1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long __ro_after_init hyp_idmap_start; 29 static unsigned long __ro_after_init hyp_idmap_end; 30 static phys_addr_t __ro_after_init hyp_idmap_vector; 31 32 static unsigned long __ro_after_init io_map_base; 33 34 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) 35 { 36 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); 37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size); 38 39 return (boundary - 1 < end - 1) ? boundary : end; 40 } 41 42 /* 43 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 44 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 45 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 46 * long will also starve other vCPUs. We have to also make sure that the page 47 * tables are not freed while we released the lock. 48 */ 49 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, 50 phys_addr_t end, 51 int (*fn)(struct kvm_pgtable *, u64, u64), 52 bool resched) 53 { 54 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 55 int ret; 56 u64 next; 57 58 do { 59 struct kvm_pgtable *pgt = mmu->pgt; 60 if (!pgt) 61 return -EINVAL; 62 63 next = stage2_range_addr_end(addr, end); 64 ret = fn(pgt, addr, next - addr); 65 if (ret) 66 break; 67 68 if (resched && next != end) 69 cond_resched_rwlock_write(&kvm->mmu_lock); 70 } while (addr = next, addr != end); 71 72 return ret; 73 } 74 75 #define stage2_apply_range_resched(mmu, addr, end, fn) \ 76 stage2_apply_range(mmu, addr, end, fn, true) 77 78 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 79 { 80 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 81 } 82 83 /** 84 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 85 * @kvm: pointer to kvm structure. 86 * 87 * Interface to HYP function to flush all VM TLB entries 88 */ 89 void kvm_flush_remote_tlbs(struct kvm *kvm) 90 { 91 ++kvm->stat.generic.remote_tlb_flush_requests; 92 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 93 } 94 95 static bool kvm_is_device_pfn(unsigned long pfn) 96 { 97 return !pfn_is_map_memory(pfn); 98 } 99 100 static void *stage2_memcache_zalloc_page(void *arg) 101 { 102 struct kvm_mmu_memory_cache *mc = arg; 103 void *virt; 104 105 /* Allocated with __GFP_ZERO, so no need to zero */ 106 virt = kvm_mmu_memory_cache_alloc(mc); 107 if (virt) 108 kvm_account_pgtable_pages(virt, 1); 109 return virt; 110 } 111 112 static void *kvm_host_zalloc_pages_exact(size_t size) 113 { 114 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 115 } 116 117 static void *kvm_s2_zalloc_pages_exact(size_t size) 118 { 119 void *virt = kvm_host_zalloc_pages_exact(size); 120 121 if (virt) 122 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT)); 123 return virt; 124 } 125 126 static void kvm_s2_free_pages_exact(void *virt, size_t size) 127 { 128 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT)); 129 free_pages_exact(virt, size); 130 } 131 132 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops; 133 134 static void stage2_free_removed_table_rcu_cb(struct rcu_head *head) 135 { 136 struct page *page = container_of(head, struct page, rcu_head); 137 void *pgtable = page_to_virt(page); 138 u32 level = page_private(page); 139 140 kvm_pgtable_stage2_free_removed(&kvm_s2_mm_ops, pgtable, level); 141 } 142 143 static void stage2_free_removed_table(void *addr, u32 level) 144 { 145 struct page *page = virt_to_page(addr); 146 147 set_page_private(page, (unsigned long)level); 148 call_rcu(&page->rcu_head, stage2_free_removed_table_rcu_cb); 149 } 150 151 static void kvm_host_get_page(void *addr) 152 { 153 get_page(virt_to_page(addr)); 154 } 155 156 static void kvm_host_put_page(void *addr) 157 { 158 put_page(virt_to_page(addr)); 159 } 160 161 static void kvm_s2_put_page(void *addr) 162 { 163 struct page *p = virt_to_page(addr); 164 /* Dropping last refcount, the page will be freed */ 165 if (page_count(p) == 1) 166 kvm_account_pgtable_pages(addr, -1); 167 put_page(p); 168 } 169 170 static int kvm_host_page_count(void *addr) 171 { 172 return page_count(virt_to_page(addr)); 173 } 174 175 static phys_addr_t kvm_host_pa(void *addr) 176 { 177 return __pa(addr); 178 } 179 180 static void *kvm_host_va(phys_addr_t phys) 181 { 182 return __va(phys); 183 } 184 185 static void clean_dcache_guest_page(void *va, size_t size) 186 { 187 __clean_dcache_guest_page(va, size); 188 } 189 190 static void invalidate_icache_guest_page(void *va, size_t size) 191 { 192 __invalidate_icache_guest_page(va, size); 193 } 194 195 /* 196 * Unmapping vs dcache management: 197 * 198 * If a guest maps certain memory pages as uncached, all writes will 199 * bypass the data cache and go directly to RAM. However, the CPUs 200 * can still speculate reads (not writes) and fill cache lines with 201 * data. 202 * 203 * Those cache lines will be *clean* cache lines though, so a 204 * clean+invalidate operation is equivalent to an invalidate 205 * operation, because no cache lines are marked dirty. 206 * 207 * Those clean cache lines could be filled prior to an uncached write 208 * by the guest, and the cache coherent IO subsystem would therefore 209 * end up writing old data to disk. 210 * 211 * This is why right after unmapping a page/section and invalidating 212 * the corresponding TLBs, we flush to make sure the IO subsystem will 213 * never hit in the cache. 214 * 215 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 216 * we then fully enforce cacheability of RAM, no matter what the guest 217 * does. 218 */ 219 /** 220 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 221 * @mmu: The KVM stage-2 MMU pointer 222 * @start: The intermediate physical base address of the range to unmap 223 * @size: The size of the area to unmap 224 * @may_block: Whether or not we are permitted to block 225 * 226 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 227 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 228 * destroying the VM), otherwise another faulting VCPU may come in and mess 229 * with things behind our backs. 230 */ 231 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 232 bool may_block) 233 { 234 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 235 phys_addr_t end = start + size; 236 237 lockdep_assert_held_write(&kvm->mmu_lock); 238 WARN_ON(size & ~PAGE_MASK); 239 WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap, 240 may_block)); 241 } 242 243 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 244 { 245 __unmap_stage2_range(mmu, start, size, true); 246 } 247 248 static void stage2_flush_memslot(struct kvm *kvm, 249 struct kvm_memory_slot *memslot) 250 { 251 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 252 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 253 254 stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush); 255 } 256 257 /** 258 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 259 * @kvm: The struct kvm pointer 260 * 261 * Go through the stage 2 page tables and invalidate any cache lines 262 * backing memory already mapped to the VM. 263 */ 264 static void stage2_flush_vm(struct kvm *kvm) 265 { 266 struct kvm_memslots *slots; 267 struct kvm_memory_slot *memslot; 268 int idx, bkt; 269 270 idx = srcu_read_lock(&kvm->srcu); 271 write_lock(&kvm->mmu_lock); 272 273 slots = kvm_memslots(kvm); 274 kvm_for_each_memslot(memslot, bkt, slots) 275 stage2_flush_memslot(kvm, memslot); 276 277 write_unlock(&kvm->mmu_lock); 278 srcu_read_unlock(&kvm->srcu, idx); 279 } 280 281 /** 282 * free_hyp_pgds - free Hyp-mode page tables 283 */ 284 void __init free_hyp_pgds(void) 285 { 286 mutex_lock(&kvm_hyp_pgd_mutex); 287 if (hyp_pgtable) { 288 kvm_pgtable_hyp_destroy(hyp_pgtable); 289 kfree(hyp_pgtable); 290 hyp_pgtable = NULL; 291 } 292 mutex_unlock(&kvm_hyp_pgd_mutex); 293 } 294 295 static bool kvm_host_owns_hyp_mappings(void) 296 { 297 if (is_kernel_in_hyp_mode()) 298 return false; 299 300 if (static_branch_likely(&kvm_protected_mode_initialized)) 301 return false; 302 303 /* 304 * This can happen at boot time when __create_hyp_mappings() is called 305 * after the hyp protection has been enabled, but the static key has 306 * not been flipped yet. 307 */ 308 if (!hyp_pgtable && is_protected_kvm_enabled()) 309 return false; 310 311 WARN_ON(!hyp_pgtable); 312 313 return true; 314 } 315 316 int __create_hyp_mappings(unsigned long start, unsigned long size, 317 unsigned long phys, enum kvm_pgtable_prot prot) 318 { 319 int err; 320 321 if (WARN_ON(!kvm_host_owns_hyp_mappings())) 322 return -EINVAL; 323 324 mutex_lock(&kvm_hyp_pgd_mutex); 325 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 326 mutex_unlock(&kvm_hyp_pgd_mutex); 327 328 return err; 329 } 330 331 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 332 { 333 if (!is_vmalloc_addr(kaddr)) { 334 BUG_ON(!virt_addr_valid(kaddr)); 335 return __pa(kaddr); 336 } else { 337 return page_to_phys(vmalloc_to_page(kaddr)) + 338 offset_in_page(kaddr); 339 } 340 } 341 342 struct hyp_shared_pfn { 343 u64 pfn; 344 int count; 345 struct rb_node node; 346 }; 347 348 static DEFINE_MUTEX(hyp_shared_pfns_lock); 349 static struct rb_root hyp_shared_pfns = RB_ROOT; 350 351 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node, 352 struct rb_node **parent) 353 { 354 struct hyp_shared_pfn *this; 355 356 *node = &hyp_shared_pfns.rb_node; 357 *parent = NULL; 358 while (**node) { 359 this = container_of(**node, struct hyp_shared_pfn, node); 360 *parent = **node; 361 if (this->pfn < pfn) 362 *node = &((**node)->rb_left); 363 else if (this->pfn > pfn) 364 *node = &((**node)->rb_right); 365 else 366 return this; 367 } 368 369 return NULL; 370 } 371 372 static int share_pfn_hyp(u64 pfn) 373 { 374 struct rb_node **node, *parent; 375 struct hyp_shared_pfn *this; 376 int ret = 0; 377 378 mutex_lock(&hyp_shared_pfns_lock); 379 this = find_shared_pfn(pfn, &node, &parent); 380 if (this) { 381 this->count++; 382 goto unlock; 383 } 384 385 this = kzalloc(sizeof(*this), GFP_KERNEL); 386 if (!this) { 387 ret = -ENOMEM; 388 goto unlock; 389 } 390 391 this->pfn = pfn; 392 this->count = 1; 393 rb_link_node(&this->node, parent, node); 394 rb_insert_color(&this->node, &hyp_shared_pfns); 395 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1); 396 unlock: 397 mutex_unlock(&hyp_shared_pfns_lock); 398 399 return ret; 400 } 401 402 static int unshare_pfn_hyp(u64 pfn) 403 { 404 struct rb_node **node, *parent; 405 struct hyp_shared_pfn *this; 406 int ret = 0; 407 408 mutex_lock(&hyp_shared_pfns_lock); 409 this = find_shared_pfn(pfn, &node, &parent); 410 if (WARN_ON(!this)) { 411 ret = -ENOENT; 412 goto unlock; 413 } 414 415 this->count--; 416 if (this->count) 417 goto unlock; 418 419 rb_erase(&this->node, &hyp_shared_pfns); 420 kfree(this); 421 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1); 422 unlock: 423 mutex_unlock(&hyp_shared_pfns_lock); 424 425 return ret; 426 } 427 428 int kvm_share_hyp(void *from, void *to) 429 { 430 phys_addr_t start, end, cur; 431 u64 pfn; 432 int ret; 433 434 if (is_kernel_in_hyp_mode()) 435 return 0; 436 437 /* 438 * The share hcall maps things in the 'fixed-offset' region of the hyp 439 * VA space, so we can only share physically contiguous data-structures 440 * for now. 441 */ 442 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to)) 443 return -EINVAL; 444 445 if (kvm_host_owns_hyp_mappings()) 446 return create_hyp_mappings(from, to, PAGE_HYP); 447 448 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 449 end = PAGE_ALIGN(__pa(to)); 450 for (cur = start; cur < end; cur += PAGE_SIZE) { 451 pfn = __phys_to_pfn(cur); 452 ret = share_pfn_hyp(pfn); 453 if (ret) 454 return ret; 455 } 456 457 return 0; 458 } 459 460 void kvm_unshare_hyp(void *from, void *to) 461 { 462 phys_addr_t start, end, cur; 463 u64 pfn; 464 465 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from) 466 return; 467 468 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 469 end = PAGE_ALIGN(__pa(to)); 470 for (cur = start; cur < end; cur += PAGE_SIZE) { 471 pfn = __phys_to_pfn(cur); 472 WARN_ON(unshare_pfn_hyp(pfn)); 473 } 474 } 475 476 /** 477 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 478 * @from: The virtual kernel start address of the range 479 * @to: The virtual kernel end address of the range (exclusive) 480 * @prot: The protection to be applied to this range 481 * 482 * The same virtual address as the kernel virtual address is also used 483 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 484 * physical pages. 485 */ 486 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 487 { 488 phys_addr_t phys_addr; 489 unsigned long virt_addr; 490 unsigned long start = kern_hyp_va((unsigned long)from); 491 unsigned long end = kern_hyp_va((unsigned long)to); 492 493 if (is_kernel_in_hyp_mode()) 494 return 0; 495 496 if (!kvm_host_owns_hyp_mappings()) 497 return -EPERM; 498 499 start = start & PAGE_MASK; 500 end = PAGE_ALIGN(end); 501 502 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 503 int err; 504 505 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 506 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 507 prot); 508 if (err) 509 return err; 510 } 511 512 return 0; 513 } 514 515 516 /** 517 * hyp_alloc_private_va_range - Allocates a private VA range. 518 * @size: The size of the VA range to reserve. 519 * @haddr: The hypervisor virtual start address of the allocation. 520 * 521 * The private virtual address (VA) range is allocated below io_map_base 522 * and aligned based on the order of @size. 523 * 524 * Return: 0 on success or negative error code on failure. 525 */ 526 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr) 527 { 528 unsigned long base; 529 int ret = 0; 530 531 mutex_lock(&kvm_hyp_pgd_mutex); 532 533 /* 534 * This assumes that we have enough space below the idmap 535 * page to allocate our VAs. If not, the check below will 536 * kick. A potential alternative would be to detect that 537 * overflow and switch to an allocation above the idmap. 538 * 539 * The allocated size is always a multiple of PAGE_SIZE. 540 */ 541 base = io_map_base - PAGE_ALIGN(size); 542 543 /* Align the allocation based on the order of its size */ 544 base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size)); 545 546 /* 547 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 548 * allocating the new area, as it would indicate we've 549 * overflowed the idmap/IO address range. 550 */ 551 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 552 ret = -ENOMEM; 553 else 554 *haddr = io_map_base = base; 555 556 mutex_unlock(&kvm_hyp_pgd_mutex); 557 558 return ret; 559 } 560 561 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 562 unsigned long *haddr, 563 enum kvm_pgtable_prot prot) 564 { 565 unsigned long addr; 566 int ret = 0; 567 568 if (!kvm_host_owns_hyp_mappings()) { 569 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 570 phys_addr, size, prot); 571 if (IS_ERR_VALUE(addr)) 572 return addr; 573 *haddr = addr; 574 575 return 0; 576 } 577 578 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 579 ret = hyp_alloc_private_va_range(size, &addr); 580 if (ret) 581 return ret; 582 583 ret = __create_hyp_mappings(addr, size, phys_addr, prot); 584 if (ret) 585 return ret; 586 587 *haddr = addr + offset_in_page(phys_addr); 588 return ret; 589 } 590 591 /** 592 * create_hyp_io_mappings - Map IO into both kernel and HYP 593 * @phys_addr: The physical start address which gets mapped 594 * @size: Size of the region being mapped 595 * @kaddr: Kernel VA for this mapping 596 * @haddr: HYP VA for this mapping 597 */ 598 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 599 void __iomem **kaddr, 600 void __iomem **haddr) 601 { 602 unsigned long addr; 603 int ret; 604 605 if (is_protected_kvm_enabled()) 606 return -EPERM; 607 608 *kaddr = ioremap(phys_addr, size); 609 if (!*kaddr) 610 return -ENOMEM; 611 612 if (is_kernel_in_hyp_mode()) { 613 *haddr = *kaddr; 614 return 0; 615 } 616 617 ret = __create_hyp_private_mapping(phys_addr, size, 618 &addr, PAGE_HYP_DEVICE); 619 if (ret) { 620 iounmap(*kaddr); 621 *kaddr = NULL; 622 *haddr = NULL; 623 return ret; 624 } 625 626 *haddr = (void __iomem *)addr; 627 return 0; 628 } 629 630 /** 631 * create_hyp_exec_mappings - Map an executable range into HYP 632 * @phys_addr: The physical start address which gets mapped 633 * @size: Size of the region being mapped 634 * @haddr: HYP VA for this mapping 635 */ 636 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 637 void **haddr) 638 { 639 unsigned long addr; 640 int ret; 641 642 BUG_ON(is_kernel_in_hyp_mode()); 643 644 ret = __create_hyp_private_mapping(phys_addr, size, 645 &addr, PAGE_HYP_EXEC); 646 if (ret) { 647 *haddr = NULL; 648 return ret; 649 } 650 651 *haddr = (void *)addr; 652 return 0; 653 } 654 655 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { 656 /* We shouldn't need any other callback to walk the PT */ 657 .phys_to_virt = kvm_host_va, 658 }; 659 660 static int get_user_mapping_size(struct kvm *kvm, u64 addr) 661 { 662 struct kvm_pgtable pgt = { 663 .pgd = (kvm_pteref_t)kvm->mm->pgd, 664 .ia_bits = vabits_actual, 665 .start_level = (KVM_PGTABLE_MAX_LEVELS - 666 CONFIG_PGTABLE_LEVELS), 667 .mm_ops = &kvm_user_mm_ops, 668 }; 669 kvm_pte_t pte = 0; /* Keep GCC quiet... */ 670 u32 level = ~0; 671 int ret; 672 673 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); 674 VM_BUG_ON(ret); 675 VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS); 676 VM_BUG_ON(!(pte & PTE_VALID)); 677 678 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); 679 } 680 681 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 682 .zalloc_page = stage2_memcache_zalloc_page, 683 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact, 684 .free_pages_exact = kvm_s2_free_pages_exact, 685 .free_removed_table = stage2_free_removed_table, 686 .get_page = kvm_host_get_page, 687 .put_page = kvm_s2_put_page, 688 .page_count = kvm_host_page_count, 689 .phys_to_virt = kvm_host_va, 690 .virt_to_phys = kvm_host_pa, 691 .dcache_clean_inval_poc = clean_dcache_guest_page, 692 .icache_inval_pou = invalidate_icache_guest_page, 693 }; 694 695 /** 696 * kvm_init_stage2_mmu - Initialise a S2 MMU structure 697 * @kvm: The pointer to the KVM structure 698 * @mmu: The pointer to the s2 MMU structure 699 * @type: The machine type of the virtual machine 700 * 701 * Allocates only the stage-2 HW PGD level table(s). 702 * Note we don't need locking here as this is only called when the VM is 703 * created, which can only be done once. 704 */ 705 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type) 706 { 707 u32 kvm_ipa_limit = get_kvm_ipa_limit(); 708 int cpu, err; 709 struct kvm_pgtable *pgt; 710 u64 mmfr0, mmfr1; 711 u32 phys_shift; 712 713 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK) 714 return -EINVAL; 715 716 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type); 717 if (is_protected_kvm_enabled()) { 718 phys_shift = kvm_ipa_limit; 719 } else if (phys_shift) { 720 if (phys_shift > kvm_ipa_limit || 721 phys_shift < ARM64_MIN_PARANGE_BITS) 722 return -EINVAL; 723 } else { 724 phys_shift = KVM_PHYS_SHIFT; 725 if (phys_shift > kvm_ipa_limit) { 726 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n", 727 current->comm); 728 return -EINVAL; 729 } 730 } 731 732 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 733 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 734 kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift); 735 736 if (mmu->pgt != NULL) { 737 kvm_err("kvm_arch already initialized?\n"); 738 return -EINVAL; 739 } 740 741 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); 742 if (!pgt) 743 return -ENOMEM; 744 745 mmu->arch = &kvm->arch; 746 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops); 747 if (err) 748 goto out_free_pgtable; 749 750 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 751 if (!mmu->last_vcpu_ran) { 752 err = -ENOMEM; 753 goto out_destroy_pgtable; 754 } 755 756 for_each_possible_cpu(cpu) 757 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 758 759 mmu->pgt = pgt; 760 mmu->pgd_phys = __pa(pgt->pgd); 761 return 0; 762 763 out_destroy_pgtable: 764 kvm_pgtable_stage2_destroy(pgt); 765 out_free_pgtable: 766 kfree(pgt); 767 return err; 768 } 769 770 static void stage2_unmap_memslot(struct kvm *kvm, 771 struct kvm_memory_slot *memslot) 772 { 773 hva_t hva = memslot->userspace_addr; 774 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 775 phys_addr_t size = PAGE_SIZE * memslot->npages; 776 hva_t reg_end = hva + size; 777 778 /* 779 * A memory region could potentially cover multiple VMAs, and any holes 780 * between them, so iterate over all of them to find out if we should 781 * unmap any of them. 782 * 783 * +--------------------------------------------+ 784 * +---------------+----------------+ +----------------+ 785 * | : VMA 1 | VMA 2 | | VMA 3 : | 786 * +---------------+----------------+ +----------------+ 787 * | memory region | 788 * +--------------------------------------------+ 789 */ 790 do { 791 struct vm_area_struct *vma; 792 hva_t vm_start, vm_end; 793 794 vma = find_vma_intersection(current->mm, hva, reg_end); 795 if (!vma) 796 break; 797 798 /* 799 * Take the intersection of this VMA with the memory region 800 */ 801 vm_start = max(hva, vma->vm_start); 802 vm_end = min(reg_end, vma->vm_end); 803 804 if (!(vma->vm_flags & VM_PFNMAP)) { 805 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 806 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 807 } 808 hva = vm_end; 809 } while (hva < reg_end); 810 } 811 812 /** 813 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 814 * @kvm: The struct kvm pointer 815 * 816 * Go through the memregions and unmap any regular RAM 817 * backing memory already mapped to the VM. 818 */ 819 void stage2_unmap_vm(struct kvm *kvm) 820 { 821 struct kvm_memslots *slots; 822 struct kvm_memory_slot *memslot; 823 int idx, bkt; 824 825 idx = srcu_read_lock(&kvm->srcu); 826 mmap_read_lock(current->mm); 827 write_lock(&kvm->mmu_lock); 828 829 slots = kvm_memslots(kvm); 830 kvm_for_each_memslot(memslot, bkt, slots) 831 stage2_unmap_memslot(kvm, memslot); 832 833 write_unlock(&kvm->mmu_lock); 834 mmap_read_unlock(current->mm); 835 srcu_read_unlock(&kvm->srcu, idx); 836 } 837 838 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 839 { 840 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 841 struct kvm_pgtable *pgt = NULL; 842 843 write_lock(&kvm->mmu_lock); 844 pgt = mmu->pgt; 845 if (pgt) { 846 mmu->pgd_phys = 0; 847 mmu->pgt = NULL; 848 free_percpu(mmu->last_vcpu_ran); 849 } 850 write_unlock(&kvm->mmu_lock); 851 852 if (pgt) { 853 kvm_pgtable_stage2_destroy(pgt); 854 kfree(pgt); 855 } 856 } 857 858 static void hyp_mc_free_fn(void *addr, void *unused) 859 { 860 free_page((unsigned long)addr); 861 } 862 863 static void *hyp_mc_alloc_fn(void *unused) 864 { 865 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT); 866 } 867 868 void free_hyp_memcache(struct kvm_hyp_memcache *mc) 869 { 870 if (is_protected_kvm_enabled()) 871 __free_hyp_memcache(mc, hyp_mc_free_fn, 872 kvm_host_va, NULL); 873 } 874 875 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages) 876 { 877 if (!is_protected_kvm_enabled()) 878 return 0; 879 880 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn, 881 kvm_host_pa, NULL); 882 } 883 884 /** 885 * kvm_phys_addr_ioremap - map a device range to guest IPA 886 * 887 * @kvm: The KVM pointer 888 * @guest_ipa: The IPA at which to insert the mapping 889 * @pa: The physical address of the device 890 * @size: The size of the mapping 891 * @writable: Whether or not to create a writable mapping 892 */ 893 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 894 phys_addr_t pa, unsigned long size, bool writable) 895 { 896 phys_addr_t addr; 897 int ret = 0; 898 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO }; 899 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 900 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 901 KVM_PGTABLE_PROT_R | 902 (writable ? KVM_PGTABLE_PROT_W : 0); 903 904 if (is_protected_kvm_enabled()) 905 return -EPERM; 906 907 size += offset_in_page(guest_ipa); 908 guest_ipa &= PAGE_MASK; 909 910 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 911 ret = kvm_mmu_topup_memory_cache(&cache, 912 kvm_mmu_cache_min_pages(kvm)); 913 if (ret) 914 break; 915 916 write_lock(&kvm->mmu_lock); 917 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 918 &cache, 0); 919 write_unlock(&kvm->mmu_lock); 920 if (ret) 921 break; 922 923 pa += PAGE_SIZE; 924 } 925 926 kvm_mmu_free_memory_cache(&cache); 927 return ret; 928 } 929 930 /** 931 * stage2_wp_range() - write protect stage2 memory region range 932 * @mmu: The KVM stage-2 MMU pointer 933 * @addr: Start address of range 934 * @end: End address of range 935 */ 936 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 937 { 938 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect); 939 } 940 941 /** 942 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 943 * @kvm: The KVM pointer 944 * @slot: The memory slot to write protect 945 * 946 * Called to start logging dirty pages after memory region 947 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 948 * all present PUD, PMD and PTEs are write protected in the memory region. 949 * Afterwards read of dirty page log can be called. 950 * 951 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 952 * serializing operations for VM memory regions. 953 */ 954 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 955 { 956 struct kvm_memslots *slots = kvm_memslots(kvm); 957 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 958 phys_addr_t start, end; 959 960 if (WARN_ON_ONCE(!memslot)) 961 return; 962 963 start = memslot->base_gfn << PAGE_SHIFT; 964 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 965 966 write_lock(&kvm->mmu_lock); 967 stage2_wp_range(&kvm->arch.mmu, start, end); 968 write_unlock(&kvm->mmu_lock); 969 kvm_flush_remote_tlbs(kvm); 970 } 971 972 /** 973 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 974 * @kvm: The KVM pointer 975 * @slot: The memory slot associated with mask 976 * @gfn_offset: The gfn offset in memory slot 977 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 978 * slot to be write protected 979 * 980 * Walks bits set in mask write protects the associated pte's. Caller must 981 * acquire kvm_mmu_lock. 982 */ 983 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 984 struct kvm_memory_slot *slot, 985 gfn_t gfn_offset, unsigned long mask) 986 { 987 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 988 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 989 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 990 991 stage2_wp_range(&kvm->arch.mmu, start, end); 992 } 993 994 /* 995 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 996 * dirty pages. 997 * 998 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 999 * enable dirty logging for them. 1000 */ 1001 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1002 struct kvm_memory_slot *slot, 1003 gfn_t gfn_offset, unsigned long mask) 1004 { 1005 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1006 } 1007 1008 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 1009 { 1010 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 1011 } 1012 1013 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 1014 unsigned long hva, 1015 unsigned long map_size) 1016 { 1017 gpa_t gpa_start; 1018 hva_t uaddr_start, uaddr_end; 1019 size_t size; 1020 1021 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 1022 if (map_size == PAGE_SIZE) 1023 return true; 1024 1025 size = memslot->npages * PAGE_SIZE; 1026 1027 gpa_start = memslot->base_gfn << PAGE_SHIFT; 1028 1029 uaddr_start = memslot->userspace_addr; 1030 uaddr_end = uaddr_start + size; 1031 1032 /* 1033 * Pages belonging to memslots that don't have the same alignment 1034 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 1035 * PMD/PUD entries, because we'll end up mapping the wrong pages. 1036 * 1037 * Consider a layout like the following: 1038 * 1039 * memslot->userspace_addr: 1040 * +-----+--------------------+--------------------+---+ 1041 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 1042 * +-----+--------------------+--------------------+---+ 1043 * 1044 * memslot->base_gfn << PAGE_SHIFT: 1045 * +---+--------------------+--------------------+-----+ 1046 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 1047 * +---+--------------------+--------------------+-----+ 1048 * 1049 * If we create those stage-2 blocks, we'll end up with this incorrect 1050 * mapping: 1051 * d -> f 1052 * e -> g 1053 * f -> h 1054 */ 1055 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 1056 return false; 1057 1058 /* 1059 * Next, let's make sure we're not trying to map anything not covered 1060 * by the memslot. This means we have to prohibit block size mappings 1061 * for the beginning and end of a non-block aligned and non-block sized 1062 * memory slot (illustrated by the head and tail parts of the 1063 * userspace view above containing pages 'abcde' and 'xyz', 1064 * respectively). 1065 * 1066 * Note that it doesn't matter if we do the check using the 1067 * userspace_addr or the base_gfn, as both are equally aligned (per 1068 * the check above) and equally sized. 1069 */ 1070 return (hva & ~(map_size - 1)) >= uaddr_start && 1071 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 1072 } 1073 1074 /* 1075 * Check if the given hva is backed by a transparent huge page (THP) and 1076 * whether it can be mapped using block mapping in stage2. If so, adjust 1077 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 1078 * supported. This will need to be updated to support other THP sizes. 1079 * 1080 * Returns the size of the mapping. 1081 */ 1082 static unsigned long 1083 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, 1084 unsigned long hva, kvm_pfn_t *pfnp, 1085 phys_addr_t *ipap) 1086 { 1087 kvm_pfn_t pfn = *pfnp; 1088 1089 /* 1090 * Make sure the adjustment is done only for THP pages. Also make 1091 * sure that the HVA and IPA are sufficiently aligned and that the 1092 * block map is contained within the memslot. 1093 */ 1094 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) && 1095 get_user_mapping_size(kvm, hva) >= PMD_SIZE) { 1096 /* 1097 * The address we faulted on is backed by a transparent huge 1098 * page. However, because we map the compound huge page and 1099 * not the individual tail page, we need to transfer the 1100 * refcount to the head page. We have to be careful that the 1101 * THP doesn't start to split while we are adjusting the 1102 * refcounts. 1103 * 1104 * We are sure this doesn't happen, because mmu_invalidate_retry 1105 * was successful and we are holding the mmu_lock, so if this 1106 * THP is trying to split, it will be blocked in the mmu 1107 * notifier before touching any of the pages, specifically 1108 * before being able to call __split_huge_page_refcount(). 1109 * 1110 * We can therefore safely transfer the refcount from PG_tail 1111 * to PG_head and switch the pfn from a tail page to the head 1112 * page accordingly. 1113 */ 1114 *ipap &= PMD_MASK; 1115 kvm_release_pfn_clean(pfn); 1116 pfn &= ~(PTRS_PER_PMD - 1); 1117 get_page(pfn_to_page(pfn)); 1118 *pfnp = pfn; 1119 1120 return PMD_SIZE; 1121 } 1122 1123 /* Use page mapping if we cannot use block mapping. */ 1124 return PAGE_SIZE; 1125 } 1126 1127 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) 1128 { 1129 unsigned long pa; 1130 1131 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) 1132 return huge_page_shift(hstate_vma(vma)); 1133 1134 if (!(vma->vm_flags & VM_PFNMAP)) 1135 return PAGE_SHIFT; 1136 1137 VM_BUG_ON(is_vm_hugetlb_page(vma)); 1138 1139 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); 1140 1141 #ifndef __PAGETABLE_PMD_FOLDED 1142 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && 1143 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && 1144 ALIGN(hva, PUD_SIZE) <= vma->vm_end) 1145 return PUD_SHIFT; 1146 #endif 1147 1148 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && 1149 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && 1150 ALIGN(hva, PMD_SIZE) <= vma->vm_end) 1151 return PMD_SHIFT; 1152 1153 return PAGE_SHIFT; 1154 } 1155 1156 /* 1157 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be 1158 * able to see the page's tags and therefore they must be initialised first. If 1159 * PG_mte_tagged is set, tags have already been initialised. 1160 * 1161 * The race in the test/set of the PG_mte_tagged flag is handled by: 1162 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs 1163 * racing to santise the same page 1164 * - mmap_lock protects between a VM faulting a page in and the VMM performing 1165 * an mprotect() to add VM_MTE 1166 */ 1167 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, 1168 unsigned long size) 1169 { 1170 unsigned long i, nr_pages = size >> PAGE_SHIFT; 1171 struct page *page = pfn_to_page(pfn); 1172 1173 if (!kvm_has_mte(kvm)) 1174 return; 1175 1176 for (i = 0; i < nr_pages; i++, page++) { 1177 if (try_page_mte_tagging(page)) { 1178 mte_clear_page_tags(page_address(page)); 1179 set_page_mte_tagged(page); 1180 } 1181 } 1182 } 1183 1184 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma) 1185 { 1186 return vma->vm_flags & VM_MTE_ALLOWED; 1187 } 1188 1189 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1190 struct kvm_memory_slot *memslot, unsigned long hva, 1191 unsigned long fault_status) 1192 { 1193 int ret = 0; 1194 bool write_fault, writable, force_pte = false; 1195 bool exec_fault; 1196 bool device = false; 1197 unsigned long mmu_seq; 1198 struct kvm *kvm = vcpu->kvm; 1199 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1200 struct vm_area_struct *vma; 1201 short vma_shift; 1202 gfn_t gfn; 1203 kvm_pfn_t pfn; 1204 bool logging_active = memslot_is_logging(memslot); 1205 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); 1206 unsigned long vma_pagesize, fault_granule; 1207 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 1208 struct kvm_pgtable *pgt; 1209 1210 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); 1211 write_fault = kvm_is_write_fault(vcpu); 1212 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 1213 VM_BUG_ON(write_fault && exec_fault); 1214 1215 if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) { 1216 kvm_err("Unexpected L2 read permission error\n"); 1217 return -EFAULT; 1218 } 1219 1220 /* 1221 * Let's check if we will get back a huge page backed by hugetlbfs, or 1222 * get block mapping for device MMIO region. 1223 */ 1224 mmap_read_lock(current->mm); 1225 vma = vma_lookup(current->mm, hva); 1226 if (unlikely(!vma)) { 1227 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1228 mmap_read_unlock(current->mm); 1229 return -EFAULT; 1230 } 1231 1232 /* 1233 * logging_active is guaranteed to never be true for VM_PFNMAP 1234 * memslots. 1235 */ 1236 if (logging_active) { 1237 force_pte = true; 1238 vma_shift = PAGE_SHIFT; 1239 } else { 1240 vma_shift = get_vma_page_shift(vma, hva); 1241 } 1242 1243 switch (vma_shift) { 1244 #ifndef __PAGETABLE_PMD_FOLDED 1245 case PUD_SHIFT: 1246 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 1247 break; 1248 fallthrough; 1249 #endif 1250 case CONT_PMD_SHIFT: 1251 vma_shift = PMD_SHIFT; 1252 fallthrough; 1253 case PMD_SHIFT: 1254 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 1255 break; 1256 fallthrough; 1257 case CONT_PTE_SHIFT: 1258 vma_shift = PAGE_SHIFT; 1259 force_pte = true; 1260 fallthrough; 1261 case PAGE_SHIFT: 1262 break; 1263 default: 1264 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 1265 } 1266 1267 vma_pagesize = 1UL << vma_shift; 1268 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 1269 fault_ipa &= ~(vma_pagesize - 1); 1270 1271 gfn = fault_ipa >> PAGE_SHIFT; 1272 mmap_read_unlock(current->mm); 1273 1274 /* 1275 * Permission faults just need to update the existing leaf entry, 1276 * and so normally don't require allocations from the memcache. The 1277 * only exception to this is when dirty logging is enabled at runtime 1278 * and a write fault needs to collapse a block entry into a table. 1279 */ 1280 if (fault_status != ESR_ELx_FSC_PERM || 1281 (logging_active && write_fault)) { 1282 ret = kvm_mmu_topup_memory_cache(memcache, 1283 kvm_mmu_cache_min_pages(kvm)); 1284 if (ret) 1285 return ret; 1286 } 1287 1288 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 1289 /* 1290 * Ensure the read of mmu_invalidate_seq happens before we call 1291 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 1292 * the page we just got a reference to gets unmapped before we have a 1293 * chance to grab the mmu_lock, which ensure that if the page gets 1294 * unmapped afterwards, the call to kvm_unmap_gfn will take it away 1295 * from us again properly. This smp_rmb() interacts with the smp_wmb() 1296 * in kvm_mmu_notifier_invalidate_<page|range_end>. 1297 * 1298 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is 1299 * used to avoid unnecessary overhead introduced to locate the memory 1300 * slot because it's always fixed even @gfn is adjusted for huge pages. 1301 */ 1302 smp_rmb(); 1303 1304 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, 1305 write_fault, &writable, NULL); 1306 if (pfn == KVM_PFN_ERR_HWPOISON) { 1307 kvm_send_hwpoison_signal(hva, vma_shift); 1308 return 0; 1309 } 1310 if (is_error_noslot_pfn(pfn)) 1311 return -EFAULT; 1312 1313 if (kvm_is_device_pfn(pfn)) { 1314 /* 1315 * If the page was identified as device early by looking at 1316 * the VMA flags, vma_pagesize is already representing the 1317 * largest quantity we can map. If instead it was mapped 1318 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE 1319 * and must not be upgraded. 1320 * 1321 * In both cases, we don't let transparent_hugepage_adjust() 1322 * change things at the last minute. 1323 */ 1324 device = true; 1325 } else if (logging_active && !write_fault) { 1326 /* 1327 * Only actually map the page as writable if this was a write 1328 * fault. 1329 */ 1330 writable = false; 1331 } 1332 1333 if (exec_fault && device) 1334 return -ENOEXEC; 1335 1336 read_lock(&kvm->mmu_lock); 1337 pgt = vcpu->arch.hw_mmu->pgt; 1338 if (mmu_invalidate_retry(kvm, mmu_seq)) 1339 goto out_unlock; 1340 1341 /* 1342 * If we are not forced to use page mapping, check if we are 1343 * backed by a THP and thus use block mapping if possible. 1344 */ 1345 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { 1346 if (fault_status == ESR_ELx_FSC_PERM && 1347 fault_granule > PAGE_SIZE) 1348 vma_pagesize = fault_granule; 1349 else 1350 vma_pagesize = transparent_hugepage_adjust(kvm, memslot, 1351 hva, &pfn, 1352 &fault_ipa); 1353 } 1354 1355 if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) { 1356 /* Check the VMM hasn't introduced a new disallowed VMA */ 1357 if (kvm_vma_mte_allowed(vma)) { 1358 sanitise_mte_tags(kvm, pfn, vma_pagesize); 1359 } else { 1360 ret = -EFAULT; 1361 goto out_unlock; 1362 } 1363 } 1364 1365 if (writable) 1366 prot |= KVM_PGTABLE_PROT_W; 1367 1368 if (exec_fault) 1369 prot |= KVM_PGTABLE_PROT_X; 1370 1371 if (device) 1372 prot |= KVM_PGTABLE_PROT_DEVICE; 1373 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 1374 prot |= KVM_PGTABLE_PROT_X; 1375 1376 /* 1377 * Under the premise of getting a FSC_PERM fault, we just need to relax 1378 * permissions only if vma_pagesize equals fault_granule. Otherwise, 1379 * kvm_pgtable_stage2_map() should be called to change block size. 1380 */ 1381 if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule) 1382 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 1383 else 1384 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 1385 __pfn_to_phys(pfn), prot, 1386 memcache, 1387 KVM_PGTABLE_WALK_HANDLE_FAULT | 1388 KVM_PGTABLE_WALK_SHARED); 1389 1390 /* Mark the page dirty only if the fault is handled successfully */ 1391 if (writable && !ret) { 1392 kvm_set_pfn_dirty(pfn); 1393 mark_page_dirty_in_slot(kvm, memslot, gfn); 1394 } 1395 1396 out_unlock: 1397 read_unlock(&kvm->mmu_lock); 1398 kvm_set_pfn_accessed(pfn); 1399 kvm_release_pfn_clean(pfn); 1400 return ret != -EAGAIN ? ret : 0; 1401 } 1402 1403 /* Resolve the access fault by making the page young again. */ 1404 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1405 { 1406 kvm_pte_t pte; 1407 struct kvm_s2_mmu *mmu; 1408 1409 trace_kvm_access_fault(fault_ipa); 1410 1411 read_lock(&vcpu->kvm->mmu_lock); 1412 mmu = vcpu->arch.hw_mmu; 1413 pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1414 read_unlock(&vcpu->kvm->mmu_lock); 1415 1416 if (kvm_pte_valid(pte)) 1417 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte)); 1418 } 1419 1420 /** 1421 * kvm_handle_guest_abort - handles all 2nd stage aborts 1422 * @vcpu: the VCPU pointer 1423 * 1424 * Any abort that gets to the host is almost guaranteed to be caused by a 1425 * missing second stage translation table entry, which can mean that either the 1426 * guest simply needs more memory and we must allocate an appropriate page or it 1427 * can mean that the guest tried to access I/O memory, which is emulated by user 1428 * space. The distinction is based on the IPA causing the fault and whether this 1429 * memory region has been registered as standard RAM by user space. 1430 */ 1431 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1432 { 1433 unsigned long fault_status; 1434 phys_addr_t fault_ipa; 1435 struct kvm_memory_slot *memslot; 1436 unsigned long hva; 1437 bool is_iabt, write_fault, writable; 1438 gfn_t gfn; 1439 int ret, idx; 1440 1441 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 1442 1443 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1444 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1445 1446 if (fault_status == ESR_ELx_FSC_FAULT) { 1447 /* Beyond sanitised PARange (which is the IPA limit) */ 1448 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) { 1449 kvm_inject_size_fault(vcpu); 1450 return 1; 1451 } 1452 1453 /* Falls between the IPA range and the PARange? */ 1454 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) { 1455 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); 1456 1457 if (is_iabt) 1458 kvm_inject_pabt(vcpu, fault_ipa); 1459 else 1460 kvm_inject_dabt(vcpu, fault_ipa); 1461 return 1; 1462 } 1463 } 1464 1465 /* Synchronous External Abort? */ 1466 if (kvm_vcpu_abt_issea(vcpu)) { 1467 /* 1468 * For RAS the host kernel may handle this abort. 1469 * There is no need to pass the error into the guest. 1470 */ 1471 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1472 kvm_inject_vabt(vcpu); 1473 1474 return 1; 1475 } 1476 1477 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1478 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1479 1480 /* Check the stage-2 fault is trans. fault or write fault */ 1481 if (fault_status != ESR_ELx_FSC_FAULT && 1482 fault_status != ESR_ELx_FSC_PERM && 1483 fault_status != ESR_ELx_FSC_ACCESS) { 1484 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1485 kvm_vcpu_trap_get_class(vcpu), 1486 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1487 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1488 return -EFAULT; 1489 } 1490 1491 idx = srcu_read_lock(&vcpu->kvm->srcu); 1492 1493 gfn = fault_ipa >> PAGE_SHIFT; 1494 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1495 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1496 write_fault = kvm_is_write_fault(vcpu); 1497 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1498 /* 1499 * The guest has put either its instructions or its page-tables 1500 * somewhere it shouldn't have. Userspace won't be able to do 1501 * anything about this (there's no syndrome for a start), so 1502 * re-inject the abort back into the guest. 1503 */ 1504 if (is_iabt) { 1505 ret = -ENOEXEC; 1506 goto out; 1507 } 1508 1509 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1510 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1511 ret = 1; 1512 goto out_unlock; 1513 } 1514 1515 /* 1516 * Check for a cache maintenance operation. Since we 1517 * ended-up here, we know it is outside of any memory 1518 * slot. But we can't find out if that is for a device, 1519 * or if the guest is just being stupid. The only thing 1520 * we know for sure is that this range cannot be cached. 1521 * 1522 * So let's assume that the guest is just being 1523 * cautious, and skip the instruction. 1524 */ 1525 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1526 kvm_incr_pc(vcpu); 1527 ret = 1; 1528 goto out_unlock; 1529 } 1530 1531 /* 1532 * The IPA is reported as [MAX:12], so we need to 1533 * complement it with the bottom 12 bits from the 1534 * faulting VA. This is always 12 bits, irrespective 1535 * of the page size. 1536 */ 1537 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1538 ret = io_mem_abort(vcpu, fault_ipa); 1539 goto out_unlock; 1540 } 1541 1542 /* Userspace should not be able to register out-of-bounds IPAs */ 1543 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1544 1545 if (fault_status == ESR_ELx_FSC_ACCESS) { 1546 handle_access_fault(vcpu, fault_ipa); 1547 ret = 1; 1548 goto out_unlock; 1549 } 1550 1551 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1552 if (ret == 0) 1553 ret = 1; 1554 out: 1555 if (ret == -ENOEXEC) { 1556 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1557 ret = 1; 1558 } 1559 out_unlock: 1560 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1561 return ret; 1562 } 1563 1564 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1565 { 1566 if (!kvm->arch.mmu.pgt) 1567 return false; 1568 1569 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1570 (range->end - range->start) << PAGE_SHIFT, 1571 range->may_block); 1572 1573 return false; 1574 } 1575 1576 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1577 { 1578 kvm_pfn_t pfn = pte_pfn(range->pte); 1579 1580 if (!kvm->arch.mmu.pgt) 1581 return false; 1582 1583 WARN_ON(range->end - range->start != 1); 1584 1585 /* 1586 * If the page isn't tagged, defer to user_mem_abort() for sanitising 1587 * the MTE tags. The S2 pte should have been unmapped by 1588 * mmu_notifier_invalidate_range_end(). 1589 */ 1590 if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn))) 1591 return false; 1592 1593 /* 1594 * We've moved a page around, probably through CoW, so let's treat 1595 * it just like a translation fault and the map handler will clean 1596 * the cache to the PoC. 1597 * 1598 * The MMU notifiers will have unmapped a huge PMD before calling 1599 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and 1600 * therefore we never need to clear out a huge PMD through this 1601 * calling path and a memcache is not required. 1602 */ 1603 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT, 1604 PAGE_SIZE, __pfn_to_phys(pfn), 1605 KVM_PGTABLE_PROT_R, NULL, 0); 1606 1607 return false; 1608 } 1609 1610 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1611 { 1612 u64 size = (range->end - range->start) << PAGE_SHIFT; 1613 kvm_pte_t kpte; 1614 pte_t pte; 1615 1616 if (!kvm->arch.mmu.pgt) 1617 return false; 1618 1619 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1620 1621 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, 1622 range->start << PAGE_SHIFT); 1623 pte = __pte(kpte); 1624 return pte_valid(pte) && pte_young(pte); 1625 } 1626 1627 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1628 { 1629 if (!kvm->arch.mmu.pgt) 1630 return false; 1631 1632 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, 1633 range->start << PAGE_SHIFT); 1634 } 1635 1636 phys_addr_t kvm_mmu_get_httbr(void) 1637 { 1638 return __pa(hyp_pgtable->pgd); 1639 } 1640 1641 phys_addr_t kvm_get_idmap_vector(void) 1642 { 1643 return hyp_idmap_vector; 1644 } 1645 1646 static int kvm_map_idmap_text(void) 1647 { 1648 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1649 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1650 PAGE_HYP_EXEC); 1651 if (err) 1652 kvm_err("Failed to idmap %lx-%lx\n", 1653 hyp_idmap_start, hyp_idmap_end); 1654 1655 return err; 1656 } 1657 1658 static void *kvm_hyp_zalloc_page(void *arg) 1659 { 1660 return (void *)get_zeroed_page(GFP_KERNEL); 1661 } 1662 1663 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1664 .zalloc_page = kvm_hyp_zalloc_page, 1665 .get_page = kvm_host_get_page, 1666 .put_page = kvm_host_put_page, 1667 .phys_to_virt = kvm_host_va, 1668 .virt_to_phys = kvm_host_pa, 1669 }; 1670 1671 int __init kvm_mmu_init(u32 *hyp_va_bits) 1672 { 1673 int err; 1674 u32 idmap_bits; 1675 u32 kernel_bits; 1676 1677 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1678 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1679 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1680 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1681 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1682 1683 /* 1684 * We rely on the linker script to ensure at build time that the HYP 1685 * init code does not cross a page boundary. 1686 */ 1687 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1688 1689 /* 1690 * The ID map may be configured to use an extended virtual address 1691 * range. This is only the case if system RAM is out of range for the 1692 * currently configured page size and VA_BITS_MIN, in which case we will 1693 * also need the extended virtual range for the HYP ID map, or we won't 1694 * be able to enable the EL2 MMU. 1695 * 1696 * However, in some cases the ID map may be configured for fewer than 1697 * the number of VA bits used by the regular kernel stage 1. This 1698 * happens when VA_BITS=52 and the kernel image is placed in PA space 1699 * below 48 bits. 1700 * 1701 * At EL2, there is only one TTBR register, and we can't switch between 1702 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom 1703 * line: we need to use the extended range with *both* our translation 1704 * tables. 1705 * 1706 * So use the maximum of the idmap VA bits and the regular kernel stage 1707 * 1 VA bits to assure that the hypervisor can both ID map its code page 1708 * and map any kernel memory. 1709 */ 1710 idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1711 kernel_bits = vabits_actual; 1712 *hyp_va_bits = max(idmap_bits, kernel_bits); 1713 1714 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 1715 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1716 kvm_debug("HYP VA range: %lx:%lx\n", 1717 kern_hyp_va(PAGE_OFFSET), 1718 kern_hyp_va((unsigned long)high_memory - 1)); 1719 1720 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1721 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1722 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1723 /* 1724 * The idmap page is intersecting with the VA space, 1725 * it is not safe to continue further. 1726 */ 1727 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1728 err = -EINVAL; 1729 goto out; 1730 } 1731 1732 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1733 if (!hyp_pgtable) { 1734 kvm_err("Hyp mode page-table not allocated\n"); 1735 err = -ENOMEM; 1736 goto out; 1737 } 1738 1739 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 1740 if (err) 1741 goto out_free_pgtable; 1742 1743 err = kvm_map_idmap_text(); 1744 if (err) 1745 goto out_destroy_pgtable; 1746 1747 io_map_base = hyp_idmap_start; 1748 return 0; 1749 1750 out_destroy_pgtable: 1751 kvm_pgtable_hyp_destroy(hyp_pgtable); 1752 out_free_pgtable: 1753 kfree(hyp_pgtable); 1754 hyp_pgtable = NULL; 1755 out: 1756 return err; 1757 } 1758 1759 void kvm_arch_commit_memory_region(struct kvm *kvm, 1760 struct kvm_memory_slot *old, 1761 const struct kvm_memory_slot *new, 1762 enum kvm_mr_change change) 1763 { 1764 /* 1765 * At this point memslot has been committed and there is an 1766 * allocated dirty_bitmap[], dirty pages will be tracked while the 1767 * memory slot is write protected. 1768 */ 1769 if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1770 /* 1771 * If we're with initial-all-set, we don't need to write 1772 * protect any pages because they're all reported as dirty. 1773 * Huge pages and normal pages will be write protect gradually. 1774 */ 1775 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1776 kvm_mmu_wp_memory_region(kvm, new->id); 1777 } 1778 } 1779 } 1780 1781 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1782 const struct kvm_memory_slot *old, 1783 struct kvm_memory_slot *new, 1784 enum kvm_mr_change change) 1785 { 1786 hva_t hva, reg_end; 1787 int ret = 0; 1788 1789 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 1790 change != KVM_MR_FLAGS_ONLY) 1791 return 0; 1792 1793 /* 1794 * Prevent userspace from creating a memory region outside of the IPA 1795 * space addressable by the KVM guest IPA space. 1796 */ 1797 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) 1798 return -EFAULT; 1799 1800 hva = new->userspace_addr; 1801 reg_end = hva + (new->npages << PAGE_SHIFT); 1802 1803 mmap_read_lock(current->mm); 1804 /* 1805 * A memory region could potentially cover multiple VMAs, and any holes 1806 * between them, so iterate over all of them. 1807 * 1808 * +--------------------------------------------+ 1809 * +---------------+----------------+ +----------------+ 1810 * | : VMA 1 | VMA 2 | | VMA 3 : | 1811 * +---------------+----------------+ +----------------+ 1812 * | memory region | 1813 * +--------------------------------------------+ 1814 */ 1815 do { 1816 struct vm_area_struct *vma; 1817 1818 vma = find_vma_intersection(current->mm, hva, reg_end); 1819 if (!vma) 1820 break; 1821 1822 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) { 1823 ret = -EINVAL; 1824 break; 1825 } 1826 1827 if (vma->vm_flags & VM_PFNMAP) { 1828 /* IO region dirty page logging not allowed */ 1829 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1830 ret = -EINVAL; 1831 break; 1832 } 1833 } 1834 hva = min(reg_end, vma->vm_end); 1835 } while (hva < reg_end); 1836 1837 mmap_read_unlock(current->mm); 1838 return ret; 1839 } 1840 1841 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1842 { 1843 } 1844 1845 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 1846 { 1847 } 1848 1849 void kvm_arch_flush_shadow_all(struct kvm *kvm) 1850 { 1851 kvm_free_stage2_pgd(&kvm->arch.mmu); 1852 } 1853 1854 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1855 struct kvm_memory_slot *slot) 1856 { 1857 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 1858 phys_addr_t size = slot->npages << PAGE_SHIFT; 1859 1860 write_lock(&kvm->mmu_lock); 1861 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 1862 write_unlock(&kvm->mmu_lock); 1863 } 1864 1865 /* 1866 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 1867 * 1868 * Main problems: 1869 * - S/W ops are local to a CPU (not broadcast) 1870 * - We have line migration behind our back (speculation) 1871 * - System caches don't support S/W at all (damn!) 1872 * 1873 * In the face of the above, the best we can do is to try and convert 1874 * S/W ops to VA ops. Because the guest is not allowed to infer the 1875 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 1876 * which is a rather good thing for us. 1877 * 1878 * Also, it is only used when turning caches on/off ("The expected 1879 * usage of the cache maintenance instructions that operate by set/way 1880 * is associated with the cache maintenance instructions associated 1881 * with the powerdown and powerup of caches, if this is required by 1882 * the implementation."). 1883 * 1884 * We use the following policy: 1885 * 1886 * - If we trap a S/W operation, we enable VM trapping to detect 1887 * caches being turned on/off, and do a full clean. 1888 * 1889 * - We flush the caches on both caches being turned on and off. 1890 * 1891 * - Once the caches are enabled, we stop trapping VM ops. 1892 */ 1893 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 1894 { 1895 unsigned long hcr = *vcpu_hcr(vcpu); 1896 1897 /* 1898 * If this is the first time we do a S/W operation 1899 * (i.e. HCR_TVM not set) flush the whole memory, and set the 1900 * VM trapping. 1901 * 1902 * Otherwise, rely on the VM trapping to wait for the MMU + 1903 * Caches to be turned off. At that point, we'll be able to 1904 * clean the caches again. 1905 */ 1906 if (!(hcr & HCR_TVM)) { 1907 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 1908 vcpu_has_cache_enabled(vcpu)); 1909 stage2_flush_vm(vcpu->kvm); 1910 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 1911 } 1912 } 1913 1914 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 1915 { 1916 bool now_enabled = vcpu_has_cache_enabled(vcpu); 1917 1918 /* 1919 * If switching the MMU+caches on, need to invalidate the caches. 1920 * If switching it off, need to clean the caches. 1921 * Clean + invalidate does the trick always. 1922 */ 1923 if (now_enabled != was_enabled) 1924 stage2_flush_vm(vcpu->kvm); 1925 1926 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 1927 if (now_enabled) 1928 *vcpu_hcr(vcpu) &= ~HCR_TVM; 1929 1930 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 1931 } 1932