				kvm_inject_pabt(vcpu, fault_ipa);
1403 			else
1404 				kvm_inject_dabt(vcpu, fault_ipa);
1405 			return 1;
1406 		}
1407 	}
1408 
1409 	/* Synchronous External Abort? */
1410 	if (kvm_vcpu_abt_issea(vcpu)) {
1411 		/*
1412 		 * For RAS the host kernel may handle this abort.
1413 		 * There is no need to pass the error into the guest.
1414 		 */
1415 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1416 			kvm_inject_vabt(vcpu);
1417 
1418 		return 1;
1419 	}
1420 
1421 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1422 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1423 
1424 	/* Check the stage-2 fault is trans. fault or write fault */
1425 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1426 	    fault_status != FSC_ACCESS) {
1427 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1428 			kvm_vcpu_trap_get_class(vcpu),
1429 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1430 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1431 		return -EFAULT;
1432 	}
1433 
1434 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1435 
1436 	gfn = fault_ipa >> PAGE_SHIFT;
1437 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1438 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1439 	write_fault = kvm_is_write_fault(vcpu);
1440 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1441 		/*
1442 		 * The guest has put either its instructions or its page-tables
1443 		 * somewhere it shouldn't have. Userspace won't be able to do
1444 		 * anything about this (there's no syndrome for a start), so
1445 		 * re-inject the abort back into the guest.
1446 		 */
1447 		if (is_iabt) {
1448 			ret = -ENOEXEC;
1449 			goto out;
1450 		}
1451 
1452 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1453 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1454 			ret = 1;
1455 			goto out_unlock;
1456 		}
1457 
1458 		/*
1459 		 * Check for a cache maintenance operation. Since we
1460 		 * ended-up here, we know it is outside of any memory
1461 		 * slot. But we can't find out if that is for a device,
1462 		 * or if the guest is just being stupid. The only thing
1463 		 * we know for sure is that this range cannot be cached.
1464 		 *
1465 		 * So let's assume that the guest is just being
1466 		 * cautious, and skip the instruction.
1467 		 */
1468 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1469 			kvm_incr_pc(vcpu);
1470 			ret = 1;
1471 			goto out_unlock;
1472 		}
1473 
1474 		/*
1475 		 * The IPA is reported as [MAX:12], so we need to
1476 		 * complement it with the bottom 12 bits from the
1477 		 * faulting VA. This is always 12 bits, irrespective
1478 		 * of the page size.
1479 		 */
1480 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1481 		ret = io_mem_abort(vcpu, fault_ipa);
1482 		goto out_unlock;
1483 	}
1484 
1485 	/* Userspace should not be able to register out-of-bounds IPAs */
1486 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1487 
1488 	if (fault_status == FSC_ACCESS) {
1489 		handle_access_fault(vcpu, fault_ipa);
1490 		ret = 1;
1491 		goto out_unlock;
1492 	}
1493 
1494 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1495 	if (ret == 0)
1496 		ret = 1;
1497 out:
1498 	if (ret == -ENOEXEC) {
1499 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1500 		ret = 1;
1501 	}
1502 out_unlock:
1503 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1504 	return ret;
1505 }
1506 
1507 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1508 {
1509 	if (!kvm->arch.mmu.pgt)
1510 		return false;
1511 
1512 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1513 			     (range->end - range->start) << PAGE_SHIFT,
1514 			     range->may_block);
1515 
1516 	return false;
1517 }
1518 
1519 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1520 {
1521 	kvm_pfn_t pfn = pte_pfn(range->pte);
1522 	int ret;
1523 
1524 	if (!kvm->arch.mmu.pgt)
1525 		return false;
1526 
1527 	WARN_ON(range->end - range->start != 1);
1528 
1529 	ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE);
1530 	if (ret)
1531 		return false;
1532 
1533 	/*
1534 	 * We've moved a page around, probably through CoW, so let's treat
1535 	 * it just like a translation fault and the map handler will clean
1536 	 * the cache to the PoC.
1537 	 *
1538 	 * The MMU notifiers will have unmapped a huge PMD before calling
1539 	 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1540 	 * therefore we never need to clear out a huge PMD through this
1541 	 * calling path and a memcache is not required.
1542 	 */
1543 	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1544 			       PAGE_SIZE, __pfn_to_phys(pfn),
1545 			       KVM_PGTABLE_PROT_R, NULL);
1546 
1547 	return false;
1548 }
1549 
1550 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1551 {
1552 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1553 	kvm_pte_t kpte;
1554 	pte_t pte;
1555 
1556 	if (!kvm->arch.mmu.pgt)
1557 		return false;
1558 
1559 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1560 
1561 	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1562 					range->start << PAGE_SHIFT);
1563 	pte = __pte(kpte);
1564 	return pte_valid(pte) && pte_young(pte);
1565 }
1566 
1567 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1568 {
1569 	if (!kvm->arch.mmu.pgt)
1570 		return false;
1571 
1572 	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1573 					   range->start << PAGE_SHIFT);
1574 }
1575 
1576 phys_addr_t kvm_mmu_get_httbr(void)
1577 {
1578 	return __pa(hyp_pgtable->pgd);
1579 }
1580 
1581 phys_addr_t kvm_get_idmap_vector(void)
1582 {
1583 	return hyp_idmap_vector;
1584 }
1585 
1586 static int kvm_map_idmap_text(void)
1587 {
1588 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1589 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1590 					PAGE_HYP_EXEC);
1591 	if (err)
1592 		kvm_err("Failed to idmap %lx-%lx\n",
1593 			hyp_idmap_start, hyp_idmap_end);
1594 
1595 	return err;
1596 }
1597 
1598 static void *kvm_hyp_zalloc_page(void *arg)
1599 {
1600 	return (void *)get_zeroed_page(GFP_KERNEL);
1601 }
1602 
1603 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1604 	.zalloc_page		= kvm_hyp_zalloc_page,
1605 	.get_page		= kvm_host_get_page,
1606 	.put_page		= kvm_host_put_page,
1607 	.phys_to_virt		= kvm_host_va,
1608 	.virt_to_phys		= kvm_host_pa,
1609 };
1610 
1611 int kvm_mmu_init(u32 *hyp_va_bits)
1612 {
1613 	int err;
1614 
1615 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1616 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1617 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1618 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1619 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1620 
1621 	/*
1622 	 * We rely on the linker script to ensure at build time that the HYP
1623 	 * init code does not cross a page boundary.
1624 	 */
1625 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1626 
1627 	*hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1628 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1629 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1630 	kvm_debug("HYP VA range: %lx:%lx\n",
1631 		  kern_hyp_va(PAGE_OFFSET),
1632 		  kern_hyp_va((unsigned long)high_memory - 1));
1633 
1634 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1635 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1636 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1637 		/*
1638 		 * The idmap page is intersecting with the VA space,
1639 		 * it is not safe to continue further.
1640 		 */
1641 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1642 		err = -EINVAL;
1643 		goto out;
1644 	}
1645 
1646 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1647 	if (!hyp_pgtable) {
1648 		kvm_err("Hyp mode page-table not allocated\n");
1649 		err = -ENOMEM;
1650 		goto out;
1651 	}
1652 
1653 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1654 	if (err)
1655 		goto out_free_pgtable;
1656 
1657 	err = kvm_map_idmap_text();
1658 	if (err)
1659 		goto out_destroy_pgtable;
1660 
1661 	io_map_base = hyp_idmap_start;
1662 	return 0;
1663 
1664 out_destroy_pgtable:
1665 	kvm_pgtable_hyp_destroy(hyp_pgtable);
1666 out_free_pgtable:
1667 	kfree(hyp_pgtable);
1668 	hyp_pgtable = NULL;
1669 out:
1670 	return err;
1671 }
1672 
1673 void kvm_arch_commit_memory_region(struct kvm *kvm,
1674 				   struct kvm_memory_slot *old,
1675 				   const struct kvm_memory_slot *new,
1676 				   enum kvm_mr_change change)
1677 {
1678 	/*
1679 	 * At this point memslot has been committed and there is an
1680 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1681 	 * memory slot is write protected.
1682 	 */
1683 	if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1684 		/*
1685 		 * If we're with initial-all-set, we don't need to write
1686 		 * protect any pages because they're all reported as dirty.
1687 		 * Huge pages and normal pages will be write protect gradually.
1688 		 */
1689 		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1690 			kvm_mmu_wp_memory_region(kvm, new->id);
1691 		}
1692 	}
1693 }
1694 
1695 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1696 				   const struct kvm_memory_slot *old,
1697 				   struct kvm_memory_slot *new,
1698 				   enum kvm_mr_change change)
1699 {
1700 	hva_t hva, reg_end;
1701 	int ret = 0;
1702 
1703 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1704 			change != KVM_MR_FLAGS_ONLY)
1705 		return 0;
1706 
1707 	/*
1708 	 * Prevent userspace from creating a memory region outside of the IPA
1709 	 * space addressable by the KVM guest IPA space.
1710 	 */
1711 	if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1712 		return -EFAULT;
1713 
1714 	hva = new->userspace_addr;
1715 	reg_end = hva + (new->npages << PAGE_SHIFT);
1716 
1717 	mmap_read_lock(current->mm);
1718 	/*
1719 	 * A memory region could potentially cover multiple VMAs, and any holes
1720 	 * between them, so iterate over all of them.
1721 	 *
1722 	 *     +--------------------------------------------+
1723 	 * +---------------+----------------+   +----------------+
1724 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1725 	 * +---------------+----------------+   +----------------+
1726 	 *     |               memory region                |
1727 	 *     +--------------------------------------------+
1728 	 */
1729 	do {
1730 		struct vm_area_struct *vma;
1731 
1732 		vma = find_vma_intersection(current->mm, hva, reg_end);
1733 		if (!vma)
1734 			break;
1735 
1736 		/*
1737 		 * VM_SHARED mappings are not allowed with MTE to avoid races
1738 		 * when updating the PG_mte_tagged page flag, see
1739 		 * sanitise_mte_tags for more details.
1740 		 */
1741 		if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) {
1742 			ret = -EINVAL;
1743 			break;
1744 		}
1745 
1746 		if (vma->vm_flags & VM_PFNMAP) {
1747 			/* IO region dirty page logging not allowed */
1748 			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1749 				ret = -EINVAL;
1750 				break;
1751 			}
1752 		}
1753 		hva = min(reg_end, vma->vm_end);
1754 	} while (hva < reg_end);
1755 
1756 	mmap_read_unlock(current->mm);
1757 	return ret;
1758 }
1759 
1760 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1761 {
1762 }
1763 
1764 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1765 {
1766 }
1767 
1768 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1769 {
1770 	kvm_free_stage2_pgd(&kvm->arch.mmu);
1771 }
1772 
1773 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1774 				   struct kvm_memory_slot *slot)
1775 {
1776 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1777 	phys_addr_t size = slot->npages << PAGE_SHIFT;
1778 
1779 	write_lock(&kvm->mmu_lock);
1780 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1781 	write_unlock(&kvm->mmu_lock);
1782 }
1783 
1784 /*
1785  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1786  *
1787  * Main problems:
1788  * - S/W ops are local to a CPU (not broadcast)
1789  * - We have line migration behind our back (speculation)
1790  * - System caches don't support S/W at all (damn!)
1791  *
1792  * In the face of the above, the best we can do is to try and convert
1793  * S/W ops to VA ops. Because the guest is not allowed to infer the
1794  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1795  * which is a rather good thing for us.
1796  *
1797  * Also, it is only used when turning caches on/off ("The expected
1798  * usage of the cache maintenance instructions that operate by set/way
1799  * is associated with the cache maintenance instructions associated
1800  * with the powerdown and powerup of caches, if this is required by
1801  * the implementation.").
1802  *
1803  * We use the following policy:
1804  *
1805  * - If we trap a S/W operation, we enable VM trapping to detect
1806  *   caches being turned on/off, and do a full clean.
1807  *
1808  * - We flush the caches on both caches being turned on and off.
1809  *
1810  * - Once the caches are enabled, we stop trapping VM ops.
1811  */
1812 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1813 {
1814 	unsigned long hcr = *vcpu_hcr(vcpu);
1815 
1816 	/*
1817 	 * If this is the first time we do a S/W operation
1818 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1819 	 * VM trapping.
1820 	 *
1821 	 * Otherwise, rely on the VM trapping to wait for the MMU +
1822 	 * Caches to be turned off. At that point, we'll be able to
1823 	 * clean the caches again.
1824 	 */
1825 	if (!(hcr & HCR_TVM)) {
1826 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1827 					vcpu_has_cache_enabled(vcpu));
1828 		stage2_flush_vm(vcpu->kvm);
1829 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1830 	}
1831 }
1832 
1833 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1834 {
1835 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1836 
1837 	/*
1838 	 * If switching the MMU+caches on, need to invalidate the caches.
1839 	 * If switching it off, need to clean the caches.
1840 	 * Clean + invalidate does the trick always.
1841 	 */
1842 	if (now_enabled != was_enabled)
1843 		stage2_flush_vm(vcpu->kvm);
1844 
1845 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1846 	if (now_enabled)
1847 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1848 
1849 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1850 }
1851