xref: /linux/arch/arm64/kvm/mmu.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27 
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31 
32 static unsigned long io_map_base;
33 
34 
35 /*
36  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39  * long will also starve other vCPUs. We have to also make sure that the page
40  * tables are not freed while we released the lock.
41  */
42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43 			      phys_addr_t end,
44 			      int (*fn)(struct kvm_pgtable *, u64, u64),
45 			      bool resched)
46 {
47 	int ret;
48 	u64 next;
49 
50 	do {
51 		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52 		if (!pgt)
53 			return -EINVAL;
54 
55 		next = stage2_pgd_addr_end(kvm, addr, end);
56 		ret = fn(pgt, addr, next - addr);
57 		if (ret)
58 			break;
59 
60 		if (resched && next != end)
61 			cond_resched_lock(&kvm->mmu_lock);
62 	} while (addr = next, addr != end);
63 
64 	return ret;
65 }
66 
67 #define stage2_apply_range_resched(kvm, addr, end, fn)			\
68 	stage2_apply_range(kvm, addr, end, fn, true)
69 
70 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71 {
72 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 }
74 
75 /**
76  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77  * @kvm:	pointer to kvm structure.
78  *
79  * Interface to HYP function to flush all VM TLB entries
80  */
81 void kvm_flush_remote_tlbs(struct kvm *kvm)
82 {
83 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
84 }
85 
86 static bool kvm_is_device_pfn(unsigned long pfn)
87 {
88 	return !pfn_valid(pfn);
89 }
90 
91 /*
92  * Unmapping vs dcache management:
93  *
94  * If a guest maps certain memory pages as uncached, all writes will
95  * bypass the data cache and go directly to RAM.  However, the CPUs
96  * can still speculate reads (not writes) and fill cache lines with
97  * data.
98  *
99  * Those cache lines will be *clean* cache lines though, so a
100  * clean+invalidate operation is equivalent to an invalidate
101  * operation, because no cache lines are marked dirty.
102  *
103  * Those clean cache lines could be filled prior to an uncached write
104  * by the guest, and the cache coherent IO subsystem would therefore
105  * end up writing old data to disk.
106  *
107  * This is why right after unmapping a page/section and invalidating
108  * the corresponding TLBs, we flush to make sure the IO subsystem will
109  * never hit in the cache.
110  *
111  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
112  * we then fully enforce cacheability of RAM, no matter what the guest
113  * does.
114  */
115 /**
116  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
117  * @mmu:   The KVM stage-2 MMU pointer
118  * @start: The intermediate physical base address of the range to unmap
119  * @size:  The size of the area to unmap
120  * @may_block: Whether or not we are permitted to block
121  *
122  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
123  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
124  * destroying the VM), otherwise another faulting VCPU may come in and mess
125  * with things behind our backs.
126  */
127 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
128 				 bool may_block)
129 {
130 	struct kvm *kvm = mmu->kvm;
131 	phys_addr_t end = start + size;
132 
133 	assert_spin_locked(&kvm->mmu_lock);
134 	WARN_ON(size & ~PAGE_MASK);
135 	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
136 				   may_block));
137 }
138 
139 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
140 {
141 	__unmap_stage2_range(mmu, start, size, true);
142 }
143 
144 static void stage2_flush_memslot(struct kvm *kvm,
145 				 struct kvm_memory_slot *memslot)
146 {
147 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
148 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
149 
150 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
151 }
152 
153 /**
154  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
155  * @kvm: The struct kvm pointer
156  *
157  * Go through the stage 2 page tables and invalidate any cache lines
158  * backing memory already mapped to the VM.
159  */
160 static void stage2_flush_vm(struct kvm *kvm)
161 {
162 	struct kvm_memslots *slots;
163 	struct kvm_memory_slot *memslot;
164 	int idx;
165 
166 	idx = srcu_read_lock(&kvm->srcu);
167 	spin_lock(&kvm->mmu_lock);
168 
169 	slots = kvm_memslots(kvm);
170 	kvm_for_each_memslot(memslot, slots)
171 		stage2_flush_memslot(kvm, memslot);
172 
173 	spin_unlock(&kvm->mmu_lock);
174 	srcu_read_unlock(&kvm->srcu, idx);
175 }
176 
177 /**
178  * free_hyp_pgds - free Hyp-mode page tables
179  */
180 void free_hyp_pgds(void)
181 {
182 	mutex_lock(&kvm_hyp_pgd_mutex);
183 	if (hyp_pgtable) {
184 		kvm_pgtable_hyp_destroy(hyp_pgtable);
185 		kfree(hyp_pgtable);
186 	}
187 	mutex_unlock(&kvm_hyp_pgd_mutex);
188 }
189 
190 static int __create_hyp_mappings(unsigned long start, unsigned long size,
191 				 unsigned long phys, enum kvm_pgtable_prot prot)
192 {
193 	int err;
194 
195 	mutex_lock(&kvm_hyp_pgd_mutex);
196 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
197 	mutex_unlock(&kvm_hyp_pgd_mutex);
198 
199 	return err;
200 }
201 
202 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
203 {
204 	if (!is_vmalloc_addr(kaddr)) {
205 		BUG_ON(!virt_addr_valid(kaddr));
206 		return __pa(kaddr);
207 	} else {
208 		return page_to_phys(vmalloc_to_page(kaddr)) +
209 		       offset_in_page(kaddr);
210 	}
211 }
212 
213 /**
214  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
215  * @from:	The virtual kernel start address of the range
216  * @to:		The virtual kernel end address of the range (exclusive)
217  * @prot:	The protection to be applied to this range
218  *
219  * The same virtual address as the kernel virtual address is also used
220  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
221  * physical pages.
222  */
223 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
224 {
225 	phys_addr_t phys_addr;
226 	unsigned long virt_addr;
227 	unsigned long start = kern_hyp_va((unsigned long)from);
228 	unsigned long end = kern_hyp_va((unsigned long)to);
229 
230 	if (is_kernel_in_hyp_mode())
231 		return 0;
232 
233 	start = start & PAGE_MASK;
234 	end = PAGE_ALIGN(end);
235 
236 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
237 		int err;
238 
239 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
240 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
241 					    prot);
242 		if (err)
243 			return err;
244 	}
245 
246 	return 0;
247 }
248 
249 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
250 					unsigned long *haddr,
251 					enum kvm_pgtable_prot prot)
252 {
253 	unsigned long base;
254 	int ret = 0;
255 
256 	mutex_lock(&kvm_hyp_pgd_mutex);
257 
258 	/*
259 	 * This assumes that we have enough space below the idmap
260 	 * page to allocate our VAs. If not, the check below will
261 	 * kick. A potential alternative would be to detect that
262 	 * overflow and switch to an allocation above the idmap.
263 	 *
264 	 * The allocated size is always a multiple of PAGE_SIZE.
265 	 */
266 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
267 	base = io_map_base - size;
268 
269 	/*
270 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
271 	 * allocating the new area, as it would indicate we've
272 	 * overflowed the idmap/IO address range.
273 	 */
274 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
275 		ret = -ENOMEM;
276 	else
277 		io_map_base = base;
278 
279 	mutex_unlock(&kvm_hyp_pgd_mutex);
280 
281 	if (ret)
282 		goto out;
283 
284 	ret = __create_hyp_mappings(base, size, phys_addr, prot);
285 	if (ret)
286 		goto out;
287 
288 	*haddr = base + offset_in_page(phys_addr);
289 out:
290 	return ret;
291 }
292 
293 /**
294  * create_hyp_io_mappings - Map IO into both kernel and HYP
295  * @phys_addr:	The physical start address which gets mapped
296  * @size:	Size of the region being mapped
297  * @kaddr:	Kernel VA for this mapping
298  * @haddr:	HYP VA for this mapping
299  */
300 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
301 			   void __iomem **kaddr,
302 			   void __iomem **haddr)
303 {
304 	unsigned long addr;
305 	int ret;
306 
307 	*kaddr = ioremap(phys_addr, size);
308 	if (!*kaddr)
309 		return -ENOMEM;
310 
311 	if (is_kernel_in_hyp_mode()) {
312 		*haddr = *kaddr;
313 		return 0;
314 	}
315 
316 	ret = __create_hyp_private_mapping(phys_addr, size,
317 					   &addr, PAGE_HYP_DEVICE);
318 	if (ret) {
319 		iounmap(*kaddr);
320 		*kaddr = NULL;
321 		*haddr = NULL;
322 		return ret;
323 	}
324 
325 	*haddr = (void __iomem *)addr;
326 	return 0;
327 }
328 
329 /**
330  * create_hyp_exec_mappings - Map an executable range into HYP
331  * @phys_addr:	The physical start address which gets mapped
332  * @size:	Size of the region being mapped
333  * @haddr:	HYP VA for this mapping
334  */
335 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
336 			     void **haddr)
337 {
338 	unsigned long addr;
339 	int ret;
340 
341 	BUG_ON(is_kernel_in_hyp_mode());
342 
343 	ret = __create_hyp_private_mapping(phys_addr, size,
344 					   &addr, PAGE_HYP_EXEC);
345 	if (ret) {
346 		*haddr = NULL;
347 		return ret;
348 	}
349 
350 	*haddr = (void *)addr;
351 	return 0;
352 }
353 
354 /**
355  * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
356  * @kvm:	The pointer to the KVM structure
357  * @mmu:	The pointer to the s2 MMU structure
358  *
359  * Allocates only the stage-2 HW PGD level table(s).
360  * Note we don't need locking here as this is only called when the VM is
361  * created, which can only be done once.
362  */
363 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
364 {
365 	int cpu, err;
366 	struct kvm_pgtable *pgt;
367 
368 	if (mmu->pgt != NULL) {
369 		kvm_err("kvm_arch already initialized?\n");
370 		return -EINVAL;
371 	}
372 
373 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL);
374 	if (!pgt)
375 		return -ENOMEM;
376 
377 	err = kvm_pgtable_stage2_init(pgt, kvm);
378 	if (err)
379 		goto out_free_pgtable;
380 
381 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
382 	if (!mmu->last_vcpu_ran) {
383 		err = -ENOMEM;
384 		goto out_destroy_pgtable;
385 	}
386 
387 	for_each_possible_cpu(cpu)
388 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
389 
390 	mmu->kvm = kvm;
391 	mmu->pgt = pgt;
392 	mmu->pgd_phys = __pa(pgt->pgd);
393 	mmu->vmid.vmid_gen = 0;
394 	return 0;
395 
396 out_destroy_pgtable:
397 	kvm_pgtable_stage2_destroy(pgt);
398 out_free_pgtable:
399 	kfree(pgt);
400 	return err;
401 }
402 
403 static void stage2_unmap_memslot(struct kvm *kvm,
404 				 struct kvm_memory_slot *memslot)
405 {
406 	hva_t hva = memslot->userspace_addr;
407 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
408 	phys_addr_t size = PAGE_SIZE * memslot->npages;
409 	hva_t reg_end = hva + size;
410 
411 	/*
412 	 * A memory region could potentially cover multiple VMAs, and any holes
413 	 * between them, so iterate over all of them to find out if we should
414 	 * unmap any of them.
415 	 *
416 	 *     +--------------------------------------------+
417 	 * +---------------+----------------+   +----------------+
418 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
419 	 * +---------------+----------------+   +----------------+
420 	 *     |               memory region                |
421 	 *     +--------------------------------------------+
422 	 */
423 	do {
424 		struct vm_area_struct *vma = find_vma(current->mm, hva);
425 		hva_t vm_start, vm_end;
426 
427 		if (!vma || vma->vm_start >= reg_end)
428 			break;
429 
430 		/*
431 		 * Take the intersection of this VMA with the memory region
432 		 */
433 		vm_start = max(hva, vma->vm_start);
434 		vm_end = min(reg_end, vma->vm_end);
435 
436 		if (!(vma->vm_flags & VM_PFNMAP)) {
437 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
438 			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
439 		}
440 		hva = vm_end;
441 	} while (hva < reg_end);
442 }
443 
444 /**
445  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
446  * @kvm: The struct kvm pointer
447  *
448  * Go through the memregions and unmap any regular RAM
449  * backing memory already mapped to the VM.
450  */
451 void stage2_unmap_vm(struct kvm *kvm)
452 {
453 	struct kvm_memslots *slots;
454 	struct kvm_memory_slot *memslot;
455 	int idx;
456 
457 	idx = srcu_read_lock(&kvm->srcu);
458 	mmap_read_lock(current->mm);
459 	spin_lock(&kvm->mmu_lock);
460 
461 	slots = kvm_memslots(kvm);
462 	kvm_for_each_memslot(memslot, slots)
463 		stage2_unmap_memslot(kvm, memslot);
464 
465 	spin_unlock(&kvm->mmu_lock);
466 	mmap_read_unlock(current->mm);
467 	srcu_read_unlock(&kvm->srcu, idx);
468 }
469 
470 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
471 {
472 	struct kvm *kvm = mmu->kvm;
473 	struct kvm_pgtable *pgt = NULL;
474 
475 	spin_lock(&kvm->mmu_lock);
476 	pgt = mmu->pgt;
477 	if (pgt) {
478 		mmu->pgd_phys = 0;
479 		mmu->pgt = NULL;
480 		free_percpu(mmu->last_vcpu_ran);
481 	}
482 	spin_unlock(&kvm->mmu_lock);
483 
484 	if (pgt) {
485 		kvm_pgtable_stage2_destroy(pgt);
486 		kfree(pgt);
487 	}
488 }
489 
490 /**
491  * kvm_phys_addr_ioremap - map a device range to guest IPA
492  *
493  * @kvm:	The KVM pointer
494  * @guest_ipa:	The IPA at which to insert the mapping
495  * @pa:		The physical address of the device
496  * @size:	The size of the mapping
497  * @writable:   Whether or not to create a writable mapping
498  */
499 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
500 			  phys_addr_t pa, unsigned long size, bool writable)
501 {
502 	phys_addr_t addr;
503 	int ret = 0;
504 	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
505 	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
506 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
507 				     KVM_PGTABLE_PROT_R |
508 				     (writable ? KVM_PGTABLE_PROT_W : 0);
509 
510 	size += offset_in_page(guest_ipa);
511 	guest_ipa &= PAGE_MASK;
512 
513 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
514 		ret = kvm_mmu_topup_memory_cache(&cache,
515 						 kvm_mmu_cache_min_pages(kvm));
516 		if (ret)
517 			break;
518 
519 		spin_lock(&kvm->mmu_lock);
520 		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
521 					     &cache);
522 		spin_unlock(&kvm->mmu_lock);
523 		if (ret)
524 			break;
525 
526 		pa += PAGE_SIZE;
527 	}
528 
529 	kvm_mmu_free_memory_cache(&cache);
530 	return ret;
531 }
532 
533 /**
534  * stage2_wp_range() - write protect stage2 memory region range
535  * @mmu:        The KVM stage-2 MMU pointer
536  * @addr:	Start address of range
537  * @end:	End address of range
538  */
539 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
540 {
541 	struct kvm *kvm = mmu->kvm;
542 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
543 }
544 
545 /**
546  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
547  * @kvm:	The KVM pointer
548  * @slot:	The memory slot to write protect
549  *
550  * Called to start logging dirty pages after memory region
551  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
552  * all present PUD, PMD and PTEs are write protected in the memory region.
553  * Afterwards read of dirty page log can be called.
554  *
555  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
556  * serializing operations for VM memory regions.
557  */
558 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
559 {
560 	struct kvm_memslots *slots = kvm_memslots(kvm);
561 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
562 	phys_addr_t start, end;
563 
564 	if (WARN_ON_ONCE(!memslot))
565 		return;
566 
567 	start = memslot->base_gfn << PAGE_SHIFT;
568 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
569 
570 	spin_lock(&kvm->mmu_lock);
571 	stage2_wp_range(&kvm->arch.mmu, start, end);
572 	spin_unlock(&kvm->mmu_lock);
573 	kvm_flush_remote_tlbs(kvm);
574 }
575 
576 /**
577  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
578  * @kvm:	The KVM pointer
579  * @slot:	The memory slot associated with mask
580  * @gfn_offset:	The gfn offset in memory slot
581  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
582  *		slot to be write protected
583  *
584  * Walks bits set in mask write protects the associated pte's. Caller must
585  * acquire kvm_mmu_lock.
586  */
587 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
588 		struct kvm_memory_slot *slot,
589 		gfn_t gfn_offset, unsigned long mask)
590 {
591 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
592 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
593 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
594 
595 	stage2_wp_range(&kvm->arch.mmu, start, end);
596 }
597 
598 /*
599  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
600  * dirty pages.
601  *
602  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
603  * enable dirty logging for them.
604  */
605 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
606 		struct kvm_memory_slot *slot,
607 		gfn_t gfn_offset, unsigned long mask)
608 {
609 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
610 }
611 
612 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
613 {
614 	__clean_dcache_guest_page(pfn, size);
615 }
616 
617 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
618 {
619 	__invalidate_icache_guest_page(pfn, size);
620 }
621 
622 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
623 {
624 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
625 }
626 
627 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
628 					       unsigned long hva,
629 					       unsigned long map_size)
630 {
631 	gpa_t gpa_start;
632 	hva_t uaddr_start, uaddr_end;
633 	size_t size;
634 
635 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
636 	if (map_size == PAGE_SIZE)
637 		return true;
638 
639 	size = memslot->npages * PAGE_SIZE;
640 
641 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
642 
643 	uaddr_start = memslot->userspace_addr;
644 	uaddr_end = uaddr_start + size;
645 
646 	/*
647 	 * Pages belonging to memslots that don't have the same alignment
648 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
649 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
650 	 *
651 	 * Consider a layout like the following:
652 	 *
653 	 *    memslot->userspace_addr:
654 	 *    +-----+--------------------+--------------------+---+
655 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
656 	 *    +-----+--------------------+--------------------+---+
657 	 *
658 	 *    memslot->base_gfn << PAGE_SHIFT:
659 	 *      +---+--------------------+--------------------+-----+
660 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
661 	 *      +---+--------------------+--------------------+-----+
662 	 *
663 	 * If we create those stage-2 blocks, we'll end up with this incorrect
664 	 * mapping:
665 	 *   d -> f
666 	 *   e -> g
667 	 *   f -> h
668 	 */
669 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
670 		return false;
671 
672 	/*
673 	 * Next, let's make sure we're not trying to map anything not covered
674 	 * by the memslot. This means we have to prohibit block size mappings
675 	 * for the beginning and end of a non-block aligned and non-block sized
676 	 * memory slot (illustrated by the head and tail parts of the
677 	 * userspace view above containing pages 'abcde' and 'xyz',
678 	 * respectively).
679 	 *
680 	 * Note that it doesn't matter if we do the check using the
681 	 * userspace_addr or the base_gfn, as both are equally aligned (per
682 	 * the check above) and equally sized.
683 	 */
684 	return (hva & ~(map_size - 1)) >= uaddr_start &&
685 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
686 }
687 
688 /*
689  * Check if the given hva is backed by a transparent huge page (THP) and
690  * whether it can be mapped using block mapping in stage2. If so, adjust
691  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
692  * supported. This will need to be updated to support other THP sizes.
693  *
694  * Returns the size of the mapping.
695  */
696 static unsigned long
697 transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
698 			    unsigned long hva, kvm_pfn_t *pfnp,
699 			    phys_addr_t *ipap)
700 {
701 	kvm_pfn_t pfn = *pfnp;
702 
703 	/*
704 	 * Make sure the adjustment is done only for THP pages. Also make
705 	 * sure that the HVA and IPA are sufficiently aligned and that the
706 	 * block map is contained within the memslot.
707 	 */
708 	if (kvm_is_transparent_hugepage(pfn) &&
709 	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
710 		/*
711 		 * The address we faulted on is backed by a transparent huge
712 		 * page.  However, because we map the compound huge page and
713 		 * not the individual tail page, we need to transfer the
714 		 * refcount to the head page.  We have to be careful that the
715 		 * THP doesn't start to split while we are adjusting the
716 		 * refcounts.
717 		 *
718 		 * We are sure this doesn't happen, because mmu_notifier_retry
719 		 * was successful and we are holding the mmu_lock, so if this
720 		 * THP is trying to split, it will be blocked in the mmu
721 		 * notifier before touching any of the pages, specifically
722 		 * before being able to call __split_huge_page_refcount().
723 		 *
724 		 * We can therefore safely transfer the refcount from PG_tail
725 		 * to PG_head and switch the pfn from a tail page to the head
726 		 * page accordingly.
727 		 */
728 		*ipap &= PMD_MASK;
729 		kvm_release_pfn_clean(pfn);
730 		pfn &= ~(PTRS_PER_PMD - 1);
731 		kvm_get_pfn(pfn);
732 		*pfnp = pfn;
733 
734 		return PMD_SIZE;
735 	}
736 
737 	/* Use page mapping if we cannot use block mapping. */
738 	return PAGE_SIZE;
739 }
740 
741 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
742 			  struct kvm_memory_slot *memslot, unsigned long hva,
743 			  unsigned long fault_status)
744 {
745 	int ret = 0;
746 	bool write_fault, writable, force_pte = false;
747 	bool exec_fault;
748 	bool device = false;
749 	unsigned long mmu_seq;
750 	struct kvm *kvm = vcpu->kvm;
751 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
752 	struct vm_area_struct *vma;
753 	short vma_shift;
754 	gfn_t gfn;
755 	kvm_pfn_t pfn;
756 	bool logging_active = memslot_is_logging(memslot);
757 	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
758 	unsigned long vma_pagesize, fault_granule;
759 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
760 	struct kvm_pgtable *pgt;
761 
762 	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
763 	write_fault = kvm_is_write_fault(vcpu);
764 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
765 	VM_BUG_ON(write_fault && exec_fault);
766 
767 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
768 		kvm_err("Unexpected L2 read permission error\n");
769 		return -EFAULT;
770 	}
771 
772 	/* Let's check if we will get back a huge page backed by hugetlbfs */
773 	mmap_read_lock(current->mm);
774 	vma = find_vma_intersection(current->mm, hva, hva + 1);
775 	if (unlikely(!vma)) {
776 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
777 		mmap_read_unlock(current->mm);
778 		return -EFAULT;
779 	}
780 
781 	if (is_vm_hugetlb_page(vma))
782 		vma_shift = huge_page_shift(hstate_vma(vma));
783 	else
784 		vma_shift = PAGE_SHIFT;
785 
786 	if (logging_active ||
787 	    (vma->vm_flags & VM_PFNMAP)) {
788 		force_pte = true;
789 		vma_shift = PAGE_SHIFT;
790 	}
791 
792 	switch (vma_shift) {
793 #ifndef __PAGETABLE_PMD_FOLDED
794 	case PUD_SHIFT:
795 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
796 			break;
797 		fallthrough;
798 #endif
799 	case CONT_PMD_SHIFT:
800 		vma_shift = PMD_SHIFT;
801 		fallthrough;
802 	case PMD_SHIFT:
803 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
804 			break;
805 		fallthrough;
806 	case CONT_PTE_SHIFT:
807 		vma_shift = PAGE_SHIFT;
808 		force_pte = true;
809 		fallthrough;
810 	case PAGE_SHIFT:
811 		break;
812 	default:
813 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
814 	}
815 
816 	vma_pagesize = 1UL << vma_shift;
817 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
818 		fault_ipa &= ~(vma_pagesize - 1);
819 
820 	gfn = fault_ipa >> PAGE_SHIFT;
821 	mmap_read_unlock(current->mm);
822 
823 	/*
824 	 * Permission faults just need to update the existing leaf entry,
825 	 * and so normally don't require allocations from the memcache. The
826 	 * only exception to this is when dirty logging is enabled at runtime
827 	 * and a write fault needs to collapse a block entry into a table.
828 	 */
829 	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
830 		ret = kvm_mmu_topup_memory_cache(memcache,
831 						 kvm_mmu_cache_min_pages(kvm));
832 		if (ret)
833 			return ret;
834 	}
835 
836 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
837 	/*
838 	 * Ensure the read of mmu_notifier_seq happens before we call
839 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
840 	 * the page we just got a reference to gets unmapped before we have a
841 	 * chance to grab the mmu_lock, which ensure that if the page gets
842 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
843 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
844 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
845 	 */
846 	smp_rmb();
847 
848 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
849 	if (pfn == KVM_PFN_ERR_HWPOISON) {
850 		kvm_send_hwpoison_signal(hva, vma_shift);
851 		return 0;
852 	}
853 	if (is_error_noslot_pfn(pfn))
854 		return -EFAULT;
855 
856 	if (kvm_is_device_pfn(pfn)) {
857 		device = true;
858 		force_pte = true;
859 	} else if (logging_active && !write_fault) {
860 		/*
861 		 * Only actually map the page as writable if this was a write
862 		 * fault.
863 		 */
864 		writable = false;
865 	}
866 
867 	if (exec_fault && device)
868 		return -ENOEXEC;
869 
870 	spin_lock(&kvm->mmu_lock);
871 	pgt = vcpu->arch.hw_mmu->pgt;
872 	if (mmu_notifier_retry(kvm, mmu_seq))
873 		goto out_unlock;
874 
875 	/*
876 	 * If we are not forced to use page mapping, check if we are
877 	 * backed by a THP and thus use block mapping if possible.
878 	 */
879 	if (vma_pagesize == PAGE_SIZE && !force_pte)
880 		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
881 							   &pfn, &fault_ipa);
882 	if (writable) {
883 		prot |= KVM_PGTABLE_PROT_W;
884 		kvm_set_pfn_dirty(pfn);
885 		mark_page_dirty(kvm, gfn);
886 	}
887 
888 	if (fault_status != FSC_PERM && !device)
889 		clean_dcache_guest_page(pfn, vma_pagesize);
890 
891 	if (exec_fault) {
892 		prot |= KVM_PGTABLE_PROT_X;
893 		invalidate_icache_guest_page(pfn, vma_pagesize);
894 	}
895 
896 	if (device)
897 		prot |= KVM_PGTABLE_PROT_DEVICE;
898 	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
899 		prot |= KVM_PGTABLE_PROT_X;
900 
901 	/*
902 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
903 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
904 	 * kvm_pgtable_stage2_map() should be called to change block size.
905 	 */
906 	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
907 		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
908 	} else {
909 		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
910 					     __pfn_to_phys(pfn), prot,
911 					     memcache);
912 	}
913 
914 out_unlock:
915 	spin_unlock(&kvm->mmu_lock);
916 	kvm_set_pfn_accessed(pfn);
917 	kvm_release_pfn_clean(pfn);
918 	return ret;
919 }
920 
921 /* Resolve the access fault by making the page young again. */
922 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
923 {
924 	pte_t pte;
925 	kvm_pte_t kpte;
926 	struct kvm_s2_mmu *mmu;
927 
928 	trace_kvm_access_fault(fault_ipa);
929 
930 	spin_lock(&vcpu->kvm->mmu_lock);
931 	mmu = vcpu->arch.hw_mmu;
932 	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
933 	spin_unlock(&vcpu->kvm->mmu_lock);
934 
935 	pte = __pte(kpte);
936 	if (pte_valid(pte))
937 		kvm_set_pfn_accessed(pte_pfn(pte));
938 }
939 
940 /**
941  * kvm_handle_guest_abort - handles all 2nd stage aborts
942  * @vcpu:	the VCPU pointer
943  *
944  * Any abort that gets to the host is almost guaranteed to be caused by a
945  * missing second stage translation table entry, which can mean that either the
946  * guest simply needs more memory and we must allocate an appropriate page or it
947  * can mean that the guest tried to access I/O memory, which is emulated by user
948  * space. The distinction is based on the IPA causing the fault and whether this
949  * memory region has been registered as standard RAM by user space.
950  */
951 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
952 {
953 	unsigned long fault_status;
954 	phys_addr_t fault_ipa;
955 	struct kvm_memory_slot *memslot;
956 	unsigned long hva;
957 	bool is_iabt, write_fault, writable;
958 	gfn_t gfn;
959 	int ret, idx;
960 
961 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
962 
963 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
964 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
965 
966 	/* Synchronous External Abort? */
967 	if (kvm_vcpu_abt_issea(vcpu)) {
968 		/*
969 		 * For RAS the host kernel may handle this abort.
970 		 * There is no need to pass the error into the guest.
971 		 */
972 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
973 			kvm_inject_vabt(vcpu);
974 
975 		return 1;
976 	}
977 
978 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
979 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
980 
981 	/* Check the stage-2 fault is trans. fault or write fault */
982 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
983 	    fault_status != FSC_ACCESS) {
984 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
985 			kvm_vcpu_trap_get_class(vcpu),
986 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
987 			(unsigned long)kvm_vcpu_get_esr(vcpu));
988 		return -EFAULT;
989 	}
990 
991 	idx = srcu_read_lock(&vcpu->kvm->srcu);
992 
993 	gfn = fault_ipa >> PAGE_SHIFT;
994 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
995 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
996 	write_fault = kvm_is_write_fault(vcpu);
997 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
998 		/*
999 		 * The guest has put either its instructions or its page-tables
1000 		 * somewhere it shouldn't have. Userspace won't be able to do
1001 		 * anything about this (there's no syndrome for a start), so
1002 		 * re-inject the abort back into the guest.
1003 		 */
1004 		if (is_iabt) {
1005 			ret = -ENOEXEC;
1006 			goto out;
1007 		}
1008 
1009 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1010 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1011 			ret = 1;
1012 			goto out_unlock;
1013 		}
1014 
1015 		/*
1016 		 * Check for a cache maintenance operation. Since we
1017 		 * ended-up here, we know it is outside of any memory
1018 		 * slot. But we can't find out if that is for a device,
1019 		 * or if the guest is just being stupid. The only thing
1020 		 * we know for sure is that this range cannot be cached.
1021 		 *
1022 		 * So let's assume that the guest is just being
1023 		 * cautious, and skip the instruction.
1024 		 */
1025 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1026 			kvm_incr_pc(vcpu);
1027 			ret = 1;
1028 			goto out_unlock;
1029 		}
1030 
1031 		/*
1032 		 * The IPA is reported as [MAX:12], so we need to
1033 		 * complement it with the bottom 12 bits from the
1034 		 * faulting VA. This is always 12 bits, irrespective
1035 		 * of the page size.
1036 		 */
1037 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1038 		ret = io_mem_abort(vcpu, fault_ipa);
1039 		goto out_unlock;
1040 	}
1041 
1042 	/* Userspace should not be able to register out-of-bounds IPAs */
1043 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1044 
1045 	if (fault_status == FSC_ACCESS) {
1046 		handle_access_fault(vcpu, fault_ipa);
1047 		ret = 1;
1048 		goto out_unlock;
1049 	}
1050 
1051 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1052 	if (ret == 0)
1053 		ret = 1;
1054 out:
1055 	if (ret == -ENOEXEC) {
1056 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1057 		ret = 1;
1058 	}
1059 out_unlock:
1060 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1061 	return ret;
1062 }
1063 
1064 static int handle_hva_to_gpa(struct kvm *kvm,
1065 			     unsigned long start,
1066 			     unsigned long end,
1067 			     int (*handler)(struct kvm *kvm,
1068 					    gpa_t gpa, u64 size,
1069 					    void *data),
1070 			     void *data)
1071 {
1072 	struct kvm_memslots *slots;
1073 	struct kvm_memory_slot *memslot;
1074 	int ret = 0;
1075 
1076 	slots = kvm_memslots(kvm);
1077 
1078 	/* we only care about the pages that the guest sees */
1079 	kvm_for_each_memslot(memslot, slots) {
1080 		unsigned long hva_start, hva_end;
1081 		gfn_t gpa;
1082 
1083 		hva_start = max(start, memslot->userspace_addr);
1084 		hva_end = min(end, memslot->userspace_addr +
1085 					(memslot->npages << PAGE_SHIFT));
1086 		if (hva_start >= hva_end)
1087 			continue;
1088 
1089 		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1090 		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1091 	}
1092 
1093 	return ret;
1094 }
1095 
1096 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1097 {
1098 	unsigned flags = *(unsigned *)data;
1099 	bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE;
1100 
1101 	__unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block);
1102 	return 0;
1103 }
1104 
1105 int kvm_unmap_hva_range(struct kvm *kvm,
1106 			unsigned long start, unsigned long end, unsigned flags)
1107 {
1108 	if (!kvm->arch.mmu.pgt)
1109 		return 0;
1110 
1111 	trace_kvm_unmap_hva_range(start, end);
1112 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags);
1113 	return 0;
1114 }
1115 
1116 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1117 {
1118 	kvm_pfn_t *pfn = (kvm_pfn_t *)data;
1119 
1120 	WARN_ON(size != PAGE_SIZE);
1121 
1122 	/*
1123 	 * The MMU notifiers will have unmapped a huge PMD before calling
1124 	 * ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1125 	 * therefore we never need to clear out a huge PMD through this
1126 	 * calling path and a memcache is not required.
1127 	 */
1128 	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, gpa, PAGE_SIZE,
1129 			       __pfn_to_phys(*pfn), KVM_PGTABLE_PROT_R, NULL);
1130 	return 0;
1131 }
1132 
1133 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1134 {
1135 	unsigned long end = hva + PAGE_SIZE;
1136 	kvm_pfn_t pfn = pte_pfn(pte);
1137 
1138 	if (!kvm->arch.mmu.pgt)
1139 		return 0;
1140 
1141 	trace_kvm_set_spte_hva(hva);
1142 
1143 	/*
1144 	 * We've moved a page around, probably through CoW, so let's treat it
1145 	 * just like a translation fault and clean the cache to the PoC.
1146 	 */
1147 	clean_dcache_guest_page(pfn, PAGE_SIZE);
1148 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pfn);
1149 	return 0;
1150 }
1151 
1152 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1153 {
1154 	pte_t pte;
1155 	kvm_pte_t kpte;
1156 
1157 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1158 	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, gpa);
1159 	pte = __pte(kpte);
1160 	return pte_valid(pte) && pte_young(pte);
1161 }
1162 
1163 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1164 {
1165 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1166 	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, gpa);
1167 }
1168 
1169 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1170 {
1171 	if (!kvm->arch.mmu.pgt)
1172 		return 0;
1173 	trace_kvm_age_hva(start, end);
1174 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1175 }
1176 
1177 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1178 {
1179 	if (!kvm->arch.mmu.pgt)
1180 		return 0;
1181 	trace_kvm_test_age_hva(hva);
1182 	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
1183 				 kvm_test_age_hva_handler, NULL);
1184 }
1185 
1186 phys_addr_t kvm_mmu_get_httbr(void)
1187 {
1188 	return __pa(hyp_pgtable->pgd);
1189 }
1190 
1191 phys_addr_t kvm_get_idmap_vector(void)
1192 {
1193 	return hyp_idmap_vector;
1194 }
1195 
1196 static int kvm_map_idmap_text(void)
1197 {
1198 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1199 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1200 					PAGE_HYP_EXEC);
1201 	if (err)
1202 		kvm_err("Failed to idmap %lx-%lx\n",
1203 			hyp_idmap_start, hyp_idmap_end);
1204 
1205 	return err;
1206 }
1207 
1208 int kvm_mmu_init(void)
1209 {
1210 	int err;
1211 	u32 hyp_va_bits;
1212 
1213 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1214 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1215 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1216 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1217 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1218 
1219 	/*
1220 	 * We rely on the linker script to ensure at build time that the HYP
1221 	 * init code does not cross a page boundary.
1222 	 */
1223 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1224 
1225 	hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1226 	kvm_debug("Using %u-bit virtual addresses at EL2\n", hyp_va_bits);
1227 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1228 	kvm_debug("HYP VA range: %lx:%lx\n",
1229 		  kern_hyp_va(PAGE_OFFSET),
1230 		  kern_hyp_va((unsigned long)high_memory - 1));
1231 
1232 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1233 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1234 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1235 		/*
1236 		 * The idmap page is intersecting with the VA space,
1237 		 * it is not safe to continue further.
1238 		 */
1239 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1240 		err = -EINVAL;
1241 		goto out;
1242 	}
1243 
1244 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1245 	if (!hyp_pgtable) {
1246 		kvm_err("Hyp mode page-table not allocated\n");
1247 		err = -ENOMEM;
1248 		goto out;
1249 	}
1250 
1251 	err = kvm_pgtable_hyp_init(hyp_pgtable, hyp_va_bits);
1252 	if (err)
1253 		goto out_free_pgtable;
1254 
1255 	err = kvm_map_idmap_text();
1256 	if (err)
1257 		goto out_destroy_pgtable;
1258 
1259 	io_map_base = hyp_idmap_start;
1260 	return 0;
1261 
1262 out_destroy_pgtable:
1263 	kvm_pgtable_hyp_destroy(hyp_pgtable);
1264 out_free_pgtable:
1265 	kfree(hyp_pgtable);
1266 	hyp_pgtable = NULL;
1267 out:
1268 	return err;
1269 }
1270 
1271 void kvm_arch_commit_memory_region(struct kvm *kvm,
1272 				   const struct kvm_userspace_memory_region *mem,
1273 				   struct kvm_memory_slot *old,
1274 				   const struct kvm_memory_slot *new,
1275 				   enum kvm_mr_change change)
1276 {
1277 	/*
1278 	 * At this point memslot has been committed and there is an
1279 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1280 	 * memory slot is write protected.
1281 	 */
1282 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1283 		/*
1284 		 * If we're with initial-all-set, we don't need to write
1285 		 * protect any pages because they're all reported as dirty.
1286 		 * Huge pages and normal pages will be write protect gradually.
1287 		 */
1288 		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1289 			kvm_mmu_wp_memory_region(kvm, mem->slot);
1290 		}
1291 	}
1292 }
1293 
1294 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1295 				   struct kvm_memory_slot *memslot,
1296 				   const struct kvm_userspace_memory_region *mem,
1297 				   enum kvm_mr_change change)
1298 {
1299 	hva_t hva = mem->userspace_addr;
1300 	hva_t reg_end = hva + mem->memory_size;
1301 	bool writable = !(mem->flags & KVM_MEM_READONLY);
1302 	int ret = 0;
1303 
1304 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1305 			change != KVM_MR_FLAGS_ONLY)
1306 		return 0;
1307 
1308 	/*
1309 	 * Prevent userspace from creating a memory region outside of the IPA
1310 	 * space addressable by the KVM guest IPA space.
1311 	 */
1312 	if (memslot->base_gfn + memslot->npages >=
1313 	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
1314 		return -EFAULT;
1315 
1316 	mmap_read_lock(current->mm);
1317 	/*
1318 	 * A memory region could potentially cover multiple VMAs, and any holes
1319 	 * between them, so iterate over all of them to find out if we can map
1320 	 * any of them right now.
1321 	 *
1322 	 *     +--------------------------------------------+
1323 	 * +---------------+----------------+   +----------------+
1324 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1325 	 * +---------------+----------------+   +----------------+
1326 	 *     |               memory region                |
1327 	 *     +--------------------------------------------+
1328 	 */
1329 	do {
1330 		struct vm_area_struct *vma = find_vma(current->mm, hva);
1331 		hva_t vm_start, vm_end;
1332 
1333 		if (!vma || vma->vm_start >= reg_end)
1334 			break;
1335 
1336 		/*
1337 		 * Take the intersection of this VMA with the memory region
1338 		 */
1339 		vm_start = max(hva, vma->vm_start);
1340 		vm_end = min(reg_end, vma->vm_end);
1341 
1342 		if (vma->vm_flags & VM_PFNMAP) {
1343 			gpa_t gpa = mem->guest_phys_addr +
1344 				    (vm_start - mem->userspace_addr);
1345 			phys_addr_t pa;
1346 
1347 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1348 			pa += vm_start - vma->vm_start;
1349 
1350 			/* IO region dirty page logging not allowed */
1351 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1352 				ret = -EINVAL;
1353 				goto out;
1354 			}
1355 
1356 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1357 						    vm_end - vm_start,
1358 						    writable);
1359 			if (ret)
1360 				break;
1361 		}
1362 		hva = vm_end;
1363 	} while (hva < reg_end);
1364 
1365 	if (change == KVM_MR_FLAGS_ONLY)
1366 		goto out;
1367 
1368 	spin_lock(&kvm->mmu_lock);
1369 	if (ret)
1370 		unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
1371 	else if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1372 		stage2_flush_memslot(kvm, memslot);
1373 	spin_unlock(&kvm->mmu_lock);
1374 out:
1375 	mmap_read_unlock(current->mm);
1376 	return ret;
1377 }
1378 
1379 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1380 {
1381 }
1382 
1383 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1384 {
1385 }
1386 
1387 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1388 {
1389 	kvm_free_stage2_pgd(&kvm->arch.mmu);
1390 }
1391 
1392 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1393 				   struct kvm_memory_slot *slot)
1394 {
1395 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1396 	phys_addr_t size = slot->npages << PAGE_SHIFT;
1397 
1398 	spin_lock(&kvm->mmu_lock);
1399 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1400 	spin_unlock(&kvm->mmu_lock);
1401 }
1402 
1403 /*
1404  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1405  *
1406  * Main problems:
1407  * - S/W ops are local to a CPU (not broadcast)
1408  * - We have line migration behind our back (speculation)
1409  * - System caches don't support S/W at all (damn!)
1410  *
1411  * In the face of the above, the best we can do is to try and convert
1412  * S/W ops to VA ops. Because the guest is not allowed to infer the
1413  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1414  * which is a rather good thing for us.
1415  *
1416  * Also, it is only used when turning caches on/off ("The expected
1417  * usage of the cache maintenance instructions that operate by set/way
1418  * is associated with the cache maintenance instructions associated
1419  * with the powerdown and powerup of caches, if this is required by
1420  * the implementation.").
1421  *
1422  * We use the following policy:
1423  *
1424  * - If we trap a S/W operation, we enable VM trapping to detect
1425  *   caches being turned on/off, and do a full clean.
1426  *
1427  * - We flush the caches on both caches being turned on and off.
1428  *
1429  * - Once the caches are enabled, we stop trapping VM ops.
1430  */
1431 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1432 {
1433 	unsigned long hcr = *vcpu_hcr(vcpu);
1434 
1435 	/*
1436 	 * If this is the first time we do a S/W operation
1437 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1438 	 * VM trapping.
1439 	 *
1440 	 * Otherwise, rely on the VM trapping to wait for the MMU +
1441 	 * Caches to be turned off. At that point, we'll be able to
1442 	 * clean the caches again.
1443 	 */
1444 	if (!(hcr & HCR_TVM)) {
1445 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1446 					vcpu_has_cache_enabled(vcpu));
1447 		stage2_flush_vm(vcpu->kvm);
1448 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1449 	}
1450 }
1451 
1452 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1453 {
1454 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1455 
1456 	/*
1457 	 * If switching the MMU+caches on, need to invalidate the caches.
1458 	 * If switching it off, need to clean the caches.
1459 	 * Clean + invalidate does the trick always.
1460 	 */
1461 	if (now_enabled != was_enabled)
1462 		stage2_flush_vm(vcpu->kvm);
1463 
1464 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1465 	if (now_enabled)
1466 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1467 
1468 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1469 }
1470