1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long __ro_after_init hyp_idmap_start; 29 static unsigned long __ro_after_init hyp_idmap_end; 30 static phys_addr_t __ro_after_init hyp_idmap_vector; 31 32 static unsigned long __ro_after_init io_map_base; 33 34 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end, 35 phys_addr_t size) 36 { 37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size); 38 39 return (boundary - 1 < end - 1) ? boundary : end; 40 } 41 42 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) 43 { 44 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); 45 46 return __stage2_range_addr_end(addr, end, size); 47 } 48 49 /* 50 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 51 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 52 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 53 * long will also starve other vCPUs. We have to also make sure that the page 54 * tables are not freed while we released the lock. 55 */ 56 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, 57 phys_addr_t end, 58 int (*fn)(struct kvm_pgtable *, u64, u64), 59 bool resched) 60 { 61 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 62 int ret; 63 u64 next; 64 65 do { 66 struct kvm_pgtable *pgt = mmu->pgt; 67 if (!pgt) 68 return -EINVAL; 69 70 next = stage2_range_addr_end(addr, end); 71 ret = fn(pgt, addr, next - addr); 72 if (ret) 73 break; 74 75 if (resched && next != end) 76 cond_resched_rwlock_write(&kvm->mmu_lock); 77 } while (addr = next, addr != end); 78 79 return ret; 80 } 81 82 #define stage2_apply_range_resched(mmu, addr, end, fn) \ 83 stage2_apply_range(mmu, addr, end, fn, true) 84 85 /* 86 * Get the maximum number of page-tables pages needed to split a range 87 * of blocks into PAGE_SIZE PTEs. It assumes the range is already 88 * mapped at level 2, or at level 1 if allowed. 89 */ 90 static int kvm_mmu_split_nr_page_tables(u64 range) 91 { 92 int n = 0; 93 94 if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2) 95 n += DIV_ROUND_UP(range, PUD_SIZE); 96 n += DIV_ROUND_UP(range, PMD_SIZE); 97 return n; 98 } 99 100 static bool need_split_memcache_topup_or_resched(struct kvm *kvm) 101 { 102 struct kvm_mmu_memory_cache *cache; 103 u64 chunk_size, min; 104 105 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 106 return true; 107 108 chunk_size = kvm->arch.mmu.split_page_chunk_size; 109 min = kvm_mmu_split_nr_page_tables(chunk_size); 110 cache = &kvm->arch.mmu.split_page_cache; 111 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 112 } 113 114 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr, 115 phys_addr_t end) 116 { 117 struct kvm_mmu_memory_cache *cache; 118 struct kvm_pgtable *pgt; 119 int ret, cache_capacity; 120 u64 next, chunk_size; 121 122 lockdep_assert_held_write(&kvm->mmu_lock); 123 124 chunk_size = kvm->arch.mmu.split_page_chunk_size; 125 cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size); 126 127 if (chunk_size == 0) 128 return 0; 129 130 cache = &kvm->arch.mmu.split_page_cache; 131 132 do { 133 if (need_split_memcache_topup_or_resched(kvm)) { 134 write_unlock(&kvm->mmu_lock); 135 cond_resched(); 136 /* Eager page splitting is best-effort. */ 137 ret = __kvm_mmu_topup_memory_cache(cache, 138 cache_capacity, 139 cache_capacity); 140 write_lock(&kvm->mmu_lock); 141 if (ret) 142 break; 143 } 144 145 pgt = kvm->arch.mmu.pgt; 146 if (!pgt) 147 return -EINVAL; 148 149 next = __stage2_range_addr_end(addr, end, chunk_size); 150 ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache); 151 if (ret) 152 break; 153 } while (addr = next, addr != end); 154 155 return ret; 156 } 157 158 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 159 { 160 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 161 } 162 163 /** 164 * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8 165 * @kvm: pointer to kvm structure. 166 * 167 * Interface to HYP function to flush all VM TLB entries 168 */ 169 int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 170 { 171 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 172 return 0; 173 } 174 175 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 176 gfn_t gfn, u64 nr_pages) 177 { 178 kvm_tlb_flush_vmid_range(&kvm->arch.mmu, 179 gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT); 180 return 0; 181 } 182 183 static bool kvm_is_device_pfn(unsigned long pfn) 184 { 185 return !pfn_is_map_memory(pfn); 186 } 187 188 static void *stage2_memcache_zalloc_page(void *arg) 189 { 190 struct kvm_mmu_memory_cache *mc = arg; 191 void *virt; 192 193 /* Allocated with __GFP_ZERO, so no need to zero */ 194 virt = kvm_mmu_memory_cache_alloc(mc); 195 if (virt) 196 kvm_account_pgtable_pages(virt, 1); 197 return virt; 198 } 199 200 static void *kvm_host_zalloc_pages_exact(size_t size) 201 { 202 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 203 } 204 205 static void *kvm_s2_zalloc_pages_exact(size_t size) 206 { 207 void *virt = kvm_host_zalloc_pages_exact(size); 208 209 if (virt) 210 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT)); 211 return virt; 212 } 213 214 static void kvm_s2_free_pages_exact(void *virt, size_t size) 215 { 216 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT)); 217 free_pages_exact(virt, size); 218 } 219 220 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops; 221 222 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head) 223 { 224 struct page *page = container_of(head, struct page, rcu_head); 225 void *pgtable = page_to_virt(page); 226 s8 level = page_private(page); 227 228 kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level); 229 } 230 231 static void stage2_free_unlinked_table(void *addr, s8 level) 232 { 233 struct page *page = virt_to_page(addr); 234 235 set_page_private(page, (unsigned long)level); 236 call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb); 237 } 238 239 static void kvm_host_get_page(void *addr) 240 { 241 get_page(virt_to_page(addr)); 242 } 243 244 static void kvm_host_put_page(void *addr) 245 { 246 put_page(virt_to_page(addr)); 247 } 248 249 static void kvm_s2_put_page(void *addr) 250 { 251 struct page *p = virt_to_page(addr); 252 /* Dropping last refcount, the page will be freed */ 253 if (page_count(p) == 1) 254 kvm_account_pgtable_pages(addr, -1); 255 put_page(p); 256 } 257 258 static int kvm_host_page_count(void *addr) 259 { 260 return page_count(virt_to_page(addr)); 261 } 262 263 static phys_addr_t kvm_host_pa(void *addr) 264 { 265 return __pa(addr); 266 } 267 268 static void *kvm_host_va(phys_addr_t phys) 269 { 270 return __va(phys); 271 } 272 273 static void clean_dcache_guest_page(void *va, size_t size) 274 { 275 __clean_dcache_guest_page(va, size); 276 } 277 278 static void invalidate_icache_guest_page(void *va, size_t size) 279 { 280 __invalidate_icache_guest_page(va, size); 281 } 282 283 /* 284 * Unmapping vs dcache management: 285 * 286 * If a guest maps certain memory pages as uncached, all writes will 287 * bypass the data cache and go directly to RAM. However, the CPUs 288 * can still speculate reads (not writes) and fill cache lines with 289 * data. 290 * 291 * Those cache lines will be *clean* cache lines though, so a 292 * clean+invalidate operation is equivalent to an invalidate 293 * operation, because no cache lines are marked dirty. 294 * 295 * Those clean cache lines could be filled prior to an uncached write 296 * by the guest, and the cache coherent IO subsystem would therefore 297 * end up writing old data to disk. 298 * 299 * This is why right after unmapping a page/section and invalidating 300 * the corresponding TLBs, we flush to make sure the IO subsystem will 301 * never hit in the cache. 302 * 303 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 304 * we then fully enforce cacheability of RAM, no matter what the guest 305 * does. 306 */ 307 /** 308 * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range 309 * @mmu: The KVM stage-2 MMU pointer 310 * @start: The intermediate physical base address of the range to unmap 311 * @size: The size of the area to unmap 312 * @may_block: Whether or not we are permitted to block 313 * 314 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 315 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 316 * destroying the VM), otherwise another faulting VCPU may come in and mess 317 * with things behind our backs. 318 */ 319 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 320 bool may_block) 321 { 322 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 323 phys_addr_t end = start + size; 324 325 lockdep_assert_held_write(&kvm->mmu_lock); 326 WARN_ON(size & ~PAGE_MASK); 327 WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap, 328 may_block)); 329 } 330 331 void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start, 332 u64 size, bool may_block) 333 { 334 __unmap_stage2_range(mmu, start, size, may_block); 335 } 336 337 void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 338 { 339 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_flush); 340 } 341 342 static void stage2_flush_memslot(struct kvm *kvm, 343 struct kvm_memory_slot *memslot) 344 { 345 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 346 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 347 348 kvm_stage2_flush_range(&kvm->arch.mmu, addr, end); 349 } 350 351 /** 352 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 353 * @kvm: The struct kvm pointer 354 * 355 * Go through the stage 2 page tables and invalidate any cache lines 356 * backing memory already mapped to the VM. 357 */ 358 static void stage2_flush_vm(struct kvm *kvm) 359 { 360 struct kvm_memslots *slots; 361 struct kvm_memory_slot *memslot; 362 int idx, bkt; 363 364 idx = srcu_read_lock(&kvm->srcu); 365 write_lock(&kvm->mmu_lock); 366 367 slots = kvm_memslots(kvm); 368 kvm_for_each_memslot(memslot, bkt, slots) 369 stage2_flush_memslot(kvm, memslot); 370 371 kvm_nested_s2_flush(kvm); 372 373 write_unlock(&kvm->mmu_lock); 374 srcu_read_unlock(&kvm->srcu, idx); 375 } 376 377 /** 378 * free_hyp_pgds - free Hyp-mode page tables 379 */ 380 void __init free_hyp_pgds(void) 381 { 382 mutex_lock(&kvm_hyp_pgd_mutex); 383 if (hyp_pgtable) { 384 kvm_pgtable_hyp_destroy(hyp_pgtable); 385 kfree(hyp_pgtable); 386 hyp_pgtable = NULL; 387 } 388 mutex_unlock(&kvm_hyp_pgd_mutex); 389 } 390 391 static bool kvm_host_owns_hyp_mappings(void) 392 { 393 if (is_kernel_in_hyp_mode()) 394 return false; 395 396 if (static_branch_likely(&kvm_protected_mode_initialized)) 397 return false; 398 399 /* 400 * This can happen at boot time when __create_hyp_mappings() is called 401 * after the hyp protection has been enabled, but the static key has 402 * not been flipped yet. 403 */ 404 if (!hyp_pgtable && is_protected_kvm_enabled()) 405 return false; 406 407 WARN_ON(!hyp_pgtable); 408 409 return true; 410 } 411 412 int __create_hyp_mappings(unsigned long start, unsigned long size, 413 unsigned long phys, enum kvm_pgtable_prot prot) 414 { 415 int err; 416 417 if (WARN_ON(!kvm_host_owns_hyp_mappings())) 418 return -EINVAL; 419 420 mutex_lock(&kvm_hyp_pgd_mutex); 421 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 422 mutex_unlock(&kvm_hyp_pgd_mutex); 423 424 return err; 425 } 426 427 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 428 { 429 if (!is_vmalloc_addr(kaddr)) { 430 BUG_ON(!virt_addr_valid(kaddr)); 431 return __pa(kaddr); 432 } else { 433 return page_to_phys(vmalloc_to_page(kaddr)) + 434 offset_in_page(kaddr); 435 } 436 } 437 438 struct hyp_shared_pfn { 439 u64 pfn; 440 int count; 441 struct rb_node node; 442 }; 443 444 static DEFINE_MUTEX(hyp_shared_pfns_lock); 445 static struct rb_root hyp_shared_pfns = RB_ROOT; 446 447 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node, 448 struct rb_node **parent) 449 { 450 struct hyp_shared_pfn *this; 451 452 *node = &hyp_shared_pfns.rb_node; 453 *parent = NULL; 454 while (**node) { 455 this = container_of(**node, struct hyp_shared_pfn, node); 456 *parent = **node; 457 if (this->pfn < pfn) 458 *node = &((**node)->rb_left); 459 else if (this->pfn > pfn) 460 *node = &((**node)->rb_right); 461 else 462 return this; 463 } 464 465 return NULL; 466 } 467 468 static int share_pfn_hyp(u64 pfn) 469 { 470 struct rb_node **node, *parent; 471 struct hyp_shared_pfn *this; 472 int ret = 0; 473 474 mutex_lock(&hyp_shared_pfns_lock); 475 this = find_shared_pfn(pfn, &node, &parent); 476 if (this) { 477 this->count++; 478 goto unlock; 479 } 480 481 this = kzalloc(sizeof(*this), GFP_KERNEL); 482 if (!this) { 483 ret = -ENOMEM; 484 goto unlock; 485 } 486 487 this->pfn = pfn; 488 this->count = 1; 489 rb_link_node(&this->node, parent, node); 490 rb_insert_color(&this->node, &hyp_shared_pfns); 491 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1); 492 unlock: 493 mutex_unlock(&hyp_shared_pfns_lock); 494 495 return ret; 496 } 497 498 static int unshare_pfn_hyp(u64 pfn) 499 { 500 struct rb_node **node, *parent; 501 struct hyp_shared_pfn *this; 502 int ret = 0; 503 504 mutex_lock(&hyp_shared_pfns_lock); 505 this = find_shared_pfn(pfn, &node, &parent); 506 if (WARN_ON(!this)) { 507 ret = -ENOENT; 508 goto unlock; 509 } 510 511 this->count--; 512 if (this->count) 513 goto unlock; 514 515 rb_erase(&this->node, &hyp_shared_pfns); 516 kfree(this); 517 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1); 518 unlock: 519 mutex_unlock(&hyp_shared_pfns_lock); 520 521 return ret; 522 } 523 524 int kvm_share_hyp(void *from, void *to) 525 { 526 phys_addr_t start, end, cur; 527 u64 pfn; 528 int ret; 529 530 if (is_kernel_in_hyp_mode()) 531 return 0; 532 533 /* 534 * The share hcall maps things in the 'fixed-offset' region of the hyp 535 * VA space, so we can only share physically contiguous data-structures 536 * for now. 537 */ 538 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to)) 539 return -EINVAL; 540 541 if (kvm_host_owns_hyp_mappings()) 542 return create_hyp_mappings(from, to, PAGE_HYP); 543 544 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 545 end = PAGE_ALIGN(__pa(to)); 546 for (cur = start; cur < end; cur += PAGE_SIZE) { 547 pfn = __phys_to_pfn(cur); 548 ret = share_pfn_hyp(pfn); 549 if (ret) 550 return ret; 551 } 552 553 return 0; 554 } 555 556 void kvm_unshare_hyp(void *from, void *to) 557 { 558 phys_addr_t start, end, cur; 559 u64 pfn; 560 561 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from) 562 return; 563 564 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 565 end = PAGE_ALIGN(__pa(to)); 566 for (cur = start; cur < end; cur += PAGE_SIZE) { 567 pfn = __phys_to_pfn(cur); 568 WARN_ON(unshare_pfn_hyp(pfn)); 569 } 570 } 571 572 /** 573 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 574 * @from: The virtual kernel start address of the range 575 * @to: The virtual kernel end address of the range (exclusive) 576 * @prot: The protection to be applied to this range 577 * 578 * The same virtual address as the kernel virtual address is also used 579 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 580 * physical pages. 581 */ 582 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 583 { 584 phys_addr_t phys_addr; 585 unsigned long virt_addr; 586 unsigned long start = kern_hyp_va((unsigned long)from); 587 unsigned long end = kern_hyp_va((unsigned long)to); 588 589 if (is_kernel_in_hyp_mode()) 590 return 0; 591 592 if (!kvm_host_owns_hyp_mappings()) 593 return -EPERM; 594 595 start = start & PAGE_MASK; 596 end = PAGE_ALIGN(end); 597 598 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 599 int err; 600 601 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 602 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 603 prot); 604 if (err) 605 return err; 606 } 607 608 return 0; 609 } 610 611 static int __hyp_alloc_private_va_range(unsigned long base) 612 { 613 lockdep_assert_held(&kvm_hyp_pgd_mutex); 614 615 if (!PAGE_ALIGNED(base)) 616 return -EINVAL; 617 618 /* 619 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 620 * allocating the new area, as it would indicate we've 621 * overflowed the idmap/IO address range. 622 */ 623 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 624 return -ENOMEM; 625 626 io_map_base = base; 627 628 return 0; 629 } 630 631 /** 632 * hyp_alloc_private_va_range - Allocates a private VA range. 633 * @size: The size of the VA range to reserve. 634 * @haddr: The hypervisor virtual start address of the allocation. 635 * 636 * The private virtual address (VA) range is allocated below io_map_base 637 * and aligned based on the order of @size. 638 * 639 * Return: 0 on success or negative error code on failure. 640 */ 641 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr) 642 { 643 unsigned long base; 644 int ret = 0; 645 646 mutex_lock(&kvm_hyp_pgd_mutex); 647 648 /* 649 * This assumes that we have enough space below the idmap 650 * page to allocate our VAs. If not, the check in 651 * __hyp_alloc_private_va_range() will kick. A potential 652 * alternative would be to detect that overflow and switch 653 * to an allocation above the idmap. 654 * 655 * The allocated size is always a multiple of PAGE_SIZE. 656 */ 657 size = PAGE_ALIGN(size); 658 base = io_map_base - size; 659 ret = __hyp_alloc_private_va_range(base); 660 661 mutex_unlock(&kvm_hyp_pgd_mutex); 662 663 if (!ret) 664 *haddr = base; 665 666 return ret; 667 } 668 669 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 670 unsigned long *haddr, 671 enum kvm_pgtable_prot prot) 672 { 673 unsigned long addr; 674 int ret = 0; 675 676 if (!kvm_host_owns_hyp_mappings()) { 677 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 678 phys_addr, size, prot); 679 if (IS_ERR_VALUE(addr)) 680 return addr; 681 *haddr = addr; 682 683 return 0; 684 } 685 686 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 687 ret = hyp_alloc_private_va_range(size, &addr); 688 if (ret) 689 return ret; 690 691 ret = __create_hyp_mappings(addr, size, phys_addr, prot); 692 if (ret) 693 return ret; 694 695 *haddr = addr + offset_in_page(phys_addr); 696 return ret; 697 } 698 699 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr) 700 { 701 unsigned long base; 702 size_t size; 703 int ret; 704 705 mutex_lock(&kvm_hyp_pgd_mutex); 706 /* 707 * Efficient stack verification using the PAGE_SHIFT bit implies 708 * an alignment of our allocation on the order of the size. 709 */ 710 size = PAGE_SIZE * 2; 711 base = ALIGN_DOWN(io_map_base - size, size); 712 713 ret = __hyp_alloc_private_va_range(base); 714 715 mutex_unlock(&kvm_hyp_pgd_mutex); 716 717 if (ret) { 718 kvm_err("Cannot allocate hyp stack guard page\n"); 719 return ret; 720 } 721 722 /* 723 * Since the stack grows downwards, map the stack to the page 724 * at the higher address and leave the lower guard page 725 * unbacked. 726 * 727 * Any valid stack address now has the PAGE_SHIFT bit as 1 728 * and addresses corresponding to the guard page have the 729 * PAGE_SHIFT bit as 0 - this is used for overflow detection. 730 */ 731 ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr, 732 PAGE_HYP); 733 if (ret) 734 kvm_err("Cannot map hyp stack\n"); 735 736 *haddr = base + size; 737 738 return ret; 739 } 740 741 /** 742 * create_hyp_io_mappings - Map IO into both kernel and HYP 743 * @phys_addr: The physical start address which gets mapped 744 * @size: Size of the region being mapped 745 * @kaddr: Kernel VA for this mapping 746 * @haddr: HYP VA for this mapping 747 */ 748 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 749 void __iomem **kaddr, 750 void __iomem **haddr) 751 { 752 unsigned long addr; 753 int ret; 754 755 if (is_protected_kvm_enabled()) 756 return -EPERM; 757 758 *kaddr = ioremap(phys_addr, size); 759 if (!*kaddr) 760 return -ENOMEM; 761 762 if (is_kernel_in_hyp_mode()) { 763 *haddr = *kaddr; 764 return 0; 765 } 766 767 ret = __create_hyp_private_mapping(phys_addr, size, 768 &addr, PAGE_HYP_DEVICE); 769 if (ret) { 770 iounmap(*kaddr); 771 *kaddr = NULL; 772 *haddr = NULL; 773 return ret; 774 } 775 776 *haddr = (void __iomem *)addr; 777 return 0; 778 } 779 780 /** 781 * create_hyp_exec_mappings - Map an executable range into HYP 782 * @phys_addr: The physical start address which gets mapped 783 * @size: Size of the region being mapped 784 * @haddr: HYP VA for this mapping 785 */ 786 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 787 void **haddr) 788 { 789 unsigned long addr; 790 int ret; 791 792 BUG_ON(is_kernel_in_hyp_mode()); 793 794 ret = __create_hyp_private_mapping(phys_addr, size, 795 &addr, PAGE_HYP_EXEC); 796 if (ret) { 797 *haddr = NULL; 798 return ret; 799 } 800 801 *haddr = (void *)addr; 802 return 0; 803 } 804 805 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { 806 /* We shouldn't need any other callback to walk the PT */ 807 .phys_to_virt = kvm_host_va, 808 }; 809 810 static int get_user_mapping_size(struct kvm *kvm, u64 addr) 811 { 812 struct kvm_pgtable pgt = { 813 .pgd = (kvm_pteref_t)kvm->mm->pgd, 814 .ia_bits = vabits_actual, 815 .start_level = (KVM_PGTABLE_LAST_LEVEL - 816 ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1), 817 .mm_ops = &kvm_user_mm_ops, 818 }; 819 unsigned long flags; 820 kvm_pte_t pte = 0; /* Keep GCC quiet... */ 821 s8 level = S8_MAX; 822 int ret; 823 824 /* 825 * Disable IRQs so that we hazard against a concurrent 826 * teardown of the userspace page tables (which relies on 827 * IPI-ing threads). 828 */ 829 local_irq_save(flags); 830 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); 831 local_irq_restore(flags); 832 833 if (ret) 834 return ret; 835 836 /* 837 * Not seeing an error, but not updating level? Something went 838 * deeply wrong... 839 */ 840 if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL)) 841 return -EFAULT; 842 if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL)) 843 return -EFAULT; 844 845 /* Oops, the userspace PTs are gone... Replay the fault */ 846 if (!kvm_pte_valid(pte)) 847 return -EAGAIN; 848 849 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); 850 } 851 852 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 853 .zalloc_page = stage2_memcache_zalloc_page, 854 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact, 855 .free_pages_exact = kvm_s2_free_pages_exact, 856 .free_unlinked_table = stage2_free_unlinked_table, 857 .get_page = kvm_host_get_page, 858 .put_page = kvm_s2_put_page, 859 .page_count = kvm_host_page_count, 860 .phys_to_virt = kvm_host_va, 861 .virt_to_phys = kvm_host_pa, 862 .dcache_clean_inval_poc = clean_dcache_guest_page, 863 .icache_inval_pou = invalidate_icache_guest_page, 864 }; 865 866 static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type) 867 { 868 u32 kvm_ipa_limit = get_kvm_ipa_limit(); 869 u64 mmfr0, mmfr1; 870 u32 phys_shift; 871 872 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK) 873 return -EINVAL; 874 875 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type); 876 if (is_protected_kvm_enabled()) { 877 phys_shift = kvm_ipa_limit; 878 } else if (phys_shift) { 879 if (phys_shift > kvm_ipa_limit || 880 phys_shift < ARM64_MIN_PARANGE_BITS) 881 return -EINVAL; 882 } else { 883 phys_shift = KVM_PHYS_SHIFT; 884 if (phys_shift > kvm_ipa_limit) { 885 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n", 886 current->comm); 887 return -EINVAL; 888 } 889 } 890 891 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 892 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 893 mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift); 894 895 return 0; 896 } 897 898 /** 899 * kvm_init_stage2_mmu - Initialise a S2 MMU structure 900 * @kvm: The pointer to the KVM structure 901 * @mmu: The pointer to the s2 MMU structure 902 * @type: The machine type of the virtual machine 903 * 904 * Allocates only the stage-2 HW PGD level table(s). 905 * Note we don't need locking here as this is only called in two cases: 906 * 907 * - when the VM is created, which can't race against anything 908 * 909 * - when secondary kvm_s2_mmu structures are initialised for NV 910 * guests, and the caller must hold kvm->lock as this is called on a 911 * per-vcpu basis. 912 */ 913 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type) 914 { 915 int cpu, err; 916 struct kvm_pgtable *pgt; 917 918 /* 919 * If we already have our page tables in place, and that the 920 * MMU context is the canonical one, we have a bug somewhere, 921 * as this is only supposed to ever happen once per VM. 922 * 923 * Otherwise, we're building nested page tables, and that's 924 * probably because userspace called KVM_ARM_VCPU_INIT more 925 * than once on the same vcpu. Since that's actually legal, 926 * don't kick a fuss and leave gracefully. 927 */ 928 if (mmu->pgt != NULL) { 929 if (kvm_is_nested_s2_mmu(kvm, mmu)) 930 return 0; 931 932 kvm_err("kvm_arch already initialized?\n"); 933 return -EINVAL; 934 } 935 936 err = kvm_init_ipa_range(mmu, type); 937 if (err) 938 return err; 939 940 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); 941 if (!pgt) 942 return -ENOMEM; 943 944 mmu->arch = &kvm->arch; 945 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops); 946 if (err) 947 goto out_free_pgtable; 948 949 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 950 if (!mmu->last_vcpu_ran) { 951 err = -ENOMEM; 952 goto out_destroy_pgtable; 953 } 954 955 for_each_possible_cpu(cpu) 956 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 957 958 /* The eager page splitting is disabled by default */ 959 mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 960 mmu->split_page_cache.gfp_zero = __GFP_ZERO; 961 962 mmu->pgt = pgt; 963 mmu->pgd_phys = __pa(pgt->pgd); 964 965 if (kvm_is_nested_s2_mmu(kvm, mmu)) 966 kvm_init_nested_s2_mmu(mmu); 967 968 return 0; 969 970 out_destroy_pgtable: 971 kvm_pgtable_stage2_destroy(pgt); 972 out_free_pgtable: 973 kfree(pgt); 974 return err; 975 } 976 977 void kvm_uninit_stage2_mmu(struct kvm *kvm) 978 { 979 kvm_free_stage2_pgd(&kvm->arch.mmu); 980 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); 981 } 982 983 static void stage2_unmap_memslot(struct kvm *kvm, 984 struct kvm_memory_slot *memslot) 985 { 986 hva_t hva = memslot->userspace_addr; 987 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 988 phys_addr_t size = PAGE_SIZE * memslot->npages; 989 hva_t reg_end = hva + size; 990 991 /* 992 * A memory region could potentially cover multiple VMAs, and any holes 993 * between them, so iterate over all of them to find out if we should 994 * unmap any of them. 995 * 996 * +--------------------------------------------+ 997 * +---------------+----------------+ +----------------+ 998 * | : VMA 1 | VMA 2 | | VMA 3 : | 999 * +---------------+----------------+ +----------------+ 1000 * | memory region | 1001 * +--------------------------------------------+ 1002 */ 1003 do { 1004 struct vm_area_struct *vma; 1005 hva_t vm_start, vm_end; 1006 1007 vma = find_vma_intersection(current->mm, hva, reg_end); 1008 if (!vma) 1009 break; 1010 1011 /* 1012 * Take the intersection of this VMA with the memory region 1013 */ 1014 vm_start = max(hva, vma->vm_start); 1015 vm_end = min(reg_end, vma->vm_end); 1016 1017 if (!(vma->vm_flags & VM_PFNMAP)) { 1018 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 1019 kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start, true); 1020 } 1021 hva = vm_end; 1022 } while (hva < reg_end); 1023 } 1024 1025 /** 1026 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 1027 * @kvm: The struct kvm pointer 1028 * 1029 * Go through the memregions and unmap any regular RAM 1030 * backing memory already mapped to the VM. 1031 */ 1032 void stage2_unmap_vm(struct kvm *kvm) 1033 { 1034 struct kvm_memslots *slots; 1035 struct kvm_memory_slot *memslot; 1036 int idx, bkt; 1037 1038 idx = srcu_read_lock(&kvm->srcu); 1039 mmap_read_lock(current->mm); 1040 write_lock(&kvm->mmu_lock); 1041 1042 slots = kvm_memslots(kvm); 1043 kvm_for_each_memslot(memslot, bkt, slots) 1044 stage2_unmap_memslot(kvm, memslot); 1045 1046 kvm_nested_s2_unmap(kvm, true); 1047 1048 write_unlock(&kvm->mmu_lock); 1049 mmap_read_unlock(current->mm); 1050 srcu_read_unlock(&kvm->srcu, idx); 1051 } 1052 1053 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 1054 { 1055 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 1056 struct kvm_pgtable *pgt = NULL; 1057 1058 write_lock(&kvm->mmu_lock); 1059 pgt = mmu->pgt; 1060 if (pgt) { 1061 mmu->pgd_phys = 0; 1062 mmu->pgt = NULL; 1063 free_percpu(mmu->last_vcpu_ran); 1064 } 1065 write_unlock(&kvm->mmu_lock); 1066 1067 if (pgt) { 1068 kvm_pgtable_stage2_destroy(pgt); 1069 kfree(pgt); 1070 } 1071 } 1072 1073 static void hyp_mc_free_fn(void *addr, void *unused) 1074 { 1075 free_page((unsigned long)addr); 1076 } 1077 1078 static void *hyp_mc_alloc_fn(void *unused) 1079 { 1080 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT); 1081 } 1082 1083 void free_hyp_memcache(struct kvm_hyp_memcache *mc) 1084 { 1085 if (is_protected_kvm_enabled()) 1086 __free_hyp_memcache(mc, hyp_mc_free_fn, 1087 kvm_host_va, NULL); 1088 } 1089 1090 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages) 1091 { 1092 if (!is_protected_kvm_enabled()) 1093 return 0; 1094 1095 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn, 1096 kvm_host_pa, NULL); 1097 } 1098 1099 /** 1100 * kvm_phys_addr_ioremap - map a device range to guest IPA 1101 * 1102 * @kvm: The KVM pointer 1103 * @guest_ipa: The IPA at which to insert the mapping 1104 * @pa: The physical address of the device 1105 * @size: The size of the mapping 1106 * @writable: Whether or not to create a writable mapping 1107 */ 1108 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 1109 phys_addr_t pa, unsigned long size, bool writable) 1110 { 1111 phys_addr_t addr; 1112 int ret = 0; 1113 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO }; 1114 struct kvm_s2_mmu *mmu = &kvm->arch.mmu; 1115 struct kvm_pgtable *pgt = mmu->pgt; 1116 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 1117 KVM_PGTABLE_PROT_R | 1118 (writable ? KVM_PGTABLE_PROT_W : 0); 1119 1120 if (is_protected_kvm_enabled()) 1121 return -EPERM; 1122 1123 size += offset_in_page(guest_ipa); 1124 guest_ipa &= PAGE_MASK; 1125 1126 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 1127 ret = kvm_mmu_topup_memory_cache(&cache, 1128 kvm_mmu_cache_min_pages(mmu)); 1129 if (ret) 1130 break; 1131 1132 write_lock(&kvm->mmu_lock); 1133 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 1134 &cache, 0); 1135 write_unlock(&kvm->mmu_lock); 1136 if (ret) 1137 break; 1138 1139 pa += PAGE_SIZE; 1140 } 1141 1142 kvm_mmu_free_memory_cache(&cache); 1143 return ret; 1144 } 1145 1146 /** 1147 * kvm_stage2_wp_range() - write protect stage2 memory region range 1148 * @mmu: The KVM stage-2 MMU pointer 1149 * @addr: Start address of range 1150 * @end: End address of range 1151 */ 1152 void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 1153 { 1154 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect); 1155 } 1156 1157 /** 1158 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 1159 * @kvm: The KVM pointer 1160 * @slot: The memory slot to write protect 1161 * 1162 * Called to start logging dirty pages after memory region 1163 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 1164 * all present PUD, PMD and PTEs are write protected in the memory region. 1165 * Afterwards read of dirty page log can be called. 1166 * 1167 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 1168 * serializing operations for VM memory regions. 1169 */ 1170 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 1171 { 1172 struct kvm_memslots *slots = kvm_memslots(kvm); 1173 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 1174 phys_addr_t start, end; 1175 1176 if (WARN_ON_ONCE(!memslot)) 1177 return; 1178 1179 start = memslot->base_gfn << PAGE_SHIFT; 1180 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 1181 1182 write_lock(&kvm->mmu_lock); 1183 kvm_stage2_wp_range(&kvm->arch.mmu, start, end); 1184 kvm_nested_s2_wp(kvm); 1185 write_unlock(&kvm->mmu_lock); 1186 kvm_flush_remote_tlbs_memslot(kvm, memslot); 1187 } 1188 1189 /** 1190 * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE 1191 * pages for memory slot 1192 * @kvm: The KVM pointer 1193 * @slot: The memory slot to split 1194 * 1195 * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired, 1196 * serializing operations for VM memory regions. 1197 */ 1198 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot) 1199 { 1200 struct kvm_memslots *slots; 1201 struct kvm_memory_slot *memslot; 1202 phys_addr_t start, end; 1203 1204 lockdep_assert_held(&kvm->slots_lock); 1205 1206 slots = kvm_memslots(kvm); 1207 memslot = id_to_memslot(slots, slot); 1208 1209 start = memslot->base_gfn << PAGE_SHIFT; 1210 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 1211 1212 write_lock(&kvm->mmu_lock); 1213 kvm_mmu_split_huge_pages(kvm, start, end); 1214 write_unlock(&kvm->mmu_lock); 1215 } 1216 1217 /* 1218 * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages. 1219 * @kvm: The KVM pointer 1220 * @slot: The memory slot associated with mask 1221 * @gfn_offset: The gfn offset in memory slot 1222 * @mask: The mask of pages at offset 'gfn_offset' in this memory 1223 * slot to enable dirty logging on 1224 * 1225 * Writes protect selected pages to enable dirty logging, and then 1226 * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock. 1227 */ 1228 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1229 struct kvm_memory_slot *slot, 1230 gfn_t gfn_offset, unsigned long mask) 1231 { 1232 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 1233 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 1234 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 1235 1236 lockdep_assert_held_write(&kvm->mmu_lock); 1237 1238 kvm_stage2_wp_range(&kvm->arch.mmu, start, end); 1239 1240 /* 1241 * Eager-splitting is done when manual-protect is set. We 1242 * also check for initially-all-set because we can avoid 1243 * eager-splitting if initially-all-set is false. 1244 * Initially-all-set equal false implies that huge-pages were 1245 * already split when enabling dirty logging: no need to do it 1246 * again. 1247 */ 1248 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1249 kvm_mmu_split_huge_pages(kvm, start, end); 1250 1251 kvm_nested_s2_wp(kvm); 1252 } 1253 1254 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 1255 { 1256 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 1257 } 1258 1259 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 1260 unsigned long hva, 1261 unsigned long map_size) 1262 { 1263 gpa_t gpa_start; 1264 hva_t uaddr_start, uaddr_end; 1265 size_t size; 1266 1267 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 1268 if (map_size == PAGE_SIZE) 1269 return true; 1270 1271 size = memslot->npages * PAGE_SIZE; 1272 1273 gpa_start = memslot->base_gfn << PAGE_SHIFT; 1274 1275 uaddr_start = memslot->userspace_addr; 1276 uaddr_end = uaddr_start + size; 1277 1278 /* 1279 * Pages belonging to memslots that don't have the same alignment 1280 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 1281 * PMD/PUD entries, because we'll end up mapping the wrong pages. 1282 * 1283 * Consider a layout like the following: 1284 * 1285 * memslot->userspace_addr: 1286 * +-----+--------------------+--------------------+---+ 1287 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 1288 * +-----+--------------------+--------------------+---+ 1289 * 1290 * memslot->base_gfn << PAGE_SHIFT: 1291 * +---+--------------------+--------------------+-----+ 1292 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 1293 * +---+--------------------+--------------------+-----+ 1294 * 1295 * If we create those stage-2 blocks, we'll end up with this incorrect 1296 * mapping: 1297 * d -> f 1298 * e -> g 1299 * f -> h 1300 */ 1301 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 1302 return false; 1303 1304 /* 1305 * Next, let's make sure we're not trying to map anything not covered 1306 * by the memslot. This means we have to prohibit block size mappings 1307 * for the beginning and end of a non-block aligned and non-block sized 1308 * memory slot (illustrated by the head and tail parts of the 1309 * userspace view above containing pages 'abcde' and 'xyz', 1310 * respectively). 1311 * 1312 * Note that it doesn't matter if we do the check using the 1313 * userspace_addr or the base_gfn, as both are equally aligned (per 1314 * the check above) and equally sized. 1315 */ 1316 return (hva & ~(map_size - 1)) >= uaddr_start && 1317 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 1318 } 1319 1320 /* 1321 * Check if the given hva is backed by a transparent huge page (THP) and 1322 * whether it can be mapped using block mapping in stage2. If so, adjust 1323 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 1324 * supported. This will need to be updated to support other THP sizes. 1325 * 1326 * Returns the size of the mapping. 1327 */ 1328 static long 1329 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, 1330 unsigned long hva, kvm_pfn_t *pfnp, 1331 phys_addr_t *ipap) 1332 { 1333 kvm_pfn_t pfn = *pfnp; 1334 1335 /* 1336 * Make sure the adjustment is done only for THP pages. Also make 1337 * sure that the HVA and IPA are sufficiently aligned and that the 1338 * block map is contained within the memslot. 1339 */ 1340 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { 1341 int sz = get_user_mapping_size(kvm, hva); 1342 1343 if (sz < 0) 1344 return sz; 1345 1346 if (sz < PMD_SIZE) 1347 return PAGE_SIZE; 1348 1349 *ipap &= PMD_MASK; 1350 pfn &= ~(PTRS_PER_PMD - 1); 1351 *pfnp = pfn; 1352 1353 return PMD_SIZE; 1354 } 1355 1356 /* Use page mapping if we cannot use block mapping. */ 1357 return PAGE_SIZE; 1358 } 1359 1360 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) 1361 { 1362 unsigned long pa; 1363 1364 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) 1365 return huge_page_shift(hstate_vma(vma)); 1366 1367 if (!(vma->vm_flags & VM_PFNMAP)) 1368 return PAGE_SHIFT; 1369 1370 VM_BUG_ON(is_vm_hugetlb_page(vma)); 1371 1372 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); 1373 1374 #ifndef __PAGETABLE_PMD_FOLDED 1375 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && 1376 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && 1377 ALIGN(hva, PUD_SIZE) <= vma->vm_end) 1378 return PUD_SHIFT; 1379 #endif 1380 1381 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && 1382 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && 1383 ALIGN(hva, PMD_SIZE) <= vma->vm_end) 1384 return PMD_SHIFT; 1385 1386 return PAGE_SHIFT; 1387 } 1388 1389 /* 1390 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be 1391 * able to see the page's tags and therefore they must be initialised first. If 1392 * PG_mte_tagged is set, tags have already been initialised. 1393 * 1394 * The race in the test/set of the PG_mte_tagged flag is handled by: 1395 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs 1396 * racing to santise the same page 1397 * - mmap_lock protects between a VM faulting a page in and the VMM performing 1398 * an mprotect() to add VM_MTE 1399 */ 1400 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, 1401 unsigned long size) 1402 { 1403 unsigned long i, nr_pages = size >> PAGE_SHIFT; 1404 struct page *page = pfn_to_page(pfn); 1405 struct folio *folio = page_folio(page); 1406 1407 if (!kvm_has_mte(kvm)) 1408 return; 1409 1410 if (folio_test_hugetlb(folio)) { 1411 /* Hugetlb has MTE flags set on head page only */ 1412 if (folio_try_hugetlb_mte_tagging(folio)) { 1413 for (i = 0; i < nr_pages; i++, page++) 1414 mte_clear_page_tags(page_address(page)); 1415 folio_set_hugetlb_mte_tagged(folio); 1416 } 1417 return; 1418 } 1419 1420 for (i = 0; i < nr_pages; i++, page++) { 1421 if (try_page_mte_tagging(page)) { 1422 mte_clear_page_tags(page_address(page)); 1423 set_page_mte_tagged(page); 1424 } 1425 } 1426 } 1427 1428 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma) 1429 { 1430 return vma->vm_flags & VM_MTE_ALLOWED; 1431 } 1432 1433 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1434 struct kvm_s2_trans *nested, 1435 struct kvm_memory_slot *memslot, unsigned long hva, 1436 bool fault_is_perm) 1437 { 1438 int ret = 0; 1439 bool write_fault, writable, force_pte = false; 1440 bool exec_fault, mte_allowed; 1441 bool device = false, vfio_allow_any_uc = false; 1442 unsigned long mmu_seq; 1443 phys_addr_t ipa = fault_ipa; 1444 struct kvm *kvm = vcpu->kvm; 1445 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1446 struct vm_area_struct *vma; 1447 short vma_shift; 1448 gfn_t gfn; 1449 kvm_pfn_t pfn; 1450 bool logging_active = memslot_is_logging(memslot); 1451 long vma_pagesize, fault_granule; 1452 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 1453 struct kvm_pgtable *pgt; 1454 struct page *page; 1455 1456 if (fault_is_perm) 1457 fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu); 1458 write_fault = kvm_is_write_fault(vcpu); 1459 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 1460 VM_BUG_ON(write_fault && exec_fault); 1461 1462 if (fault_is_perm && !write_fault && !exec_fault) { 1463 kvm_err("Unexpected L2 read permission error\n"); 1464 return -EFAULT; 1465 } 1466 1467 /* 1468 * Permission faults just need to update the existing leaf entry, 1469 * and so normally don't require allocations from the memcache. The 1470 * only exception to this is when dirty logging is enabled at runtime 1471 * and a write fault needs to collapse a block entry into a table. 1472 */ 1473 if (!fault_is_perm || (logging_active && write_fault)) { 1474 ret = kvm_mmu_topup_memory_cache(memcache, 1475 kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu)); 1476 if (ret) 1477 return ret; 1478 } 1479 1480 /* 1481 * Let's check if we will get back a huge page backed by hugetlbfs, or 1482 * get block mapping for device MMIO region. 1483 */ 1484 mmap_read_lock(current->mm); 1485 vma = vma_lookup(current->mm, hva); 1486 if (unlikely(!vma)) { 1487 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1488 mmap_read_unlock(current->mm); 1489 return -EFAULT; 1490 } 1491 1492 /* 1493 * logging_active is guaranteed to never be true for VM_PFNMAP 1494 * memslots. 1495 */ 1496 if (logging_active) { 1497 force_pte = true; 1498 vma_shift = PAGE_SHIFT; 1499 } else { 1500 vma_shift = get_vma_page_shift(vma, hva); 1501 } 1502 1503 switch (vma_shift) { 1504 #ifndef __PAGETABLE_PMD_FOLDED 1505 case PUD_SHIFT: 1506 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 1507 break; 1508 fallthrough; 1509 #endif 1510 case CONT_PMD_SHIFT: 1511 vma_shift = PMD_SHIFT; 1512 fallthrough; 1513 case PMD_SHIFT: 1514 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 1515 break; 1516 fallthrough; 1517 case CONT_PTE_SHIFT: 1518 vma_shift = PAGE_SHIFT; 1519 force_pte = true; 1520 fallthrough; 1521 case PAGE_SHIFT: 1522 break; 1523 default: 1524 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 1525 } 1526 1527 vma_pagesize = 1UL << vma_shift; 1528 1529 if (nested) { 1530 unsigned long max_map_size; 1531 1532 max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE; 1533 1534 ipa = kvm_s2_trans_output(nested); 1535 1536 /* 1537 * If we're about to create a shadow stage 2 entry, then we 1538 * can only create a block mapping if the guest stage 2 page 1539 * table uses at least as big a mapping. 1540 */ 1541 max_map_size = min(kvm_s2_trans_size(nested), max_map_size); 1542 1543 /* 1544 * Be careful that if the mapping size falls between 1545 * two host sizes, take the smallest of the two. 1546 */ 1547 if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE) 1548 max_map_size = PMD_SIZE; 1549 else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE) 1550 max_map_size = PAGE_SIZE; 1551 1552 force_pte = (max_map_size == PAGE_SIZE); 1553 vma_pagesize = min(vma_pagesize, (long)max_map_size); 1554 } 1555 1556 /* 1557 * Both the canonical IPA and fault IPA must be hugepage-aligned to 1558 * ensure we find the right PFN and lay down the mapping in the right 1559 * place. 1560 */ 1561 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) { 1562 fault_ipa &= ~(vma_pagesize - 1); 1563 ipa &= ~(vma_pagesize - 1); 1564 } 1565 1566 gfn = ipa >> PAGE_SHIFT; 1567 mte_allowed = kvm_vma_mte_allowed(vma); 1568 1569 vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED; 1570 1571 /* Don't use the VMA after the unlock -- it may have vanished */ 1572 vma = NULL; 1573 1574 /* 1575 * Read mmu_invalidate_seq so that KVM can detect if the results of 1576 * vma_lookup() or __kvm_faultin_pfn() become stale prior to 1577 * acquiring kvm->mmu_lock. 1578 * 1579 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs 1580 * with the smp_wmb() in kvm_mmu_invalidate_end(). 1581 */ 1582 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 1583 mmap_read_unlock(current->mm); 1584 1585 pfn = __kvm_faultin_pfn(memslot, gfn, write_fault ? FOLL_WRITE : 0, 1586 &writable, &page); 1587 if (pfn == KVM_PFN_ERR_HWPOISON) { 1588 kvm_send_hwpoison_signal(hva, vma_shift); 1589 return 0; 1590 } 1591 if (is_error_noslot_pfn(pfn)) 1592 return -EFAULT; 1593 1594 if (kvm_is_device_pfn(pfn)) { 1595 /* 1596 * If the page was identified as device early by looking at 1597 * the VMA flags, vma_pagesize is already representing the 1598 * largest quantity we can map. If instead it was mapped 1599 * via __kvm_faultin_pfn(), vma_pagesize is set to PAGE_SIZE 1600 * and must not be upgraded. 1601 * 1602 * In both cases, we don't let transparent_hugepage_adjust() 1603 * change things at the last minute. 1604 */ 1605 device = true; 1606 } else if (logging_active && !write_fault) { 1607 /* 1608 * Only actually map the page as writable if this was a write 1609 * fault. 1610 */ 1611 writable = false; 1612 } 1613 1614 if (exec_fault && device) 1615 return -ENOEXEC; 1616 1617 /* 1618 * Potentially reduce shadow S2 permissions to match the guest's own 1619 * S2. For exec faults, we'd only reach this point if the guest 1620 * actually allowed it (see kvm_s2_handle_perm_fault). 1621 * 1622 * Also encode the level of the original translation in the SW bits 1623 * of the leaf entry as a proxy for the span of that translation. 1624 * This will be retrieved on TLB invalidation from the guest and 1625 * used to limit the invalidation scope if a TTL hint or a range 1626 * isn't provided. 1627 */ 1628 if (nested) { 1629 writable &= kvm_s2_trans_writable(nested); 1630 if (!kvm_s2_trans_readable(nested)) 1631 prot &= ~KVM_PGTABLE_PROT_R; 1632 1633 prot |= kvm_encode_nested_level(nested); 1634 } 1635 1636 read_lock(&kvm->mmu_lock); 1637 pgt = vcpu->arch.hw_mmu->pgt; 1638 if (mmu_invalidate_retry(kvm, mmu_seq)) { 1639 ret = -EAGAIN; 1640 goto out_unlock; 1641 } 1642 1643 /* 1644 * If we are not forced to use page mapping, check if we are 1645 * backed by a THP and thus use block mapping if possible. 1646 */ 1647 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { 1648 if (fault_is_perm && fault_granule > PAGE_SIZE) 1649 vma_pagesize = fault_granule; 1650 else 1651 vma_pagesize = transparent_hugepage_adjust(kvm, memslot, 1652 hva, &pfn, 1653 &fault_ipa); 1654 1655 if (vma_pagesize < 0) { 1656 ret = vma_pagesize; 1657 goto out_unlock; 1658 } 1659 } 1660 1661 if (!fault_is_perm && !device && kvm_has_mte(kvm)) { 1662 /* Check the VMM hasn't introduced a new disallowed VMA */ 1663 if (mte_allowed) { 1664 sanitise_mte_tags(kvm, pfn, vma_pagesize); 1665 } else { 1666 ret = -EFAULT; 1667 goto out_unlock; 1668 } 1669 } 1670 1671 if (writable) 1672 prot |= KVM_PGTABLE_PROT_W; 1673 1674 if (exec_fault) 1675 prot |= KVM_PGTABLE_PROT_X; 1676 1677 if (device) { 1678 if (vfio_allow_any_uc) 1679 prot |= KVM_PGTABLE_PROT_NORMAL_NC; 1680 else 1681 prot |= KVM_PGTABLE_PROT_DEVICE; 1682 } else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC) && 1683 (!nested || kvm_s2_trans_executable(nested))) { 1684 prot |= KVM_PGTABLE_PROT_X; 1685 } 1686 1687 /* 1688 * Under the premise of getting a FSC_PERM fault, we just need to relax 1689 * permissions only if vma_pagesize equals fault_granule. Otherwise, 1690 * kvm_pgtable_stage2_map() should be called to change block size. 1691 */ 1692 if (fault_is_perm && vma_pagesize == fault_granule) { 1693 /* 1694 * Drop the SW bits in favour of those stored in the 1695 * PTE, which will be preserved. 1696 */ 1697 prot &= ~KVM_NV_GUEST_MAP_SZ; 1698 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 1699 } else { 1700 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 1701 __pfn_to_phys(pfn), prot, 1702 memcache, 1703 KVM_PGTABLE_WALK_HANDLE_FAULT | 1704 KVM_PGTABLE_WALK_SHARED); 1705 } 1706 1707 out_unlock: 1708 kvm_release_faultin_page(kvm, page, !!ret, writable); 1709 read_unlock(&kvm->mmu_lock); 1710 1711 /* Mark the page dirty only if the fault is handled successfully */ 1712 if (writable && !ret) 1713 mark_page_dirty_in_slot(kvm, memslot, gfn); 1714 1715 return ret != -EAGAIN ? ret : 0; 1716 } 1717 1718 /* Resolve the access fault by making the page young again. */ 1719 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1720 { 1721 struct kvm_s2_mmu *mmu; 1722 1723 trace_kvm_access_fault(fault_ipa); 1724 1725 read_lock(&vcpu->kvm->mmu_lock); 1726 mmu = vcpu->arch.hw_mmu; 1727 kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1728 read_unlock(&vcpu->kvm->mmu_lock); 1729 } 1730 1731 /** 1732 * kvm_handle_guest_abort - handles all 2nd stage aborts 1733 * @vcpu: the VCPU pointer 1734 * 1735 * Any abort that gets to the host is almost guaranteed to be caused by a 1736 * missing second stage translation table entry, which can mean that either the 1737 * guest simply needs more memory and we must allocate an appropriate page or it 1738 * can mean that the guest tried to access I/O memory, which is emulated by user 1739 * space. The distinction is based on the IPA causing the fault and whether this 1740 * memory region has been registered as standard RAM by user space. 1741 */ 1742 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1743 { 1744 struct kvm_s2_trans nested_trans, *nested = NULL; 1745 unsigned long esr; 1746 phys_addr_t fault_ipa; /* The address we faulted on */ 1747 phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */ 1748 struct kvm_memory_slot *memslot; 1749 unsigned long hva; 1750 bool is_iabt, write_fault, writable; 1751 gfn_t gfn; 1752 int ret, idx; 1753 1754 esr = kvm_vcpu_get_esr(vcpu); 1755 1756 ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1757 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1758 1759 if (esr_fsc_is_translation_fault(esr)) { 1760 /* Beyond sanitised PARange (which is the IPA limit) */ 1761 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) { 1762 kvm_inject_size_fault(vcpu); 1763 return 1; 1764 } 1765 1766 /* Falls between the IPA range and the PARange? */ 1767 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) { 1768 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); 1769 1770 if (is_iabt) 1771 kvm_inject_pabt(vcpu, fault_ipa); 1772 else 1773 kvm_inject_dabt(vcpu, fault_ipa); 1774 return 1; 1775 } 1776 } 1777 1778 /* Synchronous External Abort? */ 1779 if (kvm_vcpu_abt_issea(vcpu)) { 1780 /* 1781 * For RAS the host kernel may handle this abort. 1782 * There is no need to pass the error into the guest. 1783 */ 1784 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1785 kvm_inject_vabt(vcpu); 1786 1787 return 1; 1788 } 1789 1790 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1791 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1792 1793 /* Check the stage-2 fault is trans. fault or write fault */ 1794 if (!esr_fsc_is_translation_fault(esr) && 1795 !esr_fsc_is_permission_fault(esr) && 1796 !esr_fsc_is_access_flag_fault(esr)) { 1797 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1798 kvm_vcpu_trap_get_class(vcpu), 1799 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1800 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1801 return -EFAULT; 1802 } 1803 1804 idx = srcu_read_lock(&vcpu->kvm->srcu); 1805 1806 /* 1807 * We may have faulted on a shadow stage 2 page table if we are 1808 * running a nested guest. In this case, we have to resolve the L2 1809 * IPA to the L1 IPA first, before knowing what kind of memory should 1810 * back the L1 IPA. 1811 * 1812 * If the shadow stage 2 page table walk faults, then we simply inject 1813 * this to the guest and carry on. 1814 * 1815 * If there are no shadow S2 PTs because S2 is disabled, there is 1816 * nothing to walk and we treat it as a 1:1 before going through the 1817 * canonical translation. 1818 */ 1819 if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) && 1820 vcpu->arch.hw_mmu->nested_stage2_enabled) { 1821 u32 esr; 1822 1823 ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans); 1824 if (ret) { 1825 esr = kvm_s2_trans_esr(&nested_trans); 1826 kvm_inject_s2_fault(vcpu, esr); 1827 goto out_unlock; 1828 } 1829 1830 ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans); 1831 if (ret) { 1832 esr = kvm_s2_trans_esr(&nested_trans); 1833 kvm_inject_s2_fault(vcpu, esr); 1834 goto out_unlock; 1835 } 1836 1837 ipa = kvm_s2_trans_output(&nested_trans); 1838 nested = &nested_trans; 1839 } 1840 1841 gfn = ipa >> PAGE_SHIFT; 1842 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1843 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1844 write_fault = kvm_is_write_fault(vcpu); 1845 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1846 /* 1847 * The guest has put either its instructions or its page-tables 1848 * somewhere it shouldn't have. Userspace won't be able to do 1849 * anything about this (there's no syndrome for a start), so 1850 * re-inject the abort back into the guest. 1851 */ 1852 if (is_iabt) { 1853 ret = -ENOEXEC; 1854 goto out; 1855 } 1856 1857 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1858 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1859 ret = 1; 1860 goto out_unlock; 1861 } 1862 1863 /* 1864 * Check for a cache maintenance operation. Since we 1865 * ended-up here, we know it is outside of any memory 1866 * slot. But we can't find out if that is for a device, 1867 * or if the guest is just being stupid. The only thing 1868 * we know for sure is that this range cannot be cached. 1869 * 1870 * So let's assume that the guest is just being 1871 * cautious, and skip the instruction. 1872 */ 1873 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1874 kvm_incr_pc(vcpu); 1875 ret = 1; 1876 goto out_unlock; 1877 } 1878 1879 /* 1880 * The IPA is reported as [MAX:12], so we need to 1881 * complement it with the bottom 12 bits from the 1882 * faulting VA. This is always 12 bits, irrespective 1883 * of the page size. 1884 */ 1885 ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); 1886 ret = io_mem_abort(vcpu, ipa); 1887 goto out_unlock; 1888 } 1889 1890 /* Userspace should not be able to register out-of-bounds IPAs */ 1891 VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu)); 1892 1893 if (esr_fsc_is_access_flag_fault(esr)) { 1894 handle_access_fault(vcpu, fault_ipa); 1895 ret = 1; 1896 goto out_unlock; 1897 } 1898 1899 ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva, 1900 esr_fsc_is_permission_fault(esr)); 1901 if (ret == 0) 1902 ret = 1; 1903 out: 1904 if (ret == -ENOEXEC) { 1905 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1906 ret = 1; 1907 } 1908 out_unlock: 1909 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1910 return ret; 1911 } 1912 1913 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1914 { 1915 if (!kvm->arch.mmu.pgt) 1916 return false; 1917 1918 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1919 (range->end - range->start) << PAGE_SHIFT, 1920 range->may_block); 1921 1922 kvm_nested_s2_unmap(kvm, range->may_block); 1923 return false; 1924 } 1925 1926 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1927 { 1928 u64 size = (range->end - range->start) << PAGE_SHIFT; 1929 1930 if (!kvm->arch.mmu.pgt) 1931 return false; 1932 1933 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt, 1934 range->start << PAGE_SHIFT, 1935 size, true); 1936 /* 1937 * TODO: Handle nested_mmu structures here using the reverse mapping in 1938 * a later version of patch series. 1939 */ 1940 } 1941 1942 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1943 { 1944 u64 size = (range->end - range->start) << PAGE_SHIFT; 1945 1946 if (!kvm->arch.mmu.pgt) 1947 return false; 1948 1949 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt, 1950 range->start << PAGE_SHIFT, 1951 size, false); 1952 } 1953 1954 phys_addr_t kvm_mmu_get_httbr(void) 1955 { 1956 return __pa(hyp_pgtable->pgd); 1957 } 1958 1959 phys_addr_t kvm_get_idmap_vector(void) 1960 { 1961 return hyp_idmap_vector; 1962 } 1963 1964 static int kvm_map_idmap_text(void) 1965 { 1966 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1967 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1968 PAGE_HYP_EXEC); 1969 if (err) 1970 kvm_err("Failed to idmap %lx-%lx\n", 1971 hyp_idmap_start, hyp_idmap_end); 1972 1973 return err; 1974 } 1975 1976 static void *kvm_hyp_zalloc_page(void *arg) 1977 { 1978 return (void *)get_zeroed_page(GFP_KERNEL); 1979 } 1980 1981 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1982 .zalloc_page = kvm_hyp_zalloc_page, 1983 .get_page = kvm_host_get_page, 1984 .put_page = kvm_host_put_page, 1985 .phys_to_virt = kvm_host_va, 1986 .virt_to_phys = kvm_host_pa, 1987 }; 1988 1989 int __init kvm_mmu_init(u32 *hyp_va_bits) 1990 { 1991 int err; 1992 u32 idmap_bits; 1993 u32 kernel_bits; 1994 1995 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1996 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1997 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1998 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1999 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 2000 2001 /* 2002 * We rely on the linker script to ensure at build time that the HYP 2003 * init code does not cross a page boundary. 2004 */ 2005 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 2006 2007 /* 2008 * The ID map is always configured for 48 bits of translation, which 2009 * may be fewer than the number of VA bits used by the regular kernel 2010 * stage 1, when VA_BITS=52. 2011 * 2012 * At EL2, there is only one TTBR register, and we can't switch between 2013 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom 2014 * line: we need to use the extended range with *both* our translation 2015 * tables. 2016 * 2017 * So use the maximum of the idmap VA bits and the regular kernel stage 2018 * 1 VA bits to assure that the hypervisor can both ID map its code page 2019 * and map any kernel memory. 2020 */ 2021 idmap_bits = IDMAP_VA_BITS; 2022 kernel_bits = vabits_actual; 2023 *hyp_va_bits = max(idmap_bits, kernel_bits); 2024 2025 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 2026 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 2027 kvm_debug("HYP VA range: %lx:%lx\n", 2028 kern_hyp_va(PAGE_OFFSET), 2029 kern_hyp_va((unsigned long)high_memory - 1)); 2030 2031 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 2032 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 2033 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 2034 /* 2035 * The idmap page is intersecting with the VA space, 2036 * it is not safe to continue further. 2037 */ 2038 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 2039 err = -EINVAL; 2040 goto out; 2041 } 2042 2043 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 2044 if (!hyp_pgtable) { 2045 kvm_err("Hyp mode page-table not allocated\n"); 2046 err = -ENOMEM; 2047 goto out; 2048 } 2049 2050 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 2051 if (err) 2052 goto out_free_pgtable; 2053 2054 err = kvm_map_idmap_text(); 2055 if (err) 2056 goto out_destroy_pgtable; 2057 2058 io_map_base = hyp_idmap_start; 2059 return 0; 2060 2061 out_destroy_pgtable: 2062 kvm_pgtable_hyp_destroy(hyp_pgtable); 2063 out_free_pgtable: 2064 kfree(hyp_pgtable); 2065 hyp_pgtable = NULL; 2066 out: 2067 return err; 2068 } 2069 2070 void kvm_arch_commit_memory_region(struct kvm *kvm, 2071 struct kvm_memory_slot *old, 2072 const struct kvm_memory_slot *new, 2073 enum kvm_mr_change change) 2074 { 2075 bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES; 2076 2077 /* 2078 * At this point memslot has been committed and there is an 2079 * allocated dirty_bitmap[], dirty pages will be tracked while the 2080 * memory slot is write protected. 2081 */ 2082 if (log_dirty_pages) { 2083 2084 if (change == KVM_MR_DELETE) 2085 return; 2086 2087 /* 2088 * Huge and normal pages are write-protected and split 2089 * on either of these two cases: 2090 * 2091 * 1. with initial-all-set: gradually with CLEAR ioctls, 2092 */ 2093 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 2094 return; 2095 /* 2096 * or 2097 * 2. without initial-all-set: all in one shot when 2098 * enabling dirty logging. 2099 */ 2100 kvm_mmu_wp_memory_region(kvm, new->id); 2101 kvm_mmu_split_memory_region(kvm, new->id); 2102 } else { 2103 /* 2104 * Free any leftovers from the eager page splitting cache. Do 2105 * this when deleting, moving, disabling dirty logging, or 2106 * creating the memslot (a nop). Doing it for deletes makes 2107 * sure we don't leak memory, and there's no need to keep the 2108 * cache around for any of the other cases. 2109 */ 2110 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); 2111 } 2112 } 2113 2114 int kvm_arch_prepare_memory_region(struct kvm *kvm, 2115 const struct kvm_memory_slot *old, 2116 struct kvm_memory_slot *new, 2117 enum kvm_mr_change change) 2118 { 2119 hva_t hva, reg_end; 2120 int ret = 0; 2121 2122 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 2123 change != KVM_MR_FLAGS_ONLY) 2124 return 0; 2125 2126 /* 2127 * Prevent userspace from creating a memory region outside of the IPA 2128 * space addressable by the KVM guest IPA space. 2129 */ 2130 if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT)) 2131 return -EFAULT; 2132 2133 hva = new->userspace_addr; 2134 reg_end = hva + (new->npages << PAGE_SHIFT); 2135 2136 mmap_read_lock(current->mm); 2137 /* 2138 * A memory region could potentially cover multiple VMAs, and any holes 2139 * between them, so iterate over all of them. 2140 * 2141 * +--------------------------------------------+ 2142 * +---------------+----------------+ +----------------+ 2143 * | : VMA 1 | VMA 2 | | VMA 3 : | 2144 * +---------------+----------------+ +----------------+ 2145 * | memory region | 2146 * +--------------------------------------------+ 2147 */ 2148 do { 2149 struct vm_area_struct *vma; 2150 2151 vma = find_vma_intersection(current->mm, hva, reg_end); 2152 if (!vma) 2153 break; 2154 2155 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) { 2156 ret = -EINVAL; 2157 break; 2158 } 2159 2160 if (vma->vm_flags & VM_PFNMAP) { 2161 /* IO region dirty page logging not allowed */ 2162 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 2163 ret = -EINVAL; 2164 break; 2165 } 2166 } 2167 hva = min(reg_end, vma->vm_end); 2168 } while (hva < reg_end); 2169 2170 mmap_read_unlock(current->mm); 2171 return ret; 2172 } 2173 2174 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 2175 { 2176 } 2177 2178 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 2179 { 2180 } 2181 2182 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 2183 struct kvm_memory_slot *slot) 2184 { 2185 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 2186 phys_addr_t size = slot->npages << PAGE_SHIFT; 2187 2188 write_lock(&kvm->mmu_lock); 2189 kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size, true); 2190 kvm_nested_s2_unmap(kvm, true); 2191 write_unlock(&kvm->mmu_lock); 2192 } 2193 2194 /* 2195 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 2196 * 2197 * Main problems: 2198 * - S/W ops are local to a CPU (not broadcast) 2199 * - We have line migration behind our back (speculation) 2200 * - System caches don't support S/W at all (damn!) 2201 * 2202 * In the face of the above, the best we can do is to try and convert 2203 * S/W ops to VA ops. Because the guest is not allowed to infer the 2204 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 2205 * which is a rather good thing for us. 2206 * 2207 * Also, it is only used when turning caches on/off ("The expected 2208 * usage of the cache maintenance instructions that operate by set/way 2209 * is associated with the cache maintenance instructions associated 2210 * with the powerdown and powerup of caches, if this is required by 2211 * the implementation."). 2212 * 2213 * We use the following policy: 2214 * 2215 * - If we trap a S/W operation, we enable VM trapping to detect 2216 * caches being turned on/off, and do a full clean. 2217 * 2218 * - We flush the caches on both caches being turned on and off. 2219 * 2220 * - Once the caches are enabled, we stop trapping VM ops. 2221 */ 2222 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 2223 { 2224 unsigned long hcr = *vcpu_hcr(vcpu); 2225 2226 /* 2227 * If this is the first time we do a S/W operation 2228 * (i.e. HCR_TVM not set) flush the whole memory, and set the 2229 * VM trapping. 2230 * 2231 * Otherwise, rely on the VM trapping to wait for the MMU + 2232 * Caches to be turned off. At that point, we'll be able to 2233 * clean the caches again. 2234 */ 2235 if (!(hcr & HCR_TVM)) { 2236 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 2237 vcpu_has_cache_enabled(vcpu)); 2238 stage2_flush_vm(vcpu->kvm); 2239 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 2240 } 2241 } 2242 2243 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 2244 { 2245 bool now_enabled = vcpu_has_cache_enabled(vcpu); 2246 2247 /* 2248 * If switching the MMU+caches on, need to invalidate the caches. 2249 * If switching it off, need to clean the caches. 2250 * Clean + invalidate does the trick always. 2251 */ 2252 if (now_enabled != was_enabled) 2253 stage2_flush_vm(vcpu->kvm); 2254 2255 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 2256 if (now_enabled) 2257 *vcpu_hcr(vcpu) &= ~HCR_TVM; 2258 2259 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 2260 } 2261