1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_ras.h> 18 #include <asm/kvm_asm.h> 19 #include <asm/kvm_emulate.h> 20 #include <asm/virt.h> 21 22 #include "trace.h" 23 24 static pgd_t *boot_hyp_pgd; 25 static pgd_t *hyp_pgd; 26 static pgd_t *merged_hyp_pgd; 27 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 28 29 static unsigned long hyp_idmap_start; 30 static unsigned long hyp_idmap_end; 31 static phys_addr_t hyp_idmap_vector; 32 33 static unsigned long io_map_base; 34 35 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t)) 36 37 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0) 38 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1) 39 40 static bool is_iomap(unsigned long flags) 41 { 42 return flags & KVM_S2PTE_FLAG_IS_IOMAP; 43 } 44 45 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 46 { 47 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 48 } 49 50 /** 51 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 52 * @kvm: pointer to kvm structure. 53 * 54 * Interface to HYP function to flush all VM TLB entries 55 */ 56 void kvm_flush_remote_tlbs(struct kvm *kvm) 57 { 58 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 59 } 60 61 static void kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa, 62 int level) 63 { 64 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ipa, level); 65 } 66 67 /* 68 * D-Cache management functions. They take the page table entries by 69 * value, as they are flushing the cache using the kernel mapping (or 70 * kmap on 32bit). 71 */ 72 static void kvm_flush_dcache_pte(pte_t pte) 73 { 74 __kvm_flush_dcache_pte(pte); 75 } 76 77 static void kvm_flush_dcache_pmd(pmd_t pmd) 78 { 79 __kvm_flush_dcache_pmd(pmd); 80 } 81 82 static void kvm_flush_dcache_pud(pud_t pud) 83 { 84 __kvm_flush_dcache_pud(pud); 85 } 86 87 static bool kvm_is_device_pfn(unsigned long pfn) 88 { 89 return !pfn_valid(pfn); 90 } 91 92 /** 93 * stage2_dissolve_pmd() - clear and flush huge PMD entry 94 * @mmu: pointer to mmu structure to operate on 95 * @addr: IPA 96 * @pmd: pmd pointer for IPA 97 * 98 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. 99 */ 100 static void stage2_dissolve_pmd(struct kvm_s2_mmu *mmu, phys_addr_t addr, pmd_t *pmd) 101 { 102 if (!pmd_thp_or_huge(*pmd)) 103 return; 104 105 pmd_clear(pmd); 106 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL); 107 put_page(virt_to_page(pmd)); 108 } 109 110 /** 111 * stage2_dissolve_pud() - clear and flush huge PUD entry 112 * @mmu: pointer to mmu structure to operate on 113 * @addr: IPA 114 * @pud: pud pointer for IPA 115 * 116 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs. 117 */ 118 static void stage2_dissolve_pud(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t *pudp) 119 { 120 struct kvm *kvm = mmu->kvm; 121 122 if (!stage2_pud_huge(kvm, *pudp)) 123 return; 124 125 stage2_pud_clear(kvm, pudp); 126 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL); 127 put_page(virt_to_page(pudp)); 128 } 129 130 static void clear_stage2_pgd_entry(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr) 131 { 132 struct kvm *kvm = mmu->kvm; 133 p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL); 134 stage2_pgd_clear(kvm, pgd); 135 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); 136 stage2_p4d_free(kvm, p4d_table); 137 put_page(virt_to_page(pgd)); 138 } 139 140 static void clear_stage2_p4d_entry(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr) 141 { 142 struct kvm *kvm = mmu->kvm; 143 pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0); 144 stage2_p4d_clear(kvm, p4d); 145 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); 146 stage2_pud_free(kvm, pud_table); 147 put_page(virt_to_page(p4d)); 148 } 149 150 static void clear_stage2_pud_entry(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr) 151 { 152 struct kvm *kvm = mmu->kvm; 153 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0); 154 155 VM_BUG_ON(stage2_pud_huge(kvm, *pud)); 156 stage2_pud_clear(kvm, pud); 157 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); 158 stage2_pmd_free(kvm, pmd_table); 159 put_page(virt_to_page(pud)); 160 } 161 162 static void clear_stage2_pmd_entry(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr) 163 { 164 pte_t *pte_table = pte_offset_kernel(pmd, 0); 165 VM_BUG_ON(pmd_thp_or_huge(*pmd)); 166 pmd_clear(pmd); 167 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); 168 free_page((unsigned long)pte_table); 169 put_page(virt_to_page(pmd)); 170 } 171 172 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte) 173 { 174 WRITE_ONCE(*ptep, new_pte); 175 dsb(ishst); 176 } 177 178 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd) 179 { 180 WRITE_ONCE(*pmdp, new_pmd); 181 dsb(ishst); 182 } 183 184 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep) 185 { 186 kvm_set_pmd(pmdp, kvm_mk_pmd(ptep)); 187 } 188 189 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp) 190 { 191 WRITE_ONCE(*pudp, kvm_mk_pud(pmdp)); 192 dsb(ishst); 193 } 194 195 static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp) 196 { 197 WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp)); 198 dsb(ishst); 199 } 200 201 static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp) 202 { 203 #ifndef __PAGETABLE_P4D_FOLDED 204 WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp)); 205 dsb(ishst); 206 #endif 207 } 208 209 /* 210 * Unmapping vs dcache management: 211 * 212 * If a guest maps certain memory pages as uncached, all writes will 213 * bypass the data cache and go directly to RAM. However, the CPUs 214 * can still speculate reads (not writes) and fill cache lines with 215 * data. 216 * 217 * Those cache lines will be *clean* cache lines though, so a 218 * clean+invalidate operation is equivalent to an invalidate 219 * operation, because no cache lines are marked dirty. 220 * 221 * Those clean cache lines could be filled prior to an uncached write 222 * by the guest, and the cache coherent IO subsystem would therefore 223 * end up writing old data to disk. 224 * 225 * This is why right after unmapping a page/section and invalidating 226 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure 227 * the IO subsystem will never hit in the cache. 228 * 229 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 230 * we then fully enforce cacheability of RAM, no matter what the guest 231 * does. 232 */ 233 static void unmap_stage2_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd, 234 phys_addr_t addr, phys_addr_t end) 235 { 236 phys_addr_t start_addr = addr; 237 pte_t *pte, *start_pte; 238 239 start_pte = pte = pte_offset_kernel(pmd, addr); 240 do { 241 if (!pte_none(*pte)) { 242 pte_t old_pte = *pte; 243 244 kvm_set_pte(pte, __pte(0)); 245 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL); 246 247 /* No need to invalidate the cache for device mappings */ 248 if (!kvm_is_device_pfn(pte_pfn(old_pte))) 249 kvm_flush_dcache_pte(old_pte); 250 251 put_page(virt_to_page(pte)); 252 } 253 } while (pte++, addr += PAGE_SIZE, addr != end); 254 255 if (stage2_pte_table_empty(mmu->kvm, start_pte)) 256 clear_stage2_pmd_entry(mmu, pmd, start_addr); 257 } 258 259 static void unmap_stage2_pmds(struct kvm_s2_mmu *mmu, pud_t *pud, 260 phys_addr_t addr, phys_addr_t end) 261 { 262 struct kvm *kvm = mmu->kvm; 263 phys_addr_t next, start_addr = addr; 264 pmd_t *pmd, *start_pmd; 265 266 start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr); 267 do { 268 next = stage2_pmd_addr_end(kvm, addr, end); 269 if (!pmd_none(*pmd)) { 270 if (pmd_thp_or_huge(*pmd)) { 271 pmd_t old_pmd = *pmd; 272 273 pmd_clear(pmd); 274 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL); 275 276 kvm_flush_dcache_pmd(old_pmd); 277 278 put_page(virt_to_page(pmd)); 279 } else { 280 unmap_stage2_ptes(mmu, pmd, addr, next); 281 } 282 } 283 } while (pmd++, addr = next, addr != end); 284 285 if (stage2_pmd_table_empty(kvm, start_pmd)) 286 clear_stage2_pud_entry(mmu, pud, start_addr); 287 } 288 289 static void unmap_stage2_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d, 290 phys_addr_t addr, phys_addr_t end) 291 { 292 struct kvm *kvm = mmu->kvm; 293 phys_addr_t next, start_addr = addr; 294 pud_t *pud, *start_pud; 295 296 start_pud = pud = stage2_pud_offset(kvm, p4d, addr); 297 do { 298 next = stage2_pud_addr_end(kvm, addr, end); 299 if (!stage2_pud_none(kvm, *pud)) { 300 if (stage2_pud_huge(kvm, *pud)) { 301 pud_t old_pud = *pud; 302 303 stage2_pud_clear(kvm, pud); 304 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL); 305 kvm_flush_dcache_pud(old_pud); 306 put_page(virt_to_page(pud)); 307 } else { 308 unmap_stage2_pmds(mmu, pud, addr, next); 309 } 310 } 311 } while (pud++, addr = next, addr != end); 312 313 if (stage2_pud_table_empty(kvm, start_pud)) 314 clear_stage2_p4d_entry(mmu, p4d, start_addr); 315 } 316 317 static void unmap_stage2_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd, 318 phys_addr_t addr, phys_addr_t end) 319 { 320 struct kvm *kvm = mmu->kvm; 321 phys_addr_t next, start_addr = addr; 322 p4d_t *p4d, *start_p4d; 323 324 start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr); 325 do { 326 next = stage2_p4d_addr_end(kvm, addr, end); 327 if (!stage2_p4d_none(kvm, *p4d)) 328 unmap_stage2_puds(mmu, p4d, addr, next); 329 } while (p4d++, addr = next, addr != end); 330 331 if (stage2_p4d_table_empty(kvm, start_p4d)) 332 clear_stage2_pgd_entry(mmu, pgd, start_addr); 333 } 334 335 /** 336 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 337 * @kvm: The VM pointer 338 * @start: The intermediate physical base address of the range to unmap 339 * @size: The size of the area to unmap 340 * 341 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 342 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 343 * destroying the VM), otherwise another faulting VCPU may come in and mess 344 * with things behind our backs. 345 */ 346 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 347 { 348 struct kvm *kvm = mmu->kvm; 349 pgd_t *pgd; 350 phys_addr_t addr = start, end = start + size; 351 phys_addr_t next; 352 353 assert_spin_locked(&kvm->mmu_lock); 354 WARN_ON(size & ~PAGE_MASK); 355 356 pgd = mmu->pgd + stage2_pgd_index(kvm, addr); 357 do { 358 /* 359 * Make sure the page table is still active, as another thread 360 * could have possibly freed the page table, while we released 361 * the lock. 362 */ 363 if (!READ_ONCE(mmu->pgd)) 364 break; 365 next = stage2_pgd_addr_end(kvm, addr, end); 366 if (!stage2_pgd_none(kvm, *pgd)) 367 unmap_stage2_p4ds(mmu, pgd, addr, next); 368 /* 369 * If the range is too large, release the kvm->mmu_lock 370 * to prevent starvation and lockup detector warnings. 371 */ 372 if (next != end) 373 cond_resched_lock(&kvm->mmu_lock); 374 } while (pgd++, addr = next, addr != end); 375 } 376 377 static void stage2_flush_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd, 378 phys_addr_t addr, phys_addr_t end) 379 { 380 pte_t *pte; 381 382 pte = pte_offset_kernel(pmd, addr); 383 do { 384 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte))) 385 kvm_flush_dcache_pte(*pte); 386 } while (pte++, addr += PAGE_SIZE, addr != end); 387 } 388 389 static void stage2_flush_pmds(struct kvm_s2_mmu *mmu, pud_t *pud, 390 phys_addr_t addr, phys_addr_t end) 391 { 392 struct kvm *kvm = mmu->kvm; 393 pmd_t *pmd; 394 phys_addr_t next; 395 396 pmd = stage2_pmd_offset(kvm, pud, addr); 397 do { 398 next = stage2_pmd_addr_end(kvm, addr, end); 399 if (!pmd_none(*pmd)) { 400 if (pmd_thp_or_huge(*pmd)) 401 kvm_flush_dcache_pmd(*pmd); 402 else 403 stage2_flush_ptes(mmu, pmd, addr, next); 404 } 405 } while (pmd++, addr = next, addr != end); 406 } 407 408 static void stage2_flush_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d, 409 phys_addr_t addr, phys_addr_t end) 410 { 411 struct kvm *kvm = mmu->kvm; 412 pud_t *pud; 413 phys_addr_t next; 414 415 pud = stage2_pud_offset(kvm, p4d, addr); 416 do { 417 next = stage2_pud_addr_end(kvm, addr, end); 418 if (!stage2_pud_none(kvm, *pud)) { 419 if (stage2_pud_huge(kvm, *pud)) 420 kvm_flush_dcache_pud(*pud); 421 else 422 stage2_flush_pmds(mmu, pud, addr, next); 423 } 424 } while (pud++, addr = next, addr != end); 425 } 426 427 static void stage2_flush_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd, 428 phys_addr_t addr, phys_addr_t end) 429 { 430 struct kvm *kvm = mmu->kvm; 431 p4d_t *p4d; 432 phys_addr_t next; 433 434 p4d = stage2_p4d_offset(kvm, pgd, addr); 435 do { 436 next = stage2_p4d_addr_end(kvm, addr, end); 437 if (!stage2_p4d_none(kvm, *p4d)) 438 stage2_flush_puds(mmu, p4d, addr, next); 439 } while (p4d++, addr = next, addr != end); 440 } 441 442 static void stage2_flush_memslot(struct kvm *kvm, 443 struct kvm_memory_slot *memslot) 444 { 445 struct kvm_s2_mmu *mmu = &kvm->arch.mmu; 446 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 447 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 448 phys_addr_t next; 449 pgd_t *pgd; 450 451 pgd = mmu->pgd + stage2_pgd_index(kvm, addr); 452 do { 453 next = stage2_pgd_addr_end(kvm, addr, end); 454 if (!stage2_pgd_none(kvm, *pgd)) 455 stage2_flush_p4ds(mmu, pgd, addr, next); 456 457 if (next != end) 458 cond_resched_lock(&kvm->mmu_lock); 459 } while (pgd++, addr = next, addr != end); 460 } 461 462 /** 463 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 464 * @kvm: The struct kvm pointer 465 * 466 * Go through the stage 2 page tables and invalidate any cache lines 467 * backing memory already mapped to the VM. 468 */ 469 static void stage2_flush_vm(struct kvm *kvm) 470 { 471 struct kvm_memslots *slots; 472 struct kvm_memory_slot *memslot; 473 int idx; 474 475 idx = srcu_read_lock(&kvm->srcu); 476 spin_lock(&kvm->mmu_lock); 477 478 slots = kvm_memslots(kvm); 479 kvm_for_each_memslot(memslot, slots) 480 stage2_flush_memslot(kvm, memslot); 481 482 spin_unlock(&kvm->mmu_lock); 483 srcu_read_unlock(&kvm->srcu, idx); 484 } 485 486 static void clear_hyp_pgd_entry(pgd_t *pgd) 487 { 488 p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL); 489 pgd_clear(pgd); 490 p4d_free(NULL, p4d_table); 491 put_page(virt_to_page(pgd)); 492 } 493 494 static void clear_hyp_p4d_entry(p4d_t *p4d) 495 { 496 pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL); 497 VM_BUG_ON(p4d_huge(*p4d)); 498 p4d_clear(p4d); 499 pud_free(NULL, pud_table); 500 put_page(virt_to_page(p4d)); 501 } 502 503 static void clear_hyp_pud_entry(pud_t *pud) 504 { 505 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0); 506 VM_BUG_ON(pud_huge(*pud)); 507 pud_clear(pud); 508 pmd_free(NULL, pmd_table); 509 put_page(virt_to_page(pud)); 510 } 511 512 static void clear_hyp_pmd_entry(pmd_t *pmd) 513 { 514 pte_t *pte_table = pte_offset_kernel(pmd, 0); 515 VM_BUG_ON(pmd_thp_or_huge(*pmd)); 516 pmd_clear(pmd); 517 pte_free_kernel(NULL, pte_table); 518 put_page(virt_to_page(pmd)); 519 } 520 521 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) 522 { 523 pte_t *pte, *start_pte; 524 525 start_pte = pte = pte_offset_kernel(pmd, addr); 526 do { 527 if (!pte_none(*pte)) { 528 kvm_set_pte(pte, __pte(0)); 529 put_page(virt_to_page(pte)); 530 } 531 } while (pte++, addr += PAGE_SIZE, addr != end); 532 533 if (hyp_pte_table_empty(start_pte)) 534 clear_hyp_pmd_entry(pmd); 535 } 536 537 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end) 538 { 539 phys_addr_t next; 540 pmd_t *pmd, *start_pmd; 541 542 start_pmd = pmd = pmd_offset(pud, addr); 543 do { 544 next = pmd_addr_end(addr, end); 545 /* Hyp doesn't use huge pmds */ 546 if (!pmd_none(*pmd)) 547 unmap_hyp_ptes(pmd, addr, next); 548 } while (pmd++, addr = next, addr != end); 549 550 if (hyp_pmd_table_empty(start_pmd)) 551 clear_hyp_pud_entry(pud); 552 } 553 554 static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end) 555 { 556 phys_addr_t next; 557 pud_t *pud, *start_pud; 558 559 start_pud = pud = pud_offset(p4d, addr); 560 do { 561 next = pud_addr_end(addr, end); 562 /* Hyp doesn't use huge puds */ 563 if (!pud_none(*pud)) 564 unmap_hyp_pmds(pud, addr, next); 565 } while (pud++, addr = next, addr != end); 566 567 if (hyp_pud_table_empty(start_pud)) 568 clear_hyp_p4d_entry(p4d); 569 } 570 571 static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end) 572 { 573 phys_addr_t next; 574 p4d_t *p4d, *start_p4d; 575 576 start_p4d = p4d = p4d_offset(pgd, addr); 577 do { 578 next = p4d_addr_end(addr, end); 579 /* Hyp doesn't use huge p4ds */ 580 if (!p4d_none(*p4d)) 581 unmap_hyp_puds(p4d, addr, next); 582 } while (p4d++, addr = next, addr != end); 583 584 if (hyp_p4d_table_empty(start_p4d)) 585 clear_hyp_pgd_entry(pgd); 586 } 587 588 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd) 589 { 590 return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1); 591 } 592 593 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd, 594 phys_addr_t start, u64 size) 595 { 596 pgd_t *pgd; 597 phys_addr_t addr = start, end = start + size; 598 phys_addr_t next; 599 600 /* 601 * We don't unmap anything from HYP, except at the hyp tear down. 602 * Hence, we don't have to invalidate the TLBs here. 603 */ 604 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); 605 do { 606 next = pgd_addr_end(addr, end); 607 if (!pgd_none(*pgd)) 608 unmap_hyp_p4ds(pgd, addr, next); 609 } while (pgd++, addr = next, addr != end); 610 } 611 612 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size) 613 { 614 __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size); 615 } 616 617 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size) 618 { 619 __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size); 620 } 621 622 /** 623 * free_hyp_pgds - free Hyp-mode page tables 624 * 625 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and 626 * therefore contains either mappings in the kernel memory area (above 627 * PAGE_OFFSET), or device mappings in the idmap range. 628 * 629 * boot_hyp_pgd should only map the idmap range, and is only used in 630 * the extended idmap case. 631 */ 632 void free_hyp_pgds(void) 633 { 634 pgd_t *id_pgd; 635 636 mutex_lock(&kvm_hyp_pgd_mutex); 637 638 id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd; 639 640 if (id_pgd) { 641 /* In case we never called hyp_mmu_init() */ 642 if (!io_map_base) 643 io_map_base = hyp_idmap_start; 644 unmap_hyp_idmap_range(id_pgd, io_map_base, 645 hyp_idmap_start + PAGE_SIZE - io_map_base); 646 } 647 648 if (boot_hyp_pgd) { 649 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order); 650 boot_hyp_pgd = NULL; 651 } 652 653 if (hyp_pgd) { 654 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET), 655 (uintptr_t)high_memory - PAGE_OFFSET); 656 657 free_pages((unsigned long)hyp_pgd, hyp_pgd_order); 658 hyp_pgd = NULL; 659 } 660 if (merged_hyp_pgd) { 661 clear_page(merged_hyp_pgd); 662 free_page((unsigned long)merged_hyp_pgd); 663 merged_hyp_pgd = NULL; 664 } 665 666 mutex_unlock(&kvm_hyp_pgd_mutex); 667 } 668 669 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start, 670 unsigned long end, unsigned long pfn, 671 pgprot_t prot) 672 { 673 pte_t *pte; 674 unsigned long addr; 675 676 addr = start; 677 do { 678 pte = pte_offset_kernel(pmd, addr); 679 kvm_set_pte(pte, kvm_pfn_pte(pfn, prot)); 680 get_page(virt_to_page(pte)); 681 pfn++; 682 } while (addr += PAGE_SIZE, addr != end); 683 } 684 685 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start, 686 unsigned long end, unsigned long pfn, 687 pgprot_t prot) 688 { 689 pmd_t *pmd; 690 pte_t *pte; 691 unsigned long addr, next; 692 693 addr = start; 694 do { 695 pmd = pmd_offset(pud, addr); 696 697 BUG_ON(pmd_sect(*pmd)); 698 699 if (pmd_none(*pmd)) { 700 pte = pte_alloc_one_kernel(NULL); 701 if (!pte) { 702 kvm_err("Cannot allocate Hyp pte\n"); 703 return -ENOMEM; 704 } 705 kvm_pmd_populate(pmd, pte); 706 get_page(virt_to_page(pmd)); 707 } 708 709 next = pmd_addr_end(addr, end); 710 711 create_hyp_pte_mappings(pmd, addr, next, pfn, prot); 712 pfn += (next - addr) >> PAGE_SHIFT; 713 } while (addr = next, addr != end); 714 715 return 0; 716 } 717 718 static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start, 719 unsigned long end, unsigned long pfn, 720 pgprot_t prot) 721 { 722 pud_t *pud; 723 pmd_t *pmd; 724 unsigned long addr, next; 725 int ret; 726 727 addr = start; 728 do { 729 pud = pud_offset(p4d, addr); 730 731 if (pud_none_or_clear_bad(pud)) { 732 pmd = pmd_alloc_one(NULL, addr); 733 if (!pmd) { 734 kvm_err("Cannot allocate Hyp pmd\n"); 735 return -ENOMEM; 736 } 737 kvm_pud_populate(pud, pmd); 738 get_page(virt_to_page(pud)); 739 } 740 741 next = pud_addr_end(addr, end); 742 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot); 743 if (ret) 744 return ret; 745 pfn += (next - addr) >> PAGE_SHIFT; 746 } while (addr = next, addr != end); 747 748 return 0; 749 } 750 751 static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start, 752 unsigned long end, unsigned long pfn, 753 pgprot_t prot) 754 { 755 p4d_t *p4d; 756 pud_t *pud; 757 unsigned long addr, next; 758 int ret; 759 760 addr = start; 761 do { 762 p4d = p4d_offset(pgd, addr); 763 764 if (p4d_none(*p4d)) { 765 pud = pud_alloc_one(NULL, addr); 766 if (!pud) { 767 kvm_err("Cannot allocate Hyp pud\n"); 768 return -ENOMEM; 769 } 770 kvm_p4d_populate(p4d, pud); 771 get_page(virt_to_page(p4d)); 772 } 773 774 next = p4d_addr_end(addr, end); 775 ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot); 776 if (ret) 777 return ret; 778 pfn += (next - addr) >> PAGE_SHIFT; 779 } while (addr = next, addr != end); 780 781 return 0; 782 } 783 784 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd, 785 unsigned long start, unsigned long end, 786 unsigned long pfn, pgprot_t prot) 787 { 788 pgd_t *pgd; 789 p4d_t *p4d; 790 unsigned long addr, next; 791 int err = 0; 792 793 mutex_lock(&kvm_hyp_pgd_mutex); 794 addr = start & PAGE_MASK; 795 end = PAGE_ALIGN(end); 796 do { 797 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); 798 799 if (pgd_none(*pgd)) { 800 p4d = p4d_alloc_one(NULL, addr); 801 if (!p4d) { 802 kvm_err("Cannot allocate Hyp p4d\n"); 803 err = -ENOMEM; 804 goto out; 805 } 806 kvm_pgd_populate(pgd, p4d); 807 get_page(virt_to_page(pgd)); 808 } 809 810 next = pgd_addr_end(addr, end); 811 err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot); 812 if (err) 813 goto out; 814 pfn += (next - addr) >> PAGE_SHIFT; 815 } while (addr = next, addr != end); 816 out: 817 mutex_unlock(&kvm_hyp_pgd_mutex); 818 return err; 819 } 820 821 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 822 { 823 if (!is_vmalloc_addr(kaddr)) { 824 BUG_ON(!virt_addr_valid(kaddr)); 825 return __pa(kaddr); 826 } else { 827 return page_to_phys(vmalloc_to_page(kaddr)) + 828 offset_in_page(kaddr); 829 } 830 } 831 832 /** 833 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 834 * @from: The virtual kernel start address of the range 835 * @to: The virtual kernel end address of the range (exclusive) 836 * @prot: The protection to be applied to this range 837 * 838 * The same virtual address as the kernel virtual address is also used 839 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 840 * physical pages. 841 */ 842 int create_hyp_mappings(void *from, void *to, pgprot_t prot) 843 { 844 phys_addr_t phys_addr; 845 unsigned long virt_addr; 846 unsigned long start = kern_hyp_va((unsigned long)from); 847 unsigned long end = kern_hyp_va((unsigned long)to); 848 849 if (is_kernel_in_hyp_mode()) 850 return 0; 851 852 start = start & PAGE_MASK; 853 end = PAGE_ALIGN(end); 854 855 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 856 int err; 857 858 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 859 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD, 860 virt_addr, virt_addr + PAGE_SIZE, 861 __phys_to_pfn(phys_addr), 862 prot); 863 if (err) 864 return err; 865 } 866 867 return 0; 868 } 869 870 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 871 unsigned long *haddr, pgprot_t prot) 872 { 873 pgd_t *pgd = hyp_pgd; 874 unsigned long base; 875 int ret = 0; 876 877 mutex_lock(&kvm_hyp_pgd_mutex); 878 879 /* 880 * This assumes that we have enough space below the idmap 881 * page to allocate our VAs. If not, the check below will 882 * kick. A potential alternative would be to detect that 883 * overflow and switch to an allocation above the idmap. 884 * 885 * The allocated size is always a multiple of PAGE_SIZE. 886 */ 887 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 888 base = io_map_base - size; 889 890 /* 891 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 892 * allocating the new area, as it would indicate we've 893 * overflowed the idmap/IO address range. 894 */ 895 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 896 ret = -ENOMEM; 897 else 898 io_map_base = base; 899 900 mutex_unlock(&kvm_hyp_pgd_mutex); 901 902 if (ret) 903 goto out; 904 905 if (__kvm_cpu_uses_extended_idmap()) 906 pgd = boot_hyp_pgd; 907 908 ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), 909 base, base + size, 910 __phys_to_pfn(phys_addr), prot); 911 if (ret) 912 goto out; 913 914 *haddr = base + offset_in_page(phys_addr); 915 916 out: 917 return ret; 918 } 919 920 /** 921 * create_hyp_io_mappings - Map IO into both kernel and HYP 922 * @phys_addr: The physical start address which gets mapped 923 * @size: Size of the region being mapped 924 * @kaddr: Kernel VA for this mapping 925 * @haddr: HYP VA for this mapping 926 */ 927 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 928 void __iomem **kaddr, 929 void __iomem **haddr) 930 { 931 unsigned long addr; 932 int ret; 933 934 *kaddr = ioremap(phys_addr, size); 935 if (!*kaddr) 936 return -ENOMEM; 937 938 if (is_kernel_in_hyp_mode()) { 939 *haddr = *kaddr; 940 return 0; 941 } 942 943 ret = __create_hyp_private_mapping(phys_addr, size, 944 &addr, PAGE_HYP_DEVICE); 945 if (ret) { 946 iounmap(*kaddr); 947 *kaddr = NULL; 948 *haddr = NULL; 949 return ret; 950 } 951 952 *haddr = (void __iomem *)addr; 953 return 0; 954 } 955 956 /** 957 * create_hyp_exec_mappings - Map an executable range into HYP 958 * @phys_addr: The physical start address which gets mapped 959 * @size: Size of the region being mapped 960 * @haddr: HYP VA for this mapping 961 */ 962 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 963 void **haddr) 964 { 965 unsigned long addr; 966 int ret; 967 968 BUG_ON(is_kernel_in_hyp_mode()); 969 970 ret = __create_hyp_private_mapping(phys_addr, size, 971 &addr, PAGE_HYP_EXEC); 972 if (ret) { 973 *haddr = NULL; 974 return ret; 975 } 976 977 *haddr = (void *)addr; 978 return 0; 979 } 980 981 /** 982 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure 983 * @kvm: The pointer to the KVM structure 984 * @mmu: The pointer to the s2 MMU structure 985 * 986 * Allocates only the stage-2 HW PGD level table(s) of size defined by 987 * stage2_pgd_size(mmu->kvm). 988 * 989 * Note we don't need locking here as this is only called when the VM is 990 * created, which can only be done once. 991 */ 992 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) 993 { 994 phys_addr_t pgd_phys; 995 pgd_t *pgd; 996 int cpu; 997 998 if (mmu->pgd != NULL) { 999 kvm_err("kvm_arch already initialized?\n"); 1000 return -EINVAL; 1001 } 1002 1003 /* Allocate the HW PGD, making sure that each page gets its own refcount */ 1004 pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO); 1005 if (!pgd) 1006 return -ENOMEM; 1007 1008 pgd_phys = virt_to_phys(pgd); 1009 if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm))) 1010 return -EINVAL; 1011 1012 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 1013 if (!mmu->last_vcpu_ran) { 1014 free_pages_exact(pgd, stage2_pgd_size(kvm)); 1015 return -ENOMEM; 1016 } 1017 1018 for_each_possible_cpu(cpu) 1019 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 1020 1021 mmu->kvm = kvm; 1022 mmu->pgd = pgd; 1023 mmu->pgd_phys = pgd_phys; 1024 mmu->vmid.vmid_gen = 0; 1025 1026 return 0; 1027 } 1028 1029 static void stage2_unmap_memslot(struct kvm *kvm, 1030 struct kvm_memory_slot *memslot) 1031 { 1032 hva_t hva = memslot->userspace_addr; 1033 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 1034 phys_addr_t size = PAGE_SIZE * memslot->npages; 1035 hva_t reg_end = hva + size; 1036 1037 /* 1038 * A memory region could potentially cover multiple VMAs, and any holes 1039 * between them, so iterate over all of them to find out if we should 1040 * unmap any of them. 1041 * 1042 * +--------------------------------------------+ 1043 * +---------------+----------------+ +----------------+ 1044 * | : VMA 1 | VMA 2 | | VMA 3 : | 1045 * +---------------+----------------+ +----------------+ 1046 * | memory region | 1047 * +--------------------------------------------+ 1048 */ 1049 do { 1050 struct vm_area_struct *vma = find_vma(current->mm, hva); 1051 hva_t vm_start, vm_end; 1052 1053 if (!vma || vma->vm_start >= reg_end) 1054 break; 1055 1056 /* 1057 * Take the intersection of this VMA with the memory region 1058 */ 1059 vm_start = max(hva, vma->vm_start); 1060 vm_end = min(reg_end, vma->vm_end); 1061 1062 if (!(vma->vm_flags & VM_PFNMAP)) { 1063 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 1064 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 1065 } 1066 hva = vm_end; 1067 } while (hva < reg_end); 1068 } 1069 1070 /** 1071 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 1072 * @kvm: The struct kvm pointer 1073 * 1074 * Go through the memregions and unmap any regular RAM 1075 * backing memory already mapped to the VM. 1076 */ 1077 void stage2_unmap_vm(struct kvm *kvm) 1078 { 1079 struct kvm_memslots *slots; 1080 struct kvm_memory_slot *memslot; 1081 int idx; 1082 1083 idx = srcu_read_lock(&kvm->srcu); 1084 mmap_read_lock(current->mm); 1085 spin_lock(&kvm->mmu_lock); 1086 1087 slots = kvm_memslots(kvm); 1088 kvm_for_each_memslot(memslot, slots) 1089 stage2_unmap_memslot(kvm, memslot); 1090 1091 spin_unlock(&kvm->mmu_lock); 1092 mmap_read_unlock(current->mm); 1093 srcu_read_unlock(&kvm->srcu, idx); 1094 } 1095 1096 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 1097 { 1098 struct kvm *kvm = mmu->kvm; 1099 void *pgd = NULL; 1100 1101 spin_lock(&kvm->mmu_lock); 1102 if (mmu->pgd) { 1103 unmap_stage2_range(mmu, 0, kvm_phys_size(kvm)); 1104 pgd = READ_ONCE(mmu->pgd); 1105 mmu->pgd = NULL; 1106 } 1107 spin_unlock(&kvm->mmu_lock); 1108 1109 /* Free the HW pgd, one page at a time */ 1110 if (pgd) { 1111 free_pages_exact(pgd, stage2_pgd_size(kvm)); 1112 free_percpu(mmu->last_vcpu_ran); 1113 } 1114 } 1115 1116 static p4d_t *stage2_get_p4d(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, 1117 phys_addr_t addr) 1118 { 1119 struct kvm *kvm = mmu->kvm; 1120 pgd_t *pgd; 1121 p4d_t *p4d; 1122 1123 pgd = mmu->pgd + stage2_pgd_index(kvm, addr); 1124 if (stage2_pgd_none(kvm, *pgd)) { 1125 if (!cache) 1126 return NULL; 1127 p4d = kvm_mmu_memory_cache_alloc(cache); 1128 stage2_pgd_populate(kvm, pgd, p4d); 1129 get_page(virt_to_page(pgd)); 1130 } 1131 1132 return stage2_p4d_offset(kvm, pgd, addr); 1133 } 1134 1135 static pud_t *stage2_get_pud(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, 1136 phys_addr_t addr) 1137 { 1138 struct kvm *kvm = mmu->kvm; 1139 p4d_t *p4d; 1140 pud_t *pud; 1141 1142 p4d = stage2_get_p4d(mmu, cache, addr); 1143 if (stage2_p4d_none(kvm, *p4d)) { 1144 if (!cache) 1145 return NULL; 1146 pud = kvm_mmu_memory_cache_alloc(cache); 1147 stage2_p4d_populate(kvm, p4d, pud); 1148 get_page(virt_to_page(p4d)); 1149 } 1150 1151 return stage2_pud_offset(kvm, p4d, addr); 1152 } 1153 1154 static pmd_t *stage2_get_pmd(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, 1155 phys_addr_t addr) 1156 { 1157 struct kvm *kvm = mmu->kvm; 1158 pud_t *pud; 1159 pmd_t *pmd; 1160 1161 pud = stage2_get_pud(mmu, cache, addr); 1162 if (!pud || stage2_pud_huge(kvm, *pud)) 1163 return NULL; 1164 1165 if (stage2_pud_none(kvm, *pud)) { 1166 if (!cache) 1167 return NULL; 1168 pmd = kvm_mmu_memory_cache_alloc(cache); 1169 stage2_pud_populate(kvm, pud, pmd); 1170 get_page(virt_to_page(pud)); 1171 } 1172 1173 return stage2_pmd_offset(kvm, pud, addr); 1174 } 1175 1176 static int stage2_set_pmd_huge(struct kvm_s2_mmu *mmu, 1177 struct kvm_mmu_memory_cache *cache, 1178 phys_addr_t addr, const pmd_t *new_pmd) 1179 { 1180 pmd_t *pmd, old_pmd; 1181 1182 retry: 1183 pmd = stage2_get_pmd(mmu, cache, addr); 1184 VM_BUG_ON(!pmd); 1185 1186 old_pmd = *pmd; 1187 /* 1188 * Multiple vcpus faulting on the same PMD entry, can 1189 * lead to them sequentially updating the PMD with the 1190 * same value. Following the break-before-make 1191 * (pmd_clear() followed by tlb_flush()) process can 1192 * hinder forward progress due to refaults generated 1193 * on missing translations. 1194 * 1195 * Skip updating the page table if the entry is 1196 * unchanged. 1197 */ 1198 if (pmd_val(old_pmd) == pmd_val(*new_pmd)) 1199 return 0; 1200 1201 if (pmd_present(old_pmd)) { 1202 /* 1203 * If we already have PTE level mapping for this block, 1204 * we must unmap it to avoid inconsistent TLB state and 1205 * leaking the table page. We could end up in this situation 1206 * if the memory slot was marked for dirty logging and was 1207 * reverted, leaving PTE level mappings for the pages accessed 1208 * during the period. So, unmap the PTE level mapping for this 1209 * block and retry, as we could have released the upper level 1210 * table in the process. 1211 * 1212 * Normal THP split/merge follows mmu_notifier callbacks and do 1213 * get handled accordingly. 1214 */ 1215 if (!pmd_thp_or_huge(old_pmd)) { 1216 unmap_stage2_range(mmu, addr & S2_PMD_MASK, S2_PMD_SIZE); 1217 goto retry; 1218 } 1219 /* 1220 * Mapping in huge pages should only happen through a 1221 * fault. If a page is merged into a transparent huge 1222 * page, the individual subpages of that huge page 1223 * should be unmapped through MMU notifiers before we 1224 * get here. 1225 * 1226 * Merging of CompoundPages is not supported; they 1227 * should become splitting first, unmapped, merged, 1228 * and mapped back in on-demand. 1229 */ 1230 WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd)); 1231 pmd_clear(pmd); 1232 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL); 1233 } else { 1234 get_page(virt_to_page(pmd)); 1235 } 1236 1237 kvm_set_pmd(pmd, *new_pmd); 1238 return 0; 1239 } 1240 1241 static int stage2_set_pud_huge(struct kvm_s2_mmu *mmu, 1242 struct kvm_mmu_memory_cache *cache, 1243 phys_addr_t addr, const pud_t *new_pudp) 1244 { 1245 struct kvm *kvm = mmu->kvm; 1246 pud_t *pudp, old_pud; 1247 1248 retry: 1249 pudp = stage2_get_pud(mmu, cache, addr); 1250 VM_BUG_ON(!pudp); 1251 1252 old_pud = *pudp; 1253 1254 /* 1255 * A large number of vcpus faulting on the same stage 2 entry, 1256 * can lead to a refault due to the stage2_pud_clear()/tlb_flush(). 1257 * Skip updating the page tables if there is no change. 1258 */ 1259 if (pud_val(old_pud) == pud_val(*new_pudp)) 1260 return 0; 1261 1262 if (stage2_pud_present(kvm, old_pud)) { 1263 /* 1264 * If we already have table level mapping for this block, unmap 1265 * the range for this block and retry. 1266 */ 1267 if (!stage2_pud_huge(kvm, old_pud)) { 1268 unmap_stage2_range(mmu, addr & S2_PUD_MASK, S2_PUD_SIZE); 1269 goto retry; 1270 } 1271 1272 WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp)); 1273 stage2_pud_clear(kvm, pudp); 1274 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL); 1275 } else { 1276 get_page(virt_to_page(pudp)); 1277 } 1278 1279 kvm_set_pud(pudp, *new_pudp); 1280 return 0; 1281 } 1282 1283 /* 1284 * stage2_get_leaf_entry - walk the stage2 VM page tables and return 1285 * true if a valid and present leaf-entry is found. A pointer to the 1286 * leaf-entry is returned in the appropriate level variable - pudpp, 1287 * pmdpp, ptepp. 1288 */ 1289 static bool stage2_get_leaf_entry(struct kvm_s2_mmu *mmu, phys_addr_t addr, 1290 pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp) 1291 { 1292 struct kvm *kvm = mmu->kvm; 1293 pud_t *pudp; 1294 pmd_t *pmdp; 1295 pte_t *ptep; 1296 1297 *pudpp = NULL; 1298 *pmdpp = NULL; 1299 *ptepp = NULL; 1300 1301 pudp = stage2_get_pud(mmu, NULL, addr); 1302 if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp)) 1303 return false; 1304 1305 if (stage2_pud_huge(kvm, *pudp)) { 1306 *pudpp = pudp; 1307 return true; 1308 } 1309 1310 pmdp = stage2_pmd_offset(kvm, pudp, addr); 1311 if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp)) 1312 return false; 1313 1314 if (pmd_thp_or_huge(*pmdp)) { 1315 *pmdpp = pmdp; 1316 return true; 1317 } 1318 1319 ptep = pte_offset_kernel(pmdp, addr); 1320 if (!ptep || pte_none(*ptep) || !pte_present(*ptep)) 1321 return false; 1322 1323 *ptepp = ptep; 1324 return true; 1325 } 1326 1327 static bool stage2_is_exec(struct kvm_s2_mmu *mmu, phys_addr_t addr, unsigned long sz) 1328 { 1329 pud_t *pudp; 1330 pmd_t *pmdp; 1331 pte_t *ptep; 1332 bool found; 1333 1334 found = stage2_get_leaf_entry(mmu, addr, &pudp, &pmdp, &ptep); 1335 if (!found) 1336 return false; 1337 1338 if (pudp) 1339 return sz <= PUD_SIZE && kvm_s2pud_exec(pudp); 1340 else if (pmdp) 1341 return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp); 1342 else 1343 return sz == PAGE_SIZE && kvm_s2pte_exec(ptep); 1344 } 1345 1346 static int stage2_set_pte(struct kvm_s2_mmu *mmu, 1347 struct kvm_mmu_memory_cache *cache, 1348 phys_addr_t addr, const pte_t *new_pte, 1349 unsigned long flags) 1350 { 1351 struct kvm *kvm = mmu->kvm; 1352 pud_t *pud; 1353 pmd_t *pmd; 1354 pte_t *pte, old_pte; 1355 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP; 1356 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE; 1357 1358 VM_BUG_ON(logging_active && !cache); 1359 1360 /* Create stage-2 page table mapping - Levels 0 and 1 */ 1361 pud = stage2_get_pud(mmu, cache, addr); 1362 if (!pud) { 1363 /* 1364 * Ignore calls from kvm_set_spte_hva for unallocated 1365 * address ranges. 1366 */ 1367 return 0; 1368 } 1369 1370 /* 1371 * While dirty page logging - dissolve huge PUD, then continue 1372 * on to allocate page. 1373 */ 1374 if (logging_active) 1375 stage2_dissolve_pud(mmu, addr, pud); 1376 1377 if (stage2_pud_none(kvm, *pud)) { 1378 if (!cache) 1379 return 0; /* ignore calls from kvm_set_spte_hva */ 1380 pmd = kvm_mmu_memory_cache_alloc(cache); 1381 stage2_pud_populate(kvm, pud, pmd); 1382 get_page(virt_to_page(pud)); 1383 } 1384 1385 pmd = stage2_pmd_offset(kvm, pud, addr); 1386 if (!pmd) { 1387 /* 1388 * Ignore calls from kvm_set_spte_hva for unallocated 1389 * address ranges. 1390 */ 1391 return 0; 1392 } 1393 1394 /* 1395 * While dirty page logging - dissolve huge PMD, then continue on to 1396 * allocate page. 1397 */ 1398 if (logging_active) 1399 stage2_dissolve_pmd(mmu, addr, pmd); 1400 1401 /* Create stage-2 page mappings - Level 2 */ 1402 if (pmd_none(*pmd)) { 1403 if (!cache) 1404 return 0; /* ignore calls from kvm_set_spte_hva */ 1405 pte = kvm_mmu_memory_cache_alloc(cache); 1406 kvm_pmd_populate(pmd, pte); 1407 get_page(virt_to_page(pmd)); 1408 } 1409 1410 pte = pte_offset_kernel(pmd, addr); 1411 1412 if (iomap && pte_present(*pte)) 1413 return -EFAULT; 1414 1415 /* Create 2nd stage page table mapping - Level 3 */ 1416 old_pte = *pte; 1417 if (pte_present(old_pte)) { 1418 /* Skip page table update if there is no change */ 1419 if (pte_val(old_pte) == pte_val(*new_pte)) 1420 return 0; 1421 1422 kvm_set_pte(pte, __pte(0)); 1423 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL); 1424 } else { 1425 get_page(virt_to_page(pte)); 1426 } 1427 1428 kvm_set_pte(pte, *new_pte); 1429 return 0; 1430 } 1431 1432 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1433 static int stage2_ptep_test_and_clear_young(pte_t *pte) 1434 { 1435 if (pte_young(*pte)) { 1436 *pte = pte_mkold(*pte); 1437 return 1; 1438 } 1439 return 0; 1440 } 1441 #else 1442 static int stage2_ptep_test_and_clear_young(pte_t *pte) 1443 { 1444 return __ptep_test_and_clear_young(pte); 1445 } 1446 #endif 1447 1448 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd) 1449 { 1450 return stage2_ptep_test_and_clear_young((pte_t *)pmd); 1451 } 1452 1453 static int stage2_pudp_test_and_clear_young(pud_t *pud) 1454 { 1455 return stage2_ptep_test_and_clear_young((pte_t *)pud); 1456 } 1457 1458 /** 1459 * kvm_phys_addr_ioremap - map a device range to guest IPA 1460 * 1461 * @kvm: The KVM pointer 1462 * @guest_ipa: The IPA at which to insert the mapping 1463 * @pa: The physical address of the device 1464 * @size: The size of the mapping 1465 */ 1466 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 1467 phys_addr_t pa, unsigned long size, bool writable) 1468 { 1469 phys_addr_t addr, end; 1470 int ret = 0; 1471 unsigned long pfn; 1472 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, }; 1473 1474 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK; 1475 pfn = __phys_to_pfn(pa); 1476 1477 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) { 1478 pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE); 1479 1480 if (writable) 1481 pte = kvm_s2pte_mkwrite(pte); 1482 1483 ret = kvm_mmu_topup_memory_cache(&cache, 1484 kvm_mmu_cache_min_pages(kvm)); 1485 if (ret) 1486 goto out; 1487 spin_lock(&kvm->mmu_lock); 1488 ret = stage2_set_pte(&kvm->arch.mmu, &cache, addr, &pte, 1489 KVM_S2PTE_FLAG_IS_IOMAP); 1490 spin_unlock(&kvm->mmu_lock); 1491 if (ret) 1492 goto out; 1493 1494 pfn++; 1495 } 1496 1497 out: 1498 kvm_mmu_free_memory_cache(&cache); 1499 return ret; 1500 } 1501 1502 /** 1503 * stage2_wp_ptes - write protect PMD range 1504 * @pmd: pointer to pmd entry 1505 * @addr: range start address 1506 * @end: range end address 1507 */ 1508 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) 1509 { 1510 pte_t *pte; 1511 1512 pte = pte_offset_kernel(pmd, addr); 1513 do { 1514 if (!pte_none(*pte)) { 1515 if (!kvm_s2pte_readonly(pte)) 1516 kvm_set_s2pte_readonly(pte); 1517 } 1518 } while (pte++, addr += PAGE_SIZE, addr != end); 1519 } 1520 1521 /** 1522 * stage2_wp_pmds - write protect PUD range 1523 * kvm: kvm instance for the VM 1524 * @pud: pointer to pud entry 1525 * @addr: range start address 1526 * @end: range end address 1527 */ 1528 static void stage2_wp_pmds(struct kvm_s2_mmu *mmu, pud_t *pud, 1529 phys_addr_t addr, phys_addr_t end) 1530 { 1531 struct kvm *kvm = mmu->kvm; 1532 pmd_t *pmd; 1533 phys_addr_t next; 1534 1535 pmd = stage2_pmd_offset(kvm, pud, addr); 1536 1537 do { 1538 next = stage2_pmd_addr_end(kvm, addr, end); 1539 if (!pmd_none(*pmd)) { 1540 if (pmd_thp_or_huge(*pmd)) { 1541 if (!kvm_s2pmd_readonly(pmd)) 1542 kvm_set_s2pmd_readonly(pmd); 1543 } else { 1544 stage2_wp_ptes(pmd, addr, next); 1545 } 1546 } 1547 } while (pmd++, addr = next, addr != end); 1548 } 1549 1550 /** 1551 * stage2_wp_puds - write protect P4D range 1552 * @p4d: pointer to p4d entry 1553 * @addr: range start address 1554 * @end: range end address 1555 */ 1556 static void stage2_wp_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d, 1557 phys_addr_t addr, phys_addr_t end) 1558 { 1559 struct kvm *kvm = mmu->kvm; 1560 pud_t *pud; 1561 phys_addr_t next; 1562 1563 pud = stage2_pud_offset(kvm, p4d, addr); 1564 do { 1565 next = stage2_pud_addr_end(kvm, addr, end); 1566 if (!stage2_pud_none(kvm, *pud)) { 1567 if (stage2_pud_huge(kvm, *pud)) { 1568 if (!kvm_s2pud_readonly(pud)) 1569 kvm_set_s2pud_readonly(pud); 1570 } else { 1571 stage2_wp_pmds(mmu, pud, addr, next); 1572 } 1573 } 1574 } while (pud++, addr = next, addr != end); 1575 } 1576 1577 /** 1578 * stage2_wp_p4ds - write protect PGD range 1579 * @pgd: pointer to pgd entry 1580 * @addr: range start address 1581 * @end: range end address 1582 */ 1583 static void stage2_wp_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd, 1584 phys_addr_t addr, phys_addr_t end) 1585 { 1586 struct kvm *kvm = mmu->kvm; 1587 p4d_t *p4d; 1588 phys_addr_t next; 1589 1590 p4d = stage2_p4d_offset(kvm, pgd, addr); 1591 do { 1592 next = stage2_p4d_addr_end(kvm, addr, end); 1593 if (!stage2_p4d_none(kvm, *p4d)) 1594 stage2_wp_puds(mmu, p4d, addr, next); 1595 } while (p4d++, addr = next, addr != end); 1596 } 1597 1598 /** 1599 * stage2_wp_range() - write protect stage2 memory region range 1600 * @kvm: The KVM pointer 1601 * @addr: Start address of range 1602 * @end: End address of range 1603 */ 1604 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 1605 { 1606 struct kvm *kvm = mmu->kvm; 1607 pgd_t *pgd; 1608 phys_addr_t next; 1609 1610 pgd = mmu->pgd + stage2_pgd_index(kvm, addr); 1611 do { 1612 /* 1613 * Release kvm_mmu_lock periodically if the memory region is 1614 * large. Otherwise, we may see kernel panics with 1615 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR, 1616 * CONFIG_LOCKDEP. Additionally, holding the lock too long 1617 * will also starve other vCPUs. We have to also make sure 1618 * that the page tables are not freed while we released 1619 * the lock. 1620 */ 1621 cond_resched_lock(&kvm->mmu_lock); 1622 if (!READ_ONCE(mmu->pgd)) 1623 break; 1624 next = stage2_pgd_addr_end(kvm, addr, end); 1625 if (stage2_pgd_present(kvm, *pgd)) 1626 stage2_wp_p4ds(mmu, pgd, addr, next); 1627 } while (pgd++, addr = next, addr != end); 1628 } 1629 1630 /** 1631 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 1632 * @kvm: The KVM pointer 1633 * @slot: The memory slot to write protect 1634 * 1635 * Called to start logging dirty pages after memory region 1636 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 1637 * all present PUD, PMD and PTEs are write protected in the memory region. 1638 * Afterwards read of dirty page log can be called. 1639 * 1640 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 1641 * serializing operations for VM memory regions. 1642 */ 1643 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 1644 { 1645 struct kvm_memslots *slots = kvm_memslots(kvm); 1646 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 1647 phys_addr_t start, end; 1648 1649 if (WARN_ON_ONCE(!memslot)) 1650 return; 1651 1652 start = memslot->base_gfn << PAGE_SHIFT; 1653 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 1654 1655 spin_lock(&kvm->mmu_lock); 1656 stage2_wp_range(&kvm->arch.mmu, start, end); 1657 spin_unlock(&kvm->mmu_lock); 1658 kvm_flush_remote_tlbs(kvm); 1659 } 1660 1661 /** 1662 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 1663 * @kvm: The KVM pointer 1664 * @slot: The memory slot associated with mask 1665 * @gfn_offset: The gfn offset in memory slot 1666 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 1667 * slot to be write protected 1668 * 1669 * Walks bits set in mask write protects the associated pte's. Caller must 1670 * acquire kvm_mmu_lock. 1671 */ 1672 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1673 struct kvm_memory_slot *slot, 1674 gfn_t gfn_offset, unsigned long mask) 1675 { 1676 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 1677 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 1678 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 1679 1680 stage2_wp_range(&kvm->arch.mmu, start, end); 1681 } 1682 1683 /* 1684 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1685 * dirty pages. 1686 * 1687 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1688 * enable dirty logging for them. 1689 */ 1690 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1691 struct kvm_memory_slot *slot, 1692 gfn_t gfn_offset, unsigned long mask) 1693 { 1694 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1695 } 1696 1697 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 1698 { 1699 __clean_dcache_guest_page(pfn, size); 1700 } 1701 1702 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size) 1703 { 1704 __invalidate_icache_guest_page(pfn, size); 1705 } 1706 1707 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 1708 { 1709 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 1710 } 1711 1712 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 1713 unsigned long hva, 1714 unsigned long map_size) 1715 { 1716 gpa_t gpa_start; 1717 hva_t uaddr_start, uaddr_end; 1718 size_t size; 1719 1720 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 1721 if (map_size == PAGE_SIZE) 1722 return true; 1723 1724 size = memslot->npages * PAGE_SIZE; 1725 1726 gpa_start = memslot->base_gfn << PAGE_SHIFT; 1727 1728 uaddr_start = memslot->userspace_addr; 1729 uaddr_end = uaddr_start + size; 1730 1731 /* 1732 * Pages belonging to memslots that don't have the same alignment 1733 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 1734 * PMD/PUD entries, because we'll end up mapping the wrong pages. 1735 * 1736 * Consider a layout like the following: 1737 * 1738 * memslot->userspace_addr: 1739 * +-----+--------------------+--------------------+---+ 1740 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 1741 * +-----+--------------------+--------------------+---+ 1742 * 1743 * memslot->base_gfn << PAGE_SHIFT: 1744 * +---+--------------------+--------------------+-----+ 1745 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 1746 * +---+--------------------+--------------------+-----+ 1747 * 1748 * If we create those stage-2 blocks, we'll end up with this incorrect 1749 * mapping: 1750 * d -> f 1751 * e -> g 1752 * f -> h 1753 */ 1754 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 1755 return false; 1756 1757 /* 1758 * Next, let's make sure we're not trying to map anything not covered 1759 * by the memslot. This means we have to prohibit block size mappings 1760 * for the beginning and end of a non-block aligned and non-block sized 1761 * memory slot (illustrated by the head and tail parts of the 1762 * userspace view above containing pages 'abcde' and 'xyz', 1763 * respectively). 1764 * 1765 * Note that it doesn't matter if we do the check using the 1766 * userspace_addr or the base_gfn, as both are equally aligned (per 1767 * the check above) and equally sized. 1768 */ 1769 return (hva & ~(map_size - 1)) >= uaddr_start && 1770 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 1771 } 1772 1773 /* 1774 * Check if the given hva is backed by a transparent huge page (THP) and 1775 * whether it can be mapped using block mapping in stage2. If so, adjust 1776 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 1777 * supported. This will need to be updated to support other THP sizes. 1778 * 1779 * Returns the size of the mapping. 1780 */ 1781 static unsigned long 1782 transparent_hugepage_adjust(struct kvm_memory_slot *memslot, 1783 unsigned long hva, kvm_pfn_t *pfnp, 1784 phys_addr_t *ipap) 1785 { 1786 kvm_pfn_t pfn = *pfnp; 1787 1788 /* 1789 * Make sure the adjustment is done only for THP pages. Also make 1790 * sure that the HVA and IPA are sufficiently aligned and that the 1791 * block map is contained within the memslot. 1792 */ 1793 if (kvm_is_transparent_hugepage(pfn) && 1794 fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { 1795 /* 1796 * The address we faulted on is backed by a transparent huge 1797 * page. However, because we map the compound huge page and 1798 * not the individual tail page, we need to transfer the 1799 * refcount to the head page. We have to be careful that the 1800 * THP doesn't start to split while we are adjusting the 1801 * refcounts. 1802 * 1803 * We are sure this doesn't happen, because mmu_notifier_retry 1804 * was successful and we are holding the mmu_lock, so if this 1805 * THP is trying to split, it will be blocked in the mmu 1806 * notifier before touching any of the pages, specifically 1807 * before being able to call __split_huge_page_refcount(). 1808 * 1809 * We can therefore safely transfer the refcount from PG_tail 1810 * to PG_head and switch the pfn from a tail page to the head 1811 * page accordingly. 1812 */ 1813 *ipap &= PMD_MASK; 1814 kvm_release_pfn_clean(pfn); 1815 pfn &= ~(PTRS_PER_PMD - 1); 1816 kvm_get_pfn(pfn); 1817 *pfnp = pfn; 1818 1819 return PMD_SIZE; 1820 } 1821 1822 /* Use page mapping if we cannot use block mapping. */ 1823 return PAGE_SIZE; 1824 } 1825 1826 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1827 struct kvm_memory_slot *memslot, unsigned long hva, 1828 unsigned long fault_status) 1829 { 1830 int ret; 1831 bool write_fault, writable, force_pte = false; 1832 bool exec_fault, needs_exec; 1833 unsigned long mmu_seq; 1834 gfn_t gfn = fault_ipa >> PAGE_SHIFT; 1835 struct kvm *kvm = vcpu->kvm; 1836 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1837 struct vm_area_struct *vma; 1838 short vma_shift; 1839 kvm_pfn_t pfn; 1840 pgprot_t mem_type = PAGE_S2; 1841 bool logging_active = memslot_is_logging(memslot); 1842 unsigned long vma_pagesize, flags = 0; 1843 struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu; 1844 1845 write_fault = kvm_is_write_fault(vcpu); 1846 exec_fault = kvm_vcpu_trap_is_iabt(vcpu); 1847 VM_BUG_ON(write_fault && exec_fault); 1848 1849 if (fault_status == FSC_PERM && !write_fault && !exec_fault) { 1850 kvm_err("Unexpected L2 read permission error\n"); 1851 return -EFAULT; 1852 } 1853 1854 /* Let's check if we will get back a huge page backed by hugetlbfs */ 1855 mmap_read_lock(current->mm); 1856 vma = find_vma_intersection(current->mm, hva, hva + 1); 1857 if (unlikely(!vma)) { 1858 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1859 mmap_read_unlock(current->mm); 1860 return -EFAULT; 1861 } 1862 1863 if (is_vm_hugetlb_page(vma)) 1864 vma_shift = huge_page_shift(hstate_vma(vma)); 1865 else 1866 vma_shift = PAGE_SHIFT; 1867 1868 vma_pagesize = 1ULL << vma_shift; 1869 if (logging_active || 1870 (vma->vm_flags & VM_PFNMAP) || 1871 !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) { 1872 force_pte = true; 1873 vma_pagesize = PAGE_SIZE; 1874 } 1875 1876 /* 1877 * The stage2 has a minimum of 2 level table (For arm64 see 1878 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can 1879 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD). 1880 * As for PUD huge maps, we must make sure that we have at least 1881 * 3 levels, i.e, PMD is not folded. 1882 */ 1883 if (vma_pagesize == PMD_SIZE || 1884 (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm))) 1885 gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT; 1886 mmap_read_unlock(current->mm); 1887 1888 /* We need minimum second+third level pages */ 1889 ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm)); 1890 if (ret) 1891 return ret; 1892 1893 mmu_seq = vcpu->kvm->mmu_notifier_seq; 1894 /* 1895 * Ensure the read of mmu_notifier_seq happens before we call 1896 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 1897 * the page we just got a reference to gets unmapped before we have a 1898 * chance to grab the mmu_lock, which ensure that if the page gets 1899 * unmapped afterwards, the call to kvm_unmap_hva will take it away 1900 * from us again properly. This smp_rmb() interacts with the smp_wmb() 1901 * in kvm_mmu_notifier_invalidate_<page|range_end>. 1902 */ 1903 smp_rmb(); 1904 1905 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable); 1906 if (pfn == KVM_PFN_ERR_HWPOISON) { 1907 kvm_send_hwpoison_signal(hva, vma_shift); 1908 return 0; 1909 } 1910 if (is_error_noslot_pfn(pfn)) 1911 return -EFAULT; 1912 1913 if (kvm_is_device_pfn(pfn)) { 1914 mem_type = PAGE_S2_DEVICE; 1915 flags |= KVM_S2PTE_FLAG_IS_IOMAP; 1916 } else if (logging_active) { 1917 /* 1918 * Faults on pages in a memslot with logging enabled 1919 * should not be mapped with huge pages (it introduces churn 1920 * and performance degradation), so force a pte mapping. 1921 */ 1922 flags |= KVM_S2_FLAG_LOGGING_ACTIVE; 1923 1924 /* 1925 * Only actually map the page as writable if this was a write 1926 * fault. 1927 */ 1928 if (!write_fault) 1929 writable = false; 1930 } 1931 1932 if (exec_fault && is_iomap(flags)) 1933 return -ENOEXEC; 1934 1935 spin_lock(&kvm->mmu_lock); 1936 if (mmu_notifier_retry(kvm, mmu_seq)) 1937 goto out_unlock; 1938 1939 /* 1940 * If we are not forced to use page mapping, check if we are 1941 * backed by a THP and thus use block mapping if possible. 1942 */ 1943 if (vma_pagesize == PAGE_SIZE && !force_pte) 1944 vma_pagesize = transparent_hugepage_adjust(memslot, hva, 1945 &pfn, &fault_ipa); 1946 if (writable) 1947 kvm_set_pfn_dirty(pfn); 1948 1949 if (fault_status != FSC_PERM && !is_iomap(flags)) 1950 clean_dcache_guest_page(pfn, vma_pagesize); 1951 1952 if (exec_fault) 1953 invalidate_icache_guest_page(pfn, vma_pagesize); 1954 1955 /* 1956 * If we took an execution fault we have made the 1957 * icache/dcache coherent above and should now let the s2 1958 * mapping be executable. 1959 * 1960 * Write faults (!exec_fault && FSC_PERM) are orthogonal to 1961 * execute permissions, and we preserve whatever we have. 1962 */ 1963 needs_exec = exec_fault || 1964 (fault_status == FSC_PERM && 1965 stage2_is_exec(mmu, fault_ipa, vma_pagesize)); 1966 1967 if (vma_pagesize == PUD_SIZE) { 1968 pud_t new_pud = kvm_pfn_pud(pfn, mem_type); 1969 1970 new_pud = kvm_pud_mkhuge(new_pud); 1971 if (writable) 1972 new_pud = kvm_s2pud_mkwrite(new_pud); 1973 1974 if (needs_exec) 1975 new_pud = kvm_s2pud_mkexec(new_pud); 1976 1977 ret = stage2_set_pud_huge(mmu, memcache, fault_ipa, &new_pud); 1978 } else if (vma_pagesize == PMD_SIZE) { 1979 pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type); 1980 1981 new_pmd = kvm_pmd_mkhuge(new_pmd); 1982 1983 if (writable) 1984 new_pmd = kvm_s2pmd_mkwrite(new_pmd); 1985 1986 if (needs_exec) 1987 new_pmd = kvm_s2pmd_mkexec(new_pmd); 1988 1989 ret = stage2_set_pmd_huge(mmu, memcache, fault_ipa, &new_pmd); 1990 } else { 1991 pte_t new_pte = kvm_pfn_pte(pfn, mem_type); 1992 1993 if (writable) { 1994 new_pte = kvm_s2pte_mkwrite(new_pte); 1995 mark_page_dirty(kvm, gfn); 1996 } 1997 1998 if (needs_exec) 1999 new_pte = kvm_s2pte_mkexec(new_pte); 2000 2001 ret = stage2_set_pte(mmu, memcache, fault_ipa, &new_pte, flags); 2002 } 2003 2004 out_unlock: 2005 spin_unlock(&kvm->mmu_lock); 2006 kvm_set_pfn_accessed(pfn); 2007 kvm_release_pfn_clean(pfn); 2008 return ret; 2009 } 2010 2011 /* 2012 * Resolve the access fault by making the page young again. 2013 * Note that because the faulting entry is guaranteed not to be 2014 * cached in the TLB, we don't need to invalidate anything. 2015 * Only the HW Access Flag updates are supported for Stage 2 (no DBM), 2016 * so there is no need for atomic (pte|pmd)_mkyoung operations. 2017 */ 2018 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 2019 { 2020 pud_t *pud; 2021 pmd_t *pmd; 2022 pte_t *pte; 2023 kvm_pfn_t pfn; 2024 bool pfn_valid = false; 2025 2026 trace_kvm_access_fault(fault_ipa); 2027 2028 spin_lock(&vcpu->kvm->mmu_lock); 2029 2030 if (!stage2_get_leaf_entry(vcpu->arch.hw_mmu, fault_ipa, &pud, &pmd, &pte)) 2031 goto out; 2032 2033 if (pud) { /* HugeTLB */ 2034 *pud = kvm_s2pud_mkyoung(*pud); 2035 pfn = kvm_pud_pfn(*pud); 2036 pfn_valid = true; 2037 } else if (pmd) { /* THP, HugeTLB */ 2038 *pmd = pmd_mkyoung(*pmd); 2039 pfn = pmd_pfn(*pmd); 2040 pfn_valid = true; 2041 } else { 2042 *pte = pte_mkyoung(*pte); /* Just a page... */ 2043 pfn = pte_pfn(*pte); 2044 pfn_valid = true; 2045 } 2046 2047 out: 2048 spin_unlock(&vcpu->kvm->mmu_lock); 2049 if (pfn_valid) 2050 kvm_set_pfn_accessed(pfn); 2051 } 2052 2053 /** 2054 * kvm_handle_guest_abort - handles all 2nd stage aborts 2055 * @vcpu: the VCPU pointer 2056 * 2057 * Any abort that gets to the host is almost guaranteed to be caused by a 2058 * missing second stage translation table entry, which can mean that either the 2059 * guest simply needs more memory and we must allocate an appropriate page or it 2060 * can mean that the guest tried to access I/O memory, which is emulated by user 2061 * space. The distinction is based on the IPA causing the fault and whether this 2062 * memory region has been registered as standard RAM by user space. 2063 */ 2064 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 2065 { 2066 unsigned long fault_status; 2067 phys_addr_t fault_ipa; 2068 struct kvm_memory_slot *memslot; 2069 unsigned long hva; 2070 bool is_iabt, write_fault, writable; 2071 gfn_t gfn; 2072 int ret, idx; 2073 2074 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 2075 2076 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 2077 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 2078 2079 /* Synchronous External Abort? */ 2080 if (kvm_vcpu_abt_issea(vcpu)) { 2081 /* 2082 * For RAS the host kernel may handle this abort. 2083 * There is no need to pass the error into the guest. 2084 */ 2085 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 2086 kvm_inject_vabt(vcpu); 2087 2088 return 1; 2089 } 2090 2091 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 2092 kvm_vcpu_get_hfar(vcpu), fault_ipa); 2093 2094 /* Check the stage-2 fault is trans. fault or write fault */ 2095 if (fault_status != FSC_FAULT && fault_status != FSC_PERM && 2096 fault_status != FSC_ACCESS) { 2097 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 2098 kvm_vcpu_trap_get_class(vcpu), 2099 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 2100 (unsigned long)kvm_vcpu_get_esr(vcpu)); 2101 return -EFAULT; 2102 } 2103 2104 idx = srcu_read_lock(&vcpu->kvm->srcu); 2105 2106 gfn = fault_ipa >> PAGE_SHIFT; 2107 memslot = gfn_to_memslot(vcpu->kvm, gfn); 2108 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 2109 write_fault = kvm_is_write_fault(vcpu); 2110 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 2111 /* 2112 * The guest has put either its instructions or its page-tables 2113 * somewhere it shouldn't have. Userspace won't be able to do 2114 * anything about this (there's no syndrome for a start), so 2115 * re-inject the abort back into the guest. 2116 */ 2117 if (is_iabt) { 2118 ret = -ENOEXEC; 2119 goto out; 2120 } 2121 2122 if (kvm_vcpu_dabt_iss1tw(vcpu)) { 2123 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 2124 ret = 1; 2125 goto out_unlock; 2126 } 2127 2128 /* 2129 * Check for a cache maintenance operation. Since we 2130 * ended-up here, we know it is outside of any memory 2131 * slot. But we can't find out if that is for a device, 2132 * or if the guest is just being stupid. The only thing 2133 * we know for sure is that this range cannot be cached. 2134 * 2135 * So let's assume that the guest is just being 2136 * cautious, and skip the instruction. 2137 */ 2138 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 2139 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); 2140 ret = 1; 2141 goto out_unlock; 2142 } 2143 2144 /* 2145 * The IPA is reported as [MAX:12], so we need to 2146 * complement it with the bottom 12 bits from the 2147 * faulting VA. This is always 12 bits, irrespective 2148 * of the page size. 2149 */ 2150 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 2151 ret = io_mem_abort(vcpu, fault_ipa); 2152 goto out_unlock; 2153 } 2154 2155 /* Userspace should not be able to register out-of-bounds IPAs */ 2156 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 2157 2158 if (fault_status == FSC_ACCESS) { 2159 handle_access_fault(vcpu, fault_ipa); 2160 ret = 1; 2161 goto out_unlock; 2162 } 2163 2164 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 2165 if (ret == 0) 2166 ret = 1; 2167 out: 2168 if (ret == -ENOEXEC) { 2169 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 2170 ret = 1; 2171 } 2172 out_unlock: 2173 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2174 return ret; 2175 } 2176 2177 static int handle_hva_to_gpa(struct kvm *kvm, 2178 unsigned long start, 2179 unsigned long end, 2180 int (*handler)(struct kvm *kvm, 2181 gpa_t gpa, u64 size, 2182 void *data), 2183 void *data) 2184 { 2185 struct kvm_memslots *slots; 2186 struct kvm_memory_slot *memslot; 2187 int ret = 0; 2188 2189 slots = kvm_memslots(kvm); 2190 2191 /* we only care about the pages that the guest sees */ 2192 kvm_for_each_memslot(memslot, slots) { 2193 unsigned long hva_start, hva_end; 2194 gfn_t gpa; 2195 2196 hva_start = max(start, memslot->userspace_addr); 2197 hva_end = min(end, memslot->userspace_addr + 2198 (memslot->npages << PAGE_SHIFT)); 2199 if (hva_start >= hva_end) 2200 continue; 2201 2202 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT; 2203 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data); 2204 } 2205 2206 return ret; 2207 } 2208 2209 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2210 { 2211 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 2212 return 0; 2213 } 2214 2215 int kvm_unmap_hva_range(struct kvm *kvm, 2216 unsigned long start, unsigned long end) 2217 { 2218 if (!kvm->arch.mmu.pgd) 2219 return 0; 2220 2221 trace_kvm_unmap_hva_range(start, end); 2222 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); 2223 return 0; 2224 } 2225 2226 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2227 { 2228 pte_t *pte = (pte_t *)data; 2229 2230 WARN_ON(size != PAGE_SIZE); 2231 /* 2232 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE 2233 * flag clear because MMU notifiers will have unmapped a huge PMD before 2234 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and 2235 * therefore stage2_set_pte() never needs to clear out a huge PMD 2236 * through this calling path. 2237 */ 2238 stage2_set_pte(&kvm->arch.mmu, NULL, gpa, pte, 0); 2239 return 0; 2240 } 2241 2242 2243 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 2244 { 2245 unsigned long end = hva + PAGE_SIZE; 2246 kvm_pfn_t pfn = pte_pfn(pte); 2247 pte_t stage2_pte; 2248 2249 if (!kvm->arch.mmu.pgd) 2250 return 0; 2251 2252 trace_kvm_set_spte_hva(hva); 2253 2254 /* 2255 * We've moved a page around, probably through CoW, so let's treat it 2256 * just like a translation fault and clean the cache to the PoC. 2257 */ 2258 clean_dcache_guest_page(pfn, PAGE_SIZE); 2259 stage2_pte = kvm_pfn_pte(pfn, PAGE_S2); 2260 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte); 2261 2262 return 0; 2263 } 2264 2265 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2266 { 2267 pud_t *pud; 2268 pmd_t *pmd; 2269 pte_t *pte; 2270 2271 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 2272 if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte)) 2273 return 0; 2274 2275 if (pud) 2276 return stage2_pudp_test_and_clear_young(pud); 2277 else if (pmd) 2278 return stage2_pmdp_test_and_clear_young(pmd); 2279 else 2280 return stage2_ptep_test_and_clear_young(pte); 2281 } 2282 2283 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2284 { 2285 pud_t *pud; 2286 pmd_t *pmd; 2287 pte_t *pte; 2288 2289 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 2290 if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte)) 2291 return 0; 2292 2293 if (pud) 2294 return kvm_s2pud_young(*pud); 2295 else if (pmd) 2296 return pmd_young(*pmd); 2297 else 2298 return pte_young(*pte); 2299 } 2300 2301 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 2302 { 2303 if (!kvm->arch.mmu.pgd) 2304 return 0; 2305 trace_kvm_age_hva(start, end); 2306 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); 2307 } 2308 2309 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 2310 { 2311 if (!kvm->arch.mmu.pgd) 2312 return 0; 2313 trace_kvm_test_age_hva(hva); 2314 return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE, 2315 kvm_test_age_hva_handler, NULL); 2316 } 2317 2318 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) 2319 { 2320 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 2321 } 2322 2323 phys_addr_t kvm_mmu_get_httbr(void) 2324 { 2325 if (__kvm_cpu_uses_extended_idmap()) 2326 return virt_to_phys(merged_hyp_pgd); 2327 else 2328 return virt_to_phys(hyp_pgd); 2329 } 2330 2331 phys_addr_t kvm_get_idmap_vector(void) 2332 { 2333 return hyp_idmap_vector; 2334 } 2335 2336 static int kvm_map_idmap_text(pgd_t *pgd) 2337 { 2338 int err; 2339 2340 /* Create the idmap in the boot page tables */ 2341 err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), 2342 hyp_idmap_start, hyp_idmap_end, 2343 __phys_to_pfn(hyp_idmap_start), 2344 PAGE_HYP_EXEC); 2345 if (err) 2346 kvm_err("Failed to idmap %lx-%lx\n", 2347 hyp_idmap_start, hyp_idmap_end); 2348 2349 return err; 2350 } 2351 2352 int kvm_mmu_init(void) 2353 { 2354 int err; 2355 2356 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 2357 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 2358 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 2359 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 2360 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 2361 2362 /* 2363 * We rely on the linker script to ensure at build time that the HYP 2364 * init code does not cross a page boundary. 2365 */ 2366 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 2367 2368 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 2369 kvm_debug("HYP VA range: %lx:%lx\n", 2370 kern_hyp_va(PAGE_OFFSET), 2371 kern_hyp_va((unsigned long)high_memory - 1)); 2372 2373 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 2374 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 2375 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 2376 /* 2377 * The idmap page is intersecting with the VA space, 2378 * it is not safe to continue further. 2379 */ 2380 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 2381 err = -EINVAL; 2382 goto out; 2383 } 2384 2385 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order); 2386 if (!hyp_pgd) { 2387 kvm_err("Hyp mode PGD not allocated\n"); 2388 err = -ENOMEM; 2389 goto out; 2390 } 2391 2392 if (__kvm_cpu_uses_extended_idmap()) { 2393 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2394 hyp_pgd_order); 2395 if (!boot_hyp_pgd) { 2396 kvm_err("Hyp boot PGD not allocated\n"); 2397 err = -ENOMEM; 2398 goto out; 2399 } 2400 2401 err = kvm_map_idmap_text(boot_hyp_pgd); 2402 if (err) 2403 goto out; 2404 2405 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 2406 if (!merged_hyp_pgd) { 2407 kvm_err("Failed to allocate extra HYP pgd\n"); 2408 goto out; 2409 } 2410 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd, 2411 hyp_idmap_start); 2412 } else { 2413 err = kvm_map_idmap_text(hyp_pgd); 2414 if (err) 2415 goto out; 2416 } 2417 2418 io_map_base = hyp_idmap_start; 2419 return 0; 2420 out: 2421 free_hyp_pgds(); 2422 return err; 2423 } 2424 2425 void kvm_arch_commit_memory_region(struct kvm *kvm, 2426 const struct kvm_userspace_memory_region *mem, 2427 struct kvm_memory_slot *old, 2428 const struct kvm_memory_slot *new, 2429 enum kvm_mr_change change) 2430 { 2431 /* 2432 * At this point memslot has been committed and there is an 2433 * allocated dirty_bitmap[], dirty pages will be tracked while the 2434 * memory slot is write protected. 2435 */ 2436 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 2437 /* 2438 * If we're with initial-all-set, we don't need to write 2439 * protect any pages because they're all reported as dirty. 2440 * Huge pages and normal pages will be write protect gradually. 2441 */ 2442 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 2443 kvm_mmu_wp_memory_region(kvm, mem->slot); 2444 } 2445 } 2446 } 2447 2448 int kvm_arch_prepare_memory_region(struct kvm *kvm, 2449 struct kvm_memory_slot *memslot, 2450 const struct kvm_userspace_memory_region *mem, 2451 enum kvm_mr_change change) 2452 { 2453 hva_t hva = mem->userspace_addr; 2454 hva_t reg_end = hva + mem->memory_size; 2455 bool writable = !(mem->flags & KVM_MEM_READONLY); 2456 int ret = 0; 2457 2458 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 2459 change != KVM_MR_FLAGS_ONLY) 2460 return 0; 2461 2462 /* 2463 * Prevent userspace from creating a memory region outside of the IPA 2464 * space addressable by the KVM guest IPA space. 2465 */ 2466 if (memslot->base_gfn + memslot->npages >= 2467 (kvm_phys_size(kvm) >> PAGE_SHIFT)) 2468 return -EFAULT; 2469 2470 mmap_read_lock(current->mm); 2471 /* 2472 * A memory region could potentially cover multiple VMAs, and any holes 2473 * between them, so iterate over all of them to find out if we can map 2474 * any of them right now. 2475 * 2476 * +--------------------------------------------+ 2477 * +---------------+----------------+ +----------------+ 2478 * | : VMA 1 | VMA 2 | | VMA 3 : | 2479 * +---------------+----------------+ +----------------+ 2480 * | memory region | 2481 * +--------------------------------------------+ 2482 */ 2483 do { 2484 struct vm_area_struct *vma = find_vma(current->mm, hva); 2485 hva_t vm_start, vm_end; 2486 2487 if (!vma || vma->vm_start >= reg_end) 2488 break; 2489 2490 /* 2491 * Take the intersection of this VMA with the memory region 2492 */ 2493 vm_start = max(hva, vma->vm_start); 2494 vm_end = min(reg_end, vma->vm_end); 2495 2496 if (vma->vm_flags & VM_PFNMAP) { 2497 gpa_t gpa = mem->guest_phys_addr + 2498 (vm_start - mem->userspace_addr); 2499 phys_addr_t pa; 2500 2501 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; 2502 pa += vm_start - vma->vm_start; 2503 2504 /* IO region dirty page logging not allowed */ 2505 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) { 2506 ret = -EINVAL; 2507 goto out; 2508 } 2509 2510 ret = kvm_phys_addr_ioremap(kvm, gpa, pa, 2511 vm_end - vm_start, 2512 writable); 2513 if (ret) 2514 break; 2515 } 2516 hva = vm_end; 2517 } while (hva < reg_end); 2518 2519 if (change == KVM_MR_FLAGS_ONLY) 2520 goto out; 2521 2522 spin_lock(&kvm->mmu_lock); 2523 if (ret) 2524 unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size); 2525 else 2526 stage2_flush_memslot(kvm, memslot); 2527 spin_unlock(&kvm->mmu_lock); 2528 out: 2529 mmap_read_unlock(current->mm); 2530 return ret; 2531 } 2532 2533 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 2534 { 2535 } 2536 2537 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 2538 { 2539 } 2540 2541 void kvm_arch_flush_shadow_all(struct kvm *kvm) 2542 { 2543 kvm_free_stage2_pgd(&kvm->arch.mmu); 2544 } 2545 2546 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 2547 struct kvm_memory_slot *slot) 2548 { 2549 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 2550 phys_addr_t size = slot->npages << PAGE_SHIFT; 2551 2552 spin_lock(&kvm->mmu_lock); 2553 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 2554 spin_unlock(&kvm->mmu_lock); 2555 } 2556 2557 /* 2558 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 2559 * 2560 * Main problems: 2561 * - S/W ops are local to a CPU (not broadcast) 2562 * - We have line migration behind our back (speculation) 2563 * - System caches don't support S/W at all (damn!) 2564 * 2565 * In the face of the above, the best we can do is to try and convert 2566 * S/W ops to VA ops. Because the guest is not allowed to infer the 2567 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 2568 * which is a rather good thing for us. 2569 * 2570 * Also, it is only used when turning caches on/off ("The expected 2571 * usage of the cache maintenance instructions that operate by set/way 2572 * is associated with the cache maintenance instructions associated 2573 * with the powerdown and powerup of caches, if this is required by 2574 * the implementation."). 2575 * 2576 * We use the following policy: 2577 * 2578 * - If we trap a S/W operation, we enable VM trapping to detect 2579 * caches being turned on/off, and do a full clean. 2580 * 2581 * - We flush the caches on both caches being turned on and off. 2582 * 2583 * - Once the caches are enabled, we stop trapping VM ops. 2584 */ 2585 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 2586 { 2587 unsigned long hcr = *vcpu_hcr(vcpu); 2588 2589 /* 2590 * If this is the first time we do a S/W operation 2591 * (i.e. HCR_TVM not set) flush the whole memory, and set the 2592 * VM trapping. 2593 * 2594 * Otherwise, rely on the VM trapping to wait for the MMU + 2595 * Caches to be turned off. At that point, we'll be able to 2596 * clean the caches again. 2597 */ 2598 if (!(hcr & HCR_TVM)) { 2599 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 2600 vcpu_has_cache_enabled(vcpu)); 2601 stage2_flush_vm(vcpu->kvm); 2602 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 2603 } 2604 } 2605 2606 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 2607 { 2608 bool now_enabled = vcpu_has_cache_enabled(vcpu); 2609 2610 /* 2611 * If switching the MMU+caches on, need to invalidate the caches. 2612 * If switching it off, need to clean the caches. 2613 * Clean + invalidate does the trick always. 2614 */ 2615 if (now_enabled != was_enabled) 2616 stage2_flush_vm(vcpu->kvm); 2617 2618 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 2619 if (now_enabled) 2620 *vcpu_hcr(vcpu) &= ~HCR_TVM; 2621 2622 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 2623 } 2624