xref: /linux/arch/arm64/kvm/mmu.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27 
28 static unsigned long __ro_after_init hyp_idmap_start;
29 static unsigned long __ro_after_init hyp_idmap_end;
30 static phys_addr_t __ro_after_init hyp_idmap_vector;
31 
32 static unsigned long __ro_after_init io_map_base;
33 
34 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
35 					   phys_addr_t size)
36 {
37 	phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38 
39 	return (boundary - 1 < end - 1) ? boundary : end;
40 }
41 
42 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
43 {
44 	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
45 
46 	return __stage2_range_addr_end(addr, end, size);
47 }
48 
49 /*
50  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
51  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
52  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
53  * long will also starve other vCPUs. We have to also make sure that the page
54  * tables are not freed while we released the lock.
55  */
56 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
57 			      phys_addr_t end,
58 			      int (*fn)(struct kvm_pgtable *, u64, u64),
59 			      bool resched)
60 {
61 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
62 	int ret;
63 	u64 next;
64 
65 	do {
66 		struct kvm_pgtable *pgt = mmu->pgt;
67 		if (!pgt)
68 			return -EINVAL;
69 
70 		next = stage2_range_addr_end(addr, end);
71 		ret = fn(pgt, addr, next - addr);
72 		if (ret)
73 			break;
74 
75 		if (resched && next != end)
76 			cond_resched_rwlock_write(&kvm->mmu_lock);
77 	} while (addr = next, addr != end);
78 
79 	return ret;
80 }
81 
82 #define stage2_apply_range_resched(mmu, addr, end, fn)			\
83 	stage2_apply_range(mmu, addr, end, fn, true)
84 
85 /*
86  * Get the maximum number of page-tables pages needed to split a range
87  * of blocks into PAGE_SIZE PTEs. It assumes the range is already
88  * mapped at level 2, or at level 1 if allowed.
89  */
90 static int kvm_mmu_split_nr_page_tables(u64 range)
91 {
92 	int n = 0;
93 
94 	if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
95 		n += DIV_ROUND_UP(range, PUD_SIZE);
96 	n += DIV_ROUND_UP(range, PMD_SIZE);
97 	return n;
98 }
99 
100 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
101 {
102 	struct kvm_mmu_memory_cache *cache;
103 	u64 chunk_size, min;
104 
105 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
106 		return true;
107 
108 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
109 	min = kvm_mmu_split_nr_page_tables(chunk_size);
110 	cache = &kvm->arch.mmu.split_page_cache;
111 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
112 }
113 
114 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
115 				    phys_addr_t end)
116 {
117 	struct kvm_mmu_memory_cache *cache;
118 	struct kvm_pgtable *pgt;
119 	int ret, cache_capacity;
120 	u64 next, chunk_size;
121 
122 	lockdep_assert_held_write(&kvm->mmu_lock);
123 
124 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
125 	cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
126 
127 	if (chunk_size == 0)
128 		return 0;
129 
130 	cache = &kvm->arch.mmu.split_page_cache;
131 
132 	do {
133 		if (need_split_memcache_topup_or_resched(kvm)) {
134 			write_unlock(&kvm->mmu_lock);
135 			cond_resched();
136 			/* Eager page splitting is best-effort. */
137 			ret = __kvm_mmu_topup_memory_cache(cache,
138 							   cache_capacity,
139 							   cache_capacity);
140 			write_lock(&kvm->mmu_lock);
141 			if (ret)
142 				break;
143 		}
144 
145 		pgt = kvm->arch.mmu.pgt;
146 		if (!pgt)
147 			return -EINVAL;
148 
149 		next = __stage2_range_addr_end(addr, end, chunk_size);
150 		ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
151 		if (ret)
152 			break;
153 	} while (addr = next, addr != end);
154 
155 	return ret;
156 }
157 
158 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
159 {
160 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
161 }
162 
163 /**
164  * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
165  * @kvm:	pointer to kvm structure.
166  *
167  * Interface to HYP function to flush all VM TLB entries
168  */
169 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
170 {
171 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
172 	return 0;
173 }
174 
175 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
176 				      gfn_t gfn, u64 nr_pages)
177 {
178 	kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
179 				gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
180 	return 0;
181 }
182 
183 static bool kvm_is_device_pfn(unsigned long pfn)
184 {
185 	return !pfn_is_map_memory(pfn);
186 }
187 
188 static void *stage2_memcache_zalloc_page(void *arg)
189 {
190 	struct kvm_mmu_memory_cache *mc = arg;
191 	void *virt;
192 
193 	/* Allocated with __GFP_ZERO, so no need to zero */
194 	virt = kvm_mmu_memory_cache_alloc(mc);
195 	if (virt)
196 		kvm_account_pgtable_pages(virt, 1);
197 	return virt;
198 }
199 
200 static void *kvm_host_zalloc_pages_exact(size_t size)
201 {
202 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
203 }
204 
205 static void *kvm_s2_zalloc_pages_exact(size_t size)
206 {
207 	void *virt = kvm_host_zalloc_pages_exact(size);
208 
209 	if (virt)
210 		kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
211 	return virt;
212 }
213 
214 static void kvm_s2_free_pages_exact(void *virt, size_t size)
215 {
216 	kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
217 	free_pages_exact(virt, size);
218 }
219 
220 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
221 
222 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
223 {
224 	struct page *page = container_of(head, struct page, rcu_head);
225 	void *pgtable = page_to_virt(page);
226 	s8 level = page_private(page);
227 
228 	kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
229 }
230 
231 static void stage2_free_unlinked_table(void *addr, s8 level)
232 {
233 	struct page *page = virt_to_page(addr);
234 
235 	set_page_private(page, (unsigned long)level);
236 	call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
237 }
238 
239 static void kvm_host_get_page(void *addr)
240 {
241 	get_page(virt_to_page(addr));
242 }
243 
244 static void kvm_host_put_page(void *addr)
245 {
246 	put_page(virt_to_page(addr));
247 }
248 
249 static void kvm_s2_put_page(void *addr)
250 {
251 	struct page *p = virt_to_page(addr);
252 	/* Dropping last refcount, the page will be freed */
253 	if (page_count(p) == 1)
254 		kvm_account_pgtable_pages(addr, -1);
255 	put_page(p);
256 }
257 
258 static int kvm_host_page_count(void *addr)
259 {
260 	return page_count(virt_to_page(addr));
261 }
262 
263 static phys_addr_t kvm_host_pa(void *addr)
264 {
265 	return __pa(addr);
266 }
267 
268 static void *kvm_host_va(phys_addr_t phys)
269 {
270 	return __va(phys);
271 }
272 
273 static void clean_dcache_guest_page(void *va, size_t size)
274 {
275 	__clean_dcache_guest_page(va, size);
276 }
277 
278 static void invalidate_icache_guest_page(void *va, size_t size)
279 {
280 	__invalidate_icache_guest_page(va, size);
281 }
282 
283 /*
284  * Unmapping vs dcache management:
285  *
286  * If a guest maps certain memory pages as uncached, all writes will
287  * bypass the data cache and go directly to RAM.  However, the CPUs
288  * can still speculate reads (not writes) and fill cache lines with
289  * data.
290  *
291  * Those cache lines will be *clean* cache lines though, so a
292  * clean+invalidate operation is equivalent to an invalidate
293  * operation, because no cache lines are marked dirty.
294  *
295  * Those clean cache lines could be filled prior to an uncached write
296  * by the guest, and the cache coherent IO subsystem would therefore
297  * end up writing old data to disk.
298  *
299  * This is why right after unmapping a page/section and invalidating
300  * the corresponding TLBs, we flush to make sure the IO subsystem will
301  * never hit in the cache.
302  *
303  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
304  * we then fully enforce cacheability of RAM, no matter what the guest
305  * does.
306  */
307 /**
308  * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range
309  * @mmu:   The KVM stage-2 MMU pointer
310  * @start: The intermediate physical base address of the range to unmap
311  * @size:  The size of the area to unmap
312  * @may_block: Whether or not we are permitted to block
313  *
314  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
315  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
316  * destroying the VM), otherwise another faulting VCPU may come in and mess
317  * with things behind our backs.
318  */
319 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
320 				 bool may_block)
321 {
322 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
323 	phys_addr_t end = start + size;
324 
325 	lockdep_assert_held_write(&kvm->mmu_lock);
326 	WARN_ON(size & ~PAGE_MASK);
327 	WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
328 				   may_block));
329 }
330 
331 void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
332 {
333 	__unmap_stage2_range(mmu, start, size, true);
334 }
335 
336 void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
337 {
338 	stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_flush);
339 }
340 
341 static void stage2_flush_memslot(struct kvm *kvm,
342 				 struct kvm_memory_slot *memslot)
343 {
344 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
345 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
346 
347 	kvm_stage2_flush_range(&kvm->arch.mmu, addr, end);
348 }
349 
350 /**
351  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
352  * @kvm: The struct kvm pointer
353  *
354  * Go through the stage 2 page tables and invalidate any cache lines
355  * backing memory already mapped to the VM.
356  */
357 static void stage2_flush_vm(struct kvm *kvm)
358 {
359 	struct kvm_memslots *slots;
360 	struct kvm_memory_slot *memslot;
361 	int idx, bkt;
362 
363 	idx = srcu_read_lock(&kvm->srcu);
364 	write_lock(&kvm->mmu_lock);
365 
366 	slots = kvm_memslots(kvm);
367 	kvm_for_each_memslot(memslot, bkt, slots)
368 		stage2_flush_memslot(kvm, memslot);
369 
370 	kvm_nested_s2_flush(kvm);
371 
372 	write_unlock(&kvm->mmu_lock);
373 	srcu_read_unlock(&kvm->srcu, idx);
374 }
375 
376 /**
377  * free_hyp_pgds - free Hyp-mode page tables
378  */
379 void __init free_hyp_pgds(void)
380 {
381 	mutex_lock(&kvm_hyp_pgd_mutex);
382 	if (hyp_pgtable) {
383 		kvm_pgtable_hyp_destroy(hyp_pgtable);
384 		kfree(hyp_pgtable);
385 		hyp_pgtable = NULL;
386 	}
387 	mutex_unlock(&kvm_hyp_pgd_mutex);
388 }
389 
390 static bool kvm_host_owns_hyp_mappings(void)
391 {
392 	if (is_kernel_in_hyp_mode())
393 		return false;
394 
395 	if (static_branch_likely(&kvm_protected_mode_initialized))
396 		return false;
397 
398 	/*
399 	 * This can happen at boot time when __create_hyp_mappings() is called
400 	 * after the hyp protection has been enabled, but the static key has
401 	 * not been flipped yet.
402 	 */
403 	if (!hyp_pgtable && is_protected_kvm_enabled())
404 		return false;
405 
406 	WARN_ON(!hyp_pgtable);
407 
408 	return true;
409 }
410 
411 int __create_hyp_mappings(unsigned long start, unsigned long size,
412 			  unsigned long phys, enum kvm_pgtable_prot prot)
413 {
414 	int err;
415 
416 	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
417 		return -EINVAL;
418 
419 	mutex_lock(&kvm_hyp_pgd_mutex);
420 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
421 	mutex_unlock(&kvm_hyp_pgd_mutex);
422 
423 	return err;
424 }
425 
426 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
427 {
428 	if (!is_vmalloc_addr(kaddr)) {
429 		BUG_ON(!virt_addr_valid(kaddr));
430 		return __pa(kaddr);
431 	} else {
432 		return page_to_phys(vmalloc_to_page(kaddr)) +
433 		       offset_in_page(kaddr);
434 	}
435 }
436 
437 struct hyp_shared_pfn {
438 	u64 pfn;
439 	int count;
440 	struct rb_node node;
441 };
442 
443 static DEFINE_MUTEX(hyp_shared_pfns_lock);
444 static struct rb_root hyp_shared_pfns = RB_ROOT;
445 
446 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
447 					      struct rb_node **parent)
448 {
449 	struct hyp_shared_pfn *this;
450 
451 	*node = &hyp_shared_pfns.rb_node;
452 	*parent = NULL;
453 	while (**node) {
454 		this = container_of(**node, struct hyp_shared_pfn, node);
455 		*parent = **node;
456 		if (this->pfn < pfn)
457 			*node = &((**node)->rb_left);
458 		else if (this->pfn > pfn)
459 			*node = &((**node)->rb_right);
460 		else
461 			return this;
462 	}
463 
464 	return NULL;
465 }
466 
467 static int share_pfn_hyp(u64 pfn)
468 {
469 	struct rb_node **node, *parent;
470 	struct hyp_shared_pfn *this;
471 	int ret = 0;
472 
473 	mutex_lock(&hyp_shared_pfns_lock);
474 	this = find_shared_pfn(pfn, &node, &parent);
475 	if (this) {
476 		this->count++;
477 		goto unlock;
478 	}
479 
480 	this = kzalloc(sizeof(*this), GFP_KERNEL);
481 	if (!this) {
482 		ret = -ENOMEM;
483 		goto unlock;
484 	}
485 
486 	this->pfn = pfn;
487 	this->count = 1;
488 	rb_link_node(&this->node, parent, node);
489 	rb_insert_color(&this->node, &hyp_shared_pfns);
490 	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
491 unlock:
492 	mutex_unlock(&hyp_shared_pfns_lock);
493 
494 	return ret;
495 }
496 
497 static int unshare_pfn_hyp(u64 pfn)
498 {
499 	struct rb_node **node, *parent;
500 	struct hyp_shared_pfn *this;
501 	int ret = 0;
502 
503 	mutex_lock(&hyp_shared_pfns_lock);
504 	this = find_shared_pfn(pfn, &node, &parent);
505 	if (WARN_ON(!this)) {
506 		ret = -ENOENT;
507 		goto unlock;
508 	}
509 
510 	this->count--;
511 	if (this->count)
512 		goto unlock;
513 
514 	rb_erase(&this->node, &hyp_shared_pfns);
515 	kfree(this);
516 	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
517 unlock:
518 	mutex_unlock(&hyp_shared_pfns_lock);
519 
520 	return ret;
521 }
522 
523 int kvm_share_hyp(void *from, void *to)
524 {
525 	phys_addr_t start, end, cur;
526 	u64 pfn;
527 	int ret;
528 
529 	if (is_kernel_in_hyp_mode())
530 		return 0;
531 
532 	/*
533 	 * The share hcall maps things in the 'fixed-offset' region of the hyp
534 	 * VA space, so we can only share physically contiguous data-structures
535 	 * for now.
536 	 */
537 	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
538 		return -EINVAL;
539 
540 	if (kvm_host_owns_hyp_mappings())
541 		return create_hyp_mappings(from, to, PAGE_HYP);
542 
543 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
544 	end = PAGE_ALIGN(__pa(to));
545 	for (cur = start; cur < end; cur += PAGE_SIZE) {
546 		pfn = __phys_to_pfn(cur);
547 		ret = share_pfn_hyp(pfn);
548 		if (ret)
549 			return ret;
550 	}
551 
552 	return 0;
553 }
554 
555 void kvm_unshare_hyp(void *from, void *to)
556 {
557 	phys_addr_t start, end, cur;
558 	u64 pfn;
559 
560 	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
561 		return;
562 
563 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
564 	end = PAGE_ALIGN(__pa(to));
565 	for (cur = start; cur < end; cur += PAGE_SIZE) {
566 		pfn = __phys_to_pfn(cur);
567 		WARN_ON(unshare_pfn_hyp(pfn));
568 	}
569 }
570 
571 /**
572  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
573  * @from:	The virtual kernel start address of the range
574  * @to:		The virtual kernel end address of the range (exclusive)
575  * @prot:	The protection to be applied to this range
576  *
577  * The same virtual address as the kernel virtual address is also used
578  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
579  * physical pages.
580  */
581 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
582 {
583 	phys_addr_t phys_addr;
584 	unsigned long virt_addr;
585 	unsigned long start = kern_hyp_va((unsigned long)from);
586 	unsigned long end = kern_hyp_va((unsigned long)to);
587 
588 	if (is_kernel_in_hyp_mode())
589 		return 0;
590 
591 	if (!kvm_host_owns_hyp_mappings())
592 		return -EPERM;
593 
594 	start = start & PAGE_MASK;
595 	end = PAGE_ALIGN(end);
596 
597 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
598 		int err;
599 
600 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
601 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
602 					    prot);
603 		if (err)
604 			return err;
605 	}
606 
607 	return 0;
608 }
609 
610 static int __hyp_alloc_private_va_range(unsigned long base)
611 {
612 	lockdep_assert_held(&kvm_hyp_pgd_mutex);
613 
614 	if (!PAGE_ALIGNED(base))
615 		return -EINVAL;
616 
617 	/*
618 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
619 	 * allocating the new area, as it would indicate we've
620 	 * overflowed the idmap/IO address range.
621 	 */
622 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
623 		return -ENOMEM;
624 
625 	io_map_base = base;
626 
627 	return 0;
628 }
629 
630 /**
631  * hyp_alloc_private_va_range - Allocates a private VA range.
632  * @size:	The size of the VA range to reserve.
633  * @haddr:	The hypervisor virtual start address of the allocation.
634  *
635  * The private virtual address (VA) range is allocated below io_map_base
636  * and aligned based on the order of @size.
637  *
638  * Return: 0 on success or negative error code on failure.
639  */
640 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
641 {
642 	unsigned long base;
643 	int ret = 0;
644 
645 	mutex_lock(&kvm_hyp_pgd_mutex);
646 
647 	/*
648 	 * This assumes that we have enough space below the idmap
649 	 * page to allocate our VAs. If not, the check in
650 	 * __hyp_alloc_private_va_range() will kick. A potential
651 	 * alternative would be to detect that overflow and switch
652 	 * to an allocation above the idmap.
653 	 *
654 	 * The allocated size is always a multiple of PAGE_SIZE.
655 	 */
656 	size = PAGE_ALIGN(size);
657 	base = io_map_base - size;
658 	ret = __hyp_alloc_private_va_range(base);
659 
660 	mutex_unlock(&kvm_hyp_pgd_mutex);
661 
662 	if (!ret)
663 		*haddr = base;
664 
665 	return ret;
666 }
667 
668 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
669 					unsigned long *haddr,
670 					enum kvm_pgtable_prot prot)
671 {
672 	unsigned long addr;
673 	int ret = 0;
674 
675 	if (!kvm_host_owns_hyp_mappings()) {
676 		addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
677 					 phys_addr, size, prot);
678 		if (IS_ERR_VALUE(addr))
679 			return addr;
680 		*haddr = addr;
681 
682 		return 0;
683 	}
684 
685 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
686 	ret = hyp_alloc_private_va_range(size, &addr);
687 	if (ret)
688 		return ret;
689 
690 	ret = __create_hyp_mappings(addr, size, phys_addr, prot);
691 	if (ret)
692 		return ret;
693 
694 	*haddr = addr + offset_in_page(phys_addr);
695 	return ret;
696 }
697 
698 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
699 {
700 	unsigned long base;
701 	size_t size;
702 	int ret;
703 
704 	mutex_lock(&kvm_hyp_pgd_mutex);
705 	/*
706 	 * Efficient stack verification using the PAGE_SHIFT bit implies
707 	 * an alignment of our allocation on the order of the size.
708 	 */
709 	size = PAGE_SIZE * 2;
710 	base = ALIGN_DOWN(io_map_base - size, size);
711 
712 	ret = __hyp_alloc_private_va_range(base);
713 
714 	mutex_unlock(&kvm_hyp_pgd_mutex);
715 
716 	if (ret) {
717 		kvm_err("Cannot allocate hyp stack guard page\n");
718 		return ret;
719 	}
720 
721 	/*
722 	 * Since the stack grows downwards, map the stack to the page
723 	 * at the higher address and leave the lower guard page
724 	 * unbacked.
725 	 *
726 	 * Any valid stack address now has the PAGE_SHIFT bit as 1
727 	 * and addresses corresponding to the guard page have the
728 	 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
729 	 */
730 	ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr,
731 				    PAGE_HYP);
732 	if (ret)
733 		kvm_err("Cannot map hyp stack\n");
734 
735 	*haddr = base + size;
736 
737 	return ret;
738 }
739 
740 /**
741  * create_hyp_io_mappings - Map IO into both kernel and HYP
742  * @phys_addr:	The physical start address which gets mapped
743  * @size:	Size of the region being mapped
744  * @kaddr:	Kernel VA for this mapping
745  * @haddr:	HYP VA for this mapping
746  */
747 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
748 			   void __iomem **kaddr,
749 			   void __iomem **haddr)
750 {
751 	unsigned long addr;
752 	int ret;
753 
754 	if (is_protected_kvm_enabled())
755 		return -EPERM;
756 
757 	*kaddr = ioremap(phys_addr, size);
758 	if (!*kaddr)
759 		return -ENOMEM;
760 
761 	if (is_kernel_in_hyp_mode()) {
762 		*haddr = *kaddr;
763 		return 0;
764 	}
765 
766 	ret = __create_hyp_private_mapping(phys_addr, size,
767 					   &addr, PAGE_HYP_DEVICE);
768 	if (ret) {
769 		iounmap(*kaddr);
770 		*kaddr = NULL;
771 		*haddr = NULL;
772 		return ret;
773 	}
774 
775 	*haddr = (void __iomem *)addr;
776 	return 0;
777 }
778 
779 /**
780  * create_hyp_exec_mappings - Map an executable range into HYP
781  * @phys_addr:	The physical start address which gets mapped
782  * @size:	Size of the region being mapped
783  * @haddr:	HYP VA for this mapping
784  */
785 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
786 			     void **haddr)
787 {
788 	unsigned long addr;
789 	int ret;
790 
791 	BUG_ON(is_kernel_in_hyp_mode());
792 
793 	ret = __create_hyp_private_mapping(phys_addr, size,
794 					   &addr, PAGE_HYP_EXEC);
795 	if (ret) {
796 		*haddr = NULL;
797 		return ret;
798 	}
799 
800 	*haddr = (void *)addr;
801 	return 0;
802 }
803 
804 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
805 	/* We shouldn't need any other callback to walk the PT */
806 	.phys_to_virt		= kvm_host_va,
807 };
808 
809 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
810 {
811 	struct kvm_pgtable pgt = {
812 		.pgd		= (kvm_pteref_t)kvm->mm->pgd,
813 		.ia_bits	= vabits_actual,
814 		.start_level	= (KVM_PGTABLE_LAST_LEVEL -
815 				   ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
816 		.mm_ops		= &kvm_user_mm_ops,
817 	};
818 	unsigned long flags;
819 	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
820 	s8 level = S8_MAX;
821 	int ret;
822 
823 	/*
824 	 * Disable IRQs so that we hazard against a concurrent
825 	 * teardown of the userspace page tables (which relies on
826 	 * IPI-ing threads).
827 	 */
828 	local_irq_save(flags);
829 	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
830 	local_irq_restore(flags);
831 
832 	if (ret)
833 		return ret;
834 
835 	/*
836 	 * Not seeing an error, but not updating level? Something went
837 	 * deeply wrong...
838 	 */
839 	if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
840 		return -EFAULT;
841 	if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
842 		return -EFAULT;
843 
844 	/* Oops, the userspace PTs are gone... Replay the fault */
845 	if (!kvm_pte_valid(pte))
846 		return -EAGAIN;
847 
848 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
849 }
850 
851 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
852 	.zalloc_page		= stage2_memcache_zalloc_page,
853 	.zalloc_pages_exact	= kvm_s2_zalloc_pages_exact,
854 	.free_pages_exact	= kvm_s2_free_pages_exact,
855 	.free_unlinked_table	= stage2_free_unlinked_table,
856 	.get_page		= kvm_host_get_page,
857 	.put_page		= kvm_s2_put_page,
858 	.page_count		= kvm_host_page_count,
859 	.phys_to_virt		= kvm_host_va,
860 	.virt_to_phys		= kvm_host_pa,
861 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
862 	.icache_inval_pou	= invalidate_icache_guest_page,
863 };
864 
865 static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
866 {
867 	u32 kvm_ipa_limit = get_kvm_ipa_limit();
868 	u64 mmfr0, mmfr1;
869 	u32 phys_shift;
870 
871 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
872 		return -EINVAL;
873 
874 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
875 	if (is_protected_kvm_enabled()) {
876 		phys_shift = kvm_ipa_limit;
877 	} else if (phys_shift) {
878 		if (phys_shift > kvm_ipa_limit ||
879 		    phys_shift < ARM64_MIN_PARANGE_BITS)
880 			return -EINVAL;
881 	} else {
882 		phys_shift = KVM_PHYS_SHIFT;
883 		if (phys_shift > kvm_ipa_limit) {
884 			pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
885 				     current->comm);
886 			return -EINVAL;
887 		}
888 	}
889 
890 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
891 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
892 	mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
893 
894 	return 0;
895 }
896 
897 /**
898  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
899  * @kvm:	The pointer to the KVM structure
900  * @mmu:	The pointer to the s2 MMU structure
901  * @type:	The machine type of the virtual machine
902  *
903  * Allocates only the stage-2 HW PGD level table(s).
904  * Note we don't need locking here as this is only called in two cases:
905  *
906  * - when the VM is created, which can't race against anything
907  *
908  * - when secondary kvm_s2_mmu structures are initialised for NV
909  *   guests, and the caller must hold kvm->lock as this is called on a
910  *   per-vcpu basis.
911  */
912 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
913 {
914 	int cpu, err;
915 	struct kvm_pgtable *pgt;
916 
917 	/*
918 	 * If we already have our page tables in place, and that the
919 	 * MMU context is the canonical one, we have a bug somewhere,
920 	 * as this is only supposed to ever happen once per VM.
921 	 *
922 	 * Otherwise, we're building nested page tables, and that's
923 	 * probably because userspace called KVM_ARM_VCPU_INIT more
924 	 * than once on the same vcpu. Since that's actually legal,
925 	 * don't kick a fuss and leave gracefully.
926 	 */
927 	if (mmu->pgt != NULL) {
928 		if (kvm_is_nested_s2_mmu(kvm, mmu))
929 			return 0;
930 
931 		kvm_err("kvm_arch already initialized?\n");
932 		return -EINVAL;
933 	}
934 
935 	err = kvm_init_ipa_range(mmu, type);
936 	if (err)
937 		return err;
938 
939 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
940 	if (!pgt)
941 		return -ENOMEM;
942 
943 	mmu->arch = &kvm->arch;
944 	err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
945 	if (err)
946 		goto out_free_pgtable;
947 
948 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
949 	if (!mmu->last_vcpu_ran) {
950 		err = -ENOMEM;
951 		goto out_destroy_pgtable;
952 	}
953 
954 	for_each_possible_cpu(cpu)
955 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
956 
957 	 /* The eager page splitting is disabled by default */
958 	mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
959 	mmu->split_page_cache.gfp_zero = __GFP_ZERO;
960 
961 	mmu->pgt = pgt;
962 	mmu->pgd_phys = __pa(pgt->pgd);
963 
964 	if (kvm_is_nested_s2_mmu(kvm, mmu))
965 		kvm_init_nested_s2_mmu(mmu);
966 
967 	return 0;
968 
969 out_destroy_pgtable:
970 	kvm_pgtable_stage2_destroy(pgt);
971 out_free_pgtable:
972 	kfree(pgt);
973 	return err;
974 }
975 
976 void kvm_uninit_stage2_mmu(struct kvm *kvm)
977 {
978 	kvm_free_stage2_pgd(&kvm->arch.mmu);
979 	kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
980 }
981 
982 static void stage2_unmap_memslot(struct kvm *kvm,
983 				 struct kvm_memory_slot *memslot)
984 {
985 	hva_t hva = memslot->userspace_addr;
986 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
987 	phys_addr_t size = PAGE_SIZE * memslot->npages;
988 	hva_t reg_end = hva + size;
989 
990 	/*
991 	 * A memory region could potentially cover multiple VMAs, and any holes
992 	 * between them, so iterate over all of them to find out if we should
993 	 * unmap any of them.
994 	 *
995 	 *     +--------------------------------------------+
996 	 * +---------------+----------------+   +----------------+
997 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
998 	 * +---------------+----------------+   +----------------+
999 	 *     |               memory region                |
1000 	 *     +--------------------------------------------+
1001 	 */
1002 	do {
1003 		struct vm_area_struct *vma;
1004 		hva_t vm_start, vm_end;
1005 
1006 		vma = find_vma_intersection(current->mm, hva, reg_end);
1007 		if (!vma)
1008 			break;
1009 
1010 		/*
1011 		 * Take the intersection of this VMA with the memory region
1012 		 */
1013 		vm_start = max(hva, vma->vm_start);
1014 		vm_end = min(reg_end, vma->vm_end);
1015 
1016 		if (!(vma->vm_flags & VM_PFNMAP)) {
1017 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1018 			kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
1019 		}
1020 		hva = vm_end;
1021 	} while (hva < reg_end);
1022 }
1023 
1024 /**
1025  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1026  * @kvm: The struct kvm pointer
1027  *
1028  * Go through the memregions and unmap any regular RAM
1029  * backing memory already mapped to the VM.
1030  */
1031 void stage2_unmap_vm(struct kvm *kvm)
1032 {
1033 	struct kvm_memslots *slots;
1034 	struct kvm_memory_slot *memslot;
1035 	int idx, bkt;
1036 
1037 	idx = srcu_read_lock(&kvm->srcu);
1038 	mmap_read_lock(current->mm);
1039 	write_lock(&kvm->mmu_lock);
1040 
1041 	slots = kvm_memslots(kvm);
1042 	kvm_for_each_memslot(memslot, bkt, slots)
1043 		stage2_unmap_memslot(kvm, memslot);
1044 
1045 	kvm_nested_s2_unmap(kvm);
1046 
1047 	write_unlock(&kvm->mmu_lock);
1048 	mmap_read_unlock(current->mm);
1049 	srcu_read_unlock(&kvm->srcu, idx);
1050 }
1051 
1052 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1053 {
1054 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1055 	struct kvm_pgtable *pgt = NULL;
1056 
1057 	write_lock(&kvm->mmu_lock);
1058 	pgt = mmu->pgt;
1059 	if (pgt) {
1060 		mmu->pgd_phys = 0;
1061 		mmu->pgt = NULL;
1062 		free_percpu(mmu->last_vcpu_ran);
1063 	}
1064 	write_unlock(&kvm->mmu_lock);
1065 
1066 	if (pgt) {
1067 		kvm_pgtable_stage2_destroy(pgt);
1068 		kfree(pgt);
1069 	}
1070 }
1071 
1072 static void hyp_mc_free_fn(void *addr, void *unused)
1073 {
1074 	free_page((unsigned long)addr);
1075 }
1076 
1077 static void *hyp_mc_alloc_fn(void *unused)
1078 {
1079 	return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1080 }
1081 
1082 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1083 {
1084 	if (is_protected_kvm_enabled())
1085 		__free_hyp_memcache(mc, hyp_mc_free_fn,
1086 				    kvm_host_va, NULL);
1087 }
1088 
1089 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1090 {
1091 	if (!is_protected_kvm_enabled())
1092 		return 0;
1093 
1094 	return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1095 				    kvm_host_pa, NULL);
1096 }
1097 
1098 /**
1099  * kvm_phys_addr_ioremap - map a device range to guest IPA
1100  *
1101  * @kvm:	The KVM pointer
1102  * @guest_ipa:	The IPA at which to insert the mapping
1103  * @pa:		The physical address of the device
1104  * @size:	The size of the mapping
1105  * @writable:   Whether or not to create a writable mapping
1106  */
1107 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1108 			  phys_addr_t pa, unsigned long size, bool writable)
1109 {
1110 	phys_addr_t addr;
1111 	int ret = 0;
1112 	struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1113 	struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1114 	struct kvm_pgtable *pgt = mmu->pgt;
1115 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1116 				     KVM_PGTABLE_PROT_R |
1117 				     (writable ? KVM_PGTABLE_PROT_W : 0);
1118 
1119 	if (is_protected_kvm_enabled())
1120 		return -EPERM;
1121 
1122 	size += offset_in_page(guest_ipa);
1123 	guest_ipa &= PAGE_MASK;
1124 
1125 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1126 		ret = kvm_mmu_topup_memory_cache(&cache,
1127 						 kvm_mmu_cache_min_pages(mmu));
1128 		if (ret)
1129 			break;
1130 
1131 		write_lock(&kvm->mmu_lock);
1132 		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
1133 					     &cache, 0);
1134 		write_unlock(&kvm->mmu_lock);
1135 		if (ret)
1136 			break;
1137 
1138 		pa += PAGE_SIZE;
1139 	}
1140 
1141 	kvm_mmu_free_memory_cache(&cache);
1142 	return ret;
1143 }
1144 
1145 /**
1146  * kvm_stage2_wp_range() - write protect stage2 memory region range
1147  * @mmu:        The KVM stage-2 MMU pointer
1148  * @addr:	Start address of range
1149  * @end:	End address of range
1150  */
1151 void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1152 {
1153 	stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
1154 }
1155 
1156 /**
1157  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1158  * @kvm:	The KVM pointer
1159  * @slot:	The memory slot to write protect
1160  *
1161  * Called to start logging dirty pages after memory region
1162  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1163  * all present PUD, PMD and PTEs are write protected in the memory region.
1164  * Afterwards read of dirty page log can be called.
1165  *
1166  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1167  * serializing operations for VM memory regions.
1168  */
1169 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1170 {
1171 	struct kvm_memslots *slots = kvm_memslots(kvm);
1172 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1173 	phys_addr_t start, end;
1174 
1175 	if (WARN_ON_ONCE(!memslot))
1176 		return;
1177 
1178 	start = memslot->base_gfn << PAGE_SHIFT;
1179 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1180 
1181 	write_lock(&kvm->mmu_lock);
1182 	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1183 	kvm_nested_s2_wp(kvm);
1184 	write_unlock(&kvm->mmu_lock);
1185 	kvm_flush_remote_tlbs_memslot(kvm, memslot);
1186 }
1187 
1188 /**
1189  * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1190  *				   pages for memory slot
1191  * @kvm:	The KVM pointer
1192  * @slot:	The memory slot to split
1193  *
1194  * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1195  * serializing operations for VM memory regions.
1196  */
1197 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1198 {
1199 	struct kvm_memslots *slots;
1200 	struct kvm_memory_slot *memslot;
1201 	phys_addr_t start, end;
1202 
1203 	lockdep_assert_held(&kvm->slots_lock);
1204 
1205 	slots = kvm_memslots(kvm);
1206 	memslot = id_to_memslot(slots, slot);
1207 
1208 	start = memslot->base_gfn << PAGE_SHIFT;
1209 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1210 
1211 	write_lock(&kvm->mmu_lock);
1212 	kvm_mmu_split_huge_pages(kvm, start, end);
1213 	write_unlock(&kvm->mmu_lock);
1214 }
1215 
1216 /*
1217  * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1218  * @kvm:	The KVM pointer
1219  * @slot:	The memory slot associated with mask
1220  * @gfn_offset:	The gfn offset in memory slot
1221  * @mask:	The mask of pages at offset 'gfn_offset' in this memory
1222  *		slot to enable dirty logging on
1223  *
1224  * Writes protect selected pages to enable dirty logging, and then
1225  * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1226  */
1227 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1228 		struct kvm_memory_slot *slot,
1229 		gfn_t gfn_offset, unsigned long mask)
1230 {
1231 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1232 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1233 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1234 
1235 	lockdep_assert_held_write(&kvm->mmu_lock);
1236 
1237 	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1238 
1239 	/*
1240 	 * Eager-splitting is done when manual-protect is set.  We
1241 	 * also check for initially-all-set because we can avoid
1242 	 * eager-splitting if initially-all-set is false.
1243 	 * Initially-all-set equal false implies that huge-pages were
1244 	 * already split when enabling dirty logging: no need to do it
1245 	 * again.
1246 	 */
1247 	if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1248 		kvm_mmu_split_huge_pages(kvm, start, end);
1249 
1250 	kvm_nested_s2_wp(kvm);
1251 }
1252 
1253 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1254 {
1255 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1256 }
1257 
1258 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1259 					       unsigned long hva,
1260 					       unsigned long map_size)
1261 {
1262 	gpa_t gpa_start;
1263 	hva_t uaddr_start, uaddr_end;
1264 	size_t size;
1265 
1266 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1267 	if (map_size == PAGE_SIZE)
1268 		return true;
1269 
1270 	size = memslot->npages * PAGE_SIZE;
1271 
1272 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1273 
1274 	uaddr_start = memslot->userspace_addr;
1275 	uaddr_end = uaddr_start + size;
1276 
1277 	/*
1278 	 * Pages belonging to memslots that don't have the same alignment
1279 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1280 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1281 	 *
1282 	 * Consider a layout like the following:
1283 	 *
1284 	 *    memslot->userspace_addr:
1285 	 *    +-----+--------------------+--------------------+---+
1286 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1287 	 *    +-----+--------------------+--------------------+---+
1288 	 *
1289 	 *    memslot->base_gfn << PAGE_SHIFT:
1290 	 *      +---+--------------------+--------------------+-----+
1291 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1292 	 *      +---+--------------------+--------------------+-----+
1293 	 *
1294 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1295 	 * mapping:
1296 	 *   d -> f
1297 	 *   e -> g
1298 	 *   f -> h
1299 	 */
1300 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1301 		return false;
1302 
1303 	/*
1304 	 * Next, let's make sure we're not trying to map anything not covered
1305 	 * by the memslot. This means we have to prohibit block size mappings
1306 	 * for the beginning and end of a non-block aligned and non-block sized
1307 	 * memory slot (illustrated by the head and tail parts of the
1308 	 * userspace view above containing pages 'abcde' and 'xyz',
1309 	 * respectively).
1310 	 *
1311 	 * Note that it doesn't matter if we do the check using the
1312 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1313 	 * the check above) and equally sized.
1314 	 */
1315 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1316 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1317 }
1318 
1319 /*
1320  * Check if the given hva is backed by a transparent huge page (THP) and
1321  * whether it can be mapped using block mapping in stage2. If so, adjust
1322  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1323  * supported. This will need to be updated to support other THP sizes.
1324  *
1325  * Returns the size of the mapping.
1326  */
1327 static long
1328 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1329 			    unsigned long hva, kvm_pfn_t *pfnp,
1330 			    phys_addr_t *ipap)
1331 {
1332 	kvm_pfn_t pfn = *pfnp;
1333 
1334 	/*
1335 	 * Make sure the adjustment is done only for THP pages. Also make
1336 	 * sure that the HVA and IPA are sufficiently aligned and that the
1337 	 * block map is contained within the memslot.
1338 	 */
1339 	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1340 		int sz = get_user_mapping_size(kvm, hva);
1341 
1342 		if (sz < 0)
1343 			return sz;
1344 
1345 		if (sz < PMD_SIZE)
1346 			return PAGE_SIZE;
1347 
1348 		*ipap &= PMD_MASK;
1349 		pfn &= ~(PTRS_PER_PMD - 1);
1350 		*pfnp = pfn;
1351 
1352 		return PMD_SIZE;
1353 	}
1354 
1355 	/* Use page mapping if we cannot use block mapping. */
1356 	return PAGE_SIZE;
1357 }
1358 
1359 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1360 {
1361 	unsigned long pa;
1362 
1363 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1364 		return huge_page_shift(hstate_vma(vma));
1365 
1366 	if (!(vma->vm_flags & VM_PFNMAP))
1367 		return PAGE_SHIFT;
1368 
1369 	VM_BUG_ON(is_vm_hugetlb_page(vma));
1370 
1371 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1372 
1373 #ifndef __PAGETABLE_PMD_FOLDED
1374 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1375 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1376 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1377 		return PUD_SHIFT;
1378 #endif
1379 
1380 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1381 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1382 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1383 		return PMD_SHIFT;
1384 
1385 	return PAGE_SHIFT;
1386 }
1387 
1388 /*
1389  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1390  * able to see the page's tags and therefore they must be initialised first. If
1391  * PG_mte_tagged is set, tags have already been initialised.
1392  *
1393  * The race in the test/set of the PG_mte_tagged flag is handled by:
1394  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1395  *   racing to santise the same page
1396  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1397  *   an mprotect() to add VM_MTE
1398  */
1399 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1400 			      unsigned long size)
1401 {
1402 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1403 	struct page *page = pfn_to_page(pfn);
1404 
1405 	if (!kvm_has_mte(kvm))
1406 		return;
1407 
1408 	for (i = 0; i < nr_pages; i++, page++) {
1409 		if (try_page_mte_tagging(page)) {
1410 			mte_clear_page_tags(page_address(page));
1411 			set_page_mte_tagged(page);
1412 		}
1413 	}
1414 }
1415 
1416 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1417 {
1418 	return vma->vm_flags & VM_MTE_ALLOWED;
1419 }
1420 
1421 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1422 			  struct kvm_s2_trans *nested,
1423 			  struct kvm_memory_slot *memslot, unsigned long hva,
1424 			  bool fault_is_perm)
1425 {
1426 	int ret = 0;
1427 	bool write_fault, writable, force_pte = false;
1428 	bool exec_fault, mte_allowed;
1429 	bool device = false, vfio_allow_any_uc = false;
1430 	unsigned long mmu_seq;
1431 	phys_addr_t ipa = fault_ipa;
1432 	struct kvm *kvm = vcpu->kvm;
1433 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1434 	struct vm_area_struct *vma;
1435 	short vma_shift;
1436 	gfn_t gfn;
1437 	kvm_pfn_t pfn;
1438 	bool logging_active = memslot_is_logging(memslot);
1439 	long vma_pagesize, fault_granule;
1440 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1441 	struct kvm_pgtable *pgt;
1442 
1443 	if (fault_is_perm)
1444 		fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
1445 	write_fault = kvm_is_write_fault(vcpu);
1446 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1447 	VM_BUG_ON(write_fault && exec_fault);
1448 
1449 	if (fault_is_perm && !write_fault && !exec_fault) {
1450 		kvm_err("Unexpected L2 read permission error\n");
1451 		return -EFAULT;
1452 	}
1453 
1454 	/*
1455 	 * Permission faults just need to update the existing leaf entry,
1456 	 * and so normally don't require allocations from the memcache. The
1457 	 * only exception to this is when dirty logging is enabled at runtime
1458 	 * and a write fault needs to collapse a block entry into a table.
1459 	 */
1460 	if (!fault_is_perm || (logging_active && write_fault)) {
1461 		ret = kvm_mmu_topup_memory_cache(memcache,
1462 						 kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu));
1463 		if (ret)
1464 			return ret;
1465 	}
1466 
1467 	/*
1468 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1469 	 * get block mapping for device MMIO region.
1470 	 */
1471 	mmap_read_lock(current->mm);
1472 	vma = vma_lookup(current->mm, hva);
1473 	if (unlikely(!vma)) {
1474 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1475 		mmap_read_unlock(current->mm);
1476 		return -EFAULT;
1477 	}
1478 
1479 	/*
1480 	 * logging_active is guaranteed to never be true for VM_PFNMAP
1481 	 * memslots.
1482 	 */
1483 	if (logging_active) {
1484 		force_pte = true;
1485 		vma_shift = PAGE_SHIFT;
1486 	} else {
1487 		vma_shift = get_vma_page_shift(vma, hva);
1488 	}
1489 
1490 	switch (vma_shift) {
1491 #ifndef __PAGETABLE_PMD_FOLDED
1492 	case PUD_SHIFT:
1493 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1494 			break;
1495 		fallthrough;
1496 #endif
1497 	case CONT_PMD_SHIFT:
1498 		vma_shift = PMD_SHIFT;
1499 		fallthrough;
1500 	case PMD_SHIFT:
1501 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1502 			break;
1503 		fallthrough;
1504 	case CONT_PTE_SHIFT:
1505 		vma_shift = PAGE_SHIFT;
1506 		force_pte = true;
1507 		fallthrough;
1508 	case PAGE_SHIFT:
1509 		break;
1510 	default:
1511 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1512 	}
1513 
1514 	vma_pagesize = 1UL << vma_shift;
1515 
1516 	if (nested) {
1517 		unsigned long max_map_size;
1518 
1519 		max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
1520 
1521 		ipa = kvm_s2_trans_output(nested);
1522 
1523 		/*
1524 		 * If we're about to create a shadow stage 2 entry, then we
1525 		 * can only create a block mapping if the guest stage 2 page
1526 		 * table uses at least as big a mapping.
1527 		 */
1528 		max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
1529 
1530 		/*
1531 		 * Be careful that if the mapping size falls between
1532 		 * two host sizes, take the smallest of the two.
1533 		 */
1534 		if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
1535 			max_map_size = PMD_SIZE;
1536 		else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
1537 			max_map_size = PAGE_SIZE;
1538 
1539 		force_pte = (max_map_size == PAGE_SIZE);
1540 		vma_pagesize = min(vma_pagesize, (long)max_map_size);
1541 	}
1542 
1543 	/*
1544 	 * Both the canonical IPA and fault IPA must be hugepage-aligned to
1545 	 * ensure we find the right PFN and lay down the mapping in the right
1546 	 * place.
1547 	 */
1548 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) {
1549 		fault_ipa &= ~(vma_pagesize - 1);
1550 		ipa &= ~(vma_pagesize - 1);
1551 	}
1552 
1553 	gfn = ipa >> PAGE_SHIFT;
1554 	mte_allowed = kvm_vma_mte_allowed(vma);
1555 
1556 	vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
1557 
1558 	/* Don't use the VMA after the unlock -- it may have vanished */
1559 	vma = NULL;
1560 
1561 	/*
1562 	 * Read mmu_invalidate_seq so that KVM can detect if the results of
1563 	 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1564 	 * acquiring kvm->mmu_lock.
1565 	 *
1566 	 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1567 	 * with the smp_wmb() in kvm_mmu_invalidate_end().
1568 	 */
1569 	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1570 	mmap_read_unlock(current->mm);
1571 
1572 	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1573 				   write_fault, &writable, NULL);
1574 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1575 		kvm_send_hwpoison_signal(hva, vma_shift);
1576 		return 0;
1577 	}
1578 	if (is_error_noslot_pfn(pfn))
1579 		return -EFAULT;
1580 
1581 	if (kvm_is_device_pfn(pfn)) {
1582 		/*
1583 		 * If the page was identified as device early by looking at
1584 		 * the VMA flags, vma_pagesize is already representing the
1585 		 * largest quantity we can map.  If instead it was mapped
1586 		 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1587 		 * and must not be upgraded.
1588 		 *
1589 		 * In both cases, we don't let transparent_hugepage_adjust()
1590 		 * change things at the last minute.
1591 		 */
1592 		device = true;
1593 	} else if (logging_active && !write_fault) {
1594 		/*
1595 		 * Only actually map the page as writable if this was a write
1596 		 * fault.
1597 		 */
1598 		writable = false;
1599 	}
1600 
1601 	if (exec_fault && device)
1602 		return -ENOEXEC;
1603 
1604 	/*
1605 	 * Potentially reduce shadow S2 permissions to match the guest's own
1606 	 * S2. For exec faults, we'd only reach this point if the guest
1607 	 * actually allowed it (see kvm_s2_handle_perm_fault).
1608 	 *
1609 	 * Also encode the level of the original translation in the SW bits
1610 	 * of the leaf entry as a proxy for the span of that translation.
1611 	 * This will be retrieved on TLB invalidation from the guest and
1612 	 * used to limit the invalidation scope if a TTL hint or a range
1613 	 * isn't provided.
1614 	 */
1615 	if (nested) {
1616 		writable &= kvm_s2_trans_writable(nested);
1617 		if (!kvm_s2_trans_readable(nested))
1618 			prot &= ~KVM_PGTABLE_PROT_R;
1619 
1620 		prot |= kvm_encode_nested_level(nested);
1621 	}
1622 
1623 	read_lock(&kvm->mmu_lock);
1624 	pgt = vcpu->arch.hw_mmu->pgt;
1625 	if (mmu_invalidate_retry(kvm, mmu_seq)) {
1626 		ret = -EAGAIN;
1627 		goto out_unlock;
1628 	}
1629 
1630 	/*
1631 	 * If we are not forced to use page mapping, check if we are
1632 	 * backed by a THP and thus use block mapping if possible.
1633 	 */
1634 	if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1635 		if (fault_is_perm && fault_granule > PAGE_SIZE)
1636 			vma_pagesize = fault_granule;
1637 		else
1638 			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1639 								   hva, &pfn,
1640 								   &fault_ipa);
1641 
1642 		if (vma_pagesize < 0) {
1643 			ret = vma_pagesize;
1644 			goto out_unlock;
1645 		}
1646 	}
1647 
1648 	if (!fault_is_perm && !device && kvm_has_mte(kvm)) {
1649 		/* Check the VMM hasn't introduced a new disallowed VMA */
1650 		if (mte_allowed) {
1651 			sanitise_mte_tags(kvm, pfn, vma_pagesize);
1652 		} else {
1653 			ret = -EFAULT;
1654 			goto out_unlock;
1655 		}
1656 	}
1657 
1658 	if (writable)
1659 		prot |= KVM_PGTABLE_PROT_W;
1660 
1661 	if (exec_fault)
1662 		prot |= KVM_PGTABLE_PROT_X;
1663 
1664 	if (device) {
1665 		if (vfio_allow_any_uc)
1666 			prot |= KVM_PGTABLE_PROT_NORMAL_NC;
1667 		else
1668 			prot |= KVM_PGTABLE_PROT_DEVICE;
1669 	} else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC) &&
1670 		   (!nested || kvm_s2_trans_executable(nested))) {
1671 		prot |= KVM_PGTABLE_PROT_X;
1672 	}
1673 
1674 	/*
1675 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1676 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1677 	 * kvm_pgtable_stage2_map() should be called to change block size.
1678 	 */
1679 	if (fault_is_perm && vma_pagesize == fault_granule) {
1680 		/*
1681 		 * Drop the SW bits in favour of those stored in the
1682 		 * PTE, which will be preserved.
1683 		 */
1684 		prot &= ~KVM_NV_GUEST_MAP_SZ;
1685 		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1686 	} else {
1687 		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1688 					     __pfn_to_phys(pfn), prot,
1689 					     memcache,
1690 					     KVM_PGTABLE_WALK_HANDLE_FAULT |
1691 					     KVM_PGTABLE_WALK_SHARED);
1692 	}
1693 
1694 out_unlock:
1695 	read_unlock(&kvm->mmu_lock);
1696 
1697 	/* Mark the page dirty only if the fault is handled successfully */
1698 	if (writable && !ret) {
1699 		kvm_set_pfn_dirty(pfn);
1700 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1701 	}
1702 
1703 	kvm_release_pfn_clean(pfn);
1704 	return ret != -EAGAIN ? ret : 0;
1705 }
1706 
1707 /* Resolve the access fault by making the page young again. */
1708 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1709 {
1710 	kvm_pte_t pte;
1711 	struct kvm_s2_mmu *mmu;
1712 
1713 	trace_kvm_access_fault(fault_ipa);
1714 
1715 	read_lock(&vcpu->kvm->mmu_lock);
1716 	mmu = vcpu->arch.hw_mmu;
1717 	pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1718 	read_unlock(&vcpu->kvm->mmu_lock);
1719 
1720 	if (kvm_pte_valid(pte))
1721 		kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1722 }
1723 
1724 /**
1725  * kvm_handle_guest_abort - handles all 2nd stage aborts
1726  * @vcpu:	the VCPU pointer
1727  *
1728  * Any abort that gets to the host is almost guaranteed to be caused by a
1729  * missing second stage translation table entry, which can mean that either the
1730  * guest simply needs more memory and we must allocate an appropriate page or it
1731  * can mean that the guest tried to access I/O memory, which is emulated by user
1732  * space. The distinction is based on the IPA causing the fault and whether this
1733  * memory region has been registered as standard RAM by user space.
1734  */
1735 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1736 {
1737 	struct kvm_s2_trans nested_trans, *nested = NULL;
1738 	unsigned long esr;
1739 	phys_addr_t fault_ipa; /* The address we faulted on */
1740 	phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
1741 	struct kvm_memory_slot *memslot;
1742 	unsigned long hva;
1743 	bool is_iabt, write_fault, writable;
1744 	gfn_t gfn;
1745 	int ret, idx;
1746 
1747 	esr = kvm_vcpu_get_esr(vcpu);
1748 
1749 	ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1750 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1751 
1752 	if (esr_fsc_is_translation_fault(esr)) {
1753 		/* Beyond sanitised PARange (which is the IPA limit) */
1754 		if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1755 			kvm_inject_size_fault(vcpu);
1756 			return 1;
1757 		}
1758 
1759 		/* Falls between the IPA range and the PARange? */
1760 		if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1761 			fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1762 
1763 			if (is_iabt)
1764 				kvm_inject_pabt(vcpu, fault_ipa);
1765 			else
1766 				kvm_inject_dabt(vcpu, fault_ipa);
1767 			return 1;
1768 		}
1769 	}
1770 
1771 	/* Synchronous External Abort? */
1772 	if (kvm_vcpu_abt_issea(vcpu)) {
1773 		/*
1774 		 * For RAS the host kernel may handle this abort.
1775 		 * There is no need to pass the error into the guest.
1776 		 */
1777 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1778 			kvm_inject_vabt(vcpu);
1779 
1780 		return 1;
1781 	}
1782 
1783 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1784 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1785 
1786 	/* Check the stage-2 fault is trans. fault or write fault */
1787 	if (!esr_fsc_is_translation_fault(esr) &&
1788 	    !esr_fsc_is_permission_fault(esr) &&
1789 	    !esr_fsc_is_access_flag_fault(esr)) {
1790 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1791 			kvm_vcpu_trap_get_class(vcpu),
1792 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1793 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1794 		return -EFAULT;
1795 	}
1796 
1797 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1798 
1799 	/*
1800 	 * We may have faulted on a shadow stage 2 page table if we are
1801 	 * running a nested guest.  In this case, we have to resolve the L2
1802 	 * IPA to the L1 IPA first, before knowing what kind of memory should
1803 	 * back the L1 IPA.
1804 	 *
1805 	 * If the shadow stage 2 page table walk faults, then we simply inject
1806 	 * this to the guest and carry on.
1807 	 *
1808 	 * If there are no shadow S2 PTs because S2 is disabled, there is
1809 	 * nothing to walk and we treat it as a 1:1 before going through the
1810 	 * canonical translation.
1811 	 */
1812 	if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
1813 	    vcpu->arch.hw_mmu->nested_stage2_enabled) {
1814 		u32 esr;
1815 
1816 		ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
1817 		if (ret) {
1818 			esr = kvm_s2_trans_esr(&nested_trans);
1819 			kvm_inject_s2_fault(vcpu, esr);
1820 			goto out_unlock;
1821 		}
1822 
1823 		ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
1824 		if (ret) {
1825 			esr = kvm_s2_trans_esr(&nested_trans);
1826 			kvm_inject_s2_fault(vcpu, esr);
1827 			goto out_unlock;
1828 		}
1829 
1830 		ipa = kvm_s2_trans_output(&nested_trans);
1831 		nested = &nested_trans;
1832 	}
1833 
1834 	gfn = ipa >> PAGE_SHIFT;
1835 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1836 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1837 	write_fault = kvm_is_write_fault(vcpu);
1838 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1839 		/*
1840 		 * The guest has put either its instructions or its page-tables
1841 		 * somewhere it shouldn't have. Userspace won't be able to do
1842 		 * anything about this (there's no syndrome for a start), so
1843 		 * re-inject the abort back into the guest.
1844 		 */
1845 		if (is_iabt) {
1846 			ret = -ENOEXEC;
1847 			goto out;
1848 		}
1849 
1850 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1851 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1852 			ret = 1;
1853 			goto out_unlock;
1854 		}
1855 
1856 		/*
1857 		 * Check for a cache maintenance operation. Since we
1858 		 * ended-up here, we know it is outside of any memory
1859 		 * slot. But we can't find out if that is for a device,
1860 		 * or if the guest is just being stupid. The only thing
1861 		 * we know for sure is that this range cannot be cached.
1862 		 *
1863 		 * So let's assume that the guest is just being
1864 		 * cautious, and skip the instruction.
1865 		 */
1866 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1867 			kvm_incr_pc(vcpu);
1868 			ret = 1;
1869 			goto out_unlock;
1870 		}
1871 
1872 		/*
1873 		 * The IPA is reported as [MAX:12], so we need to
1874 		 * complement it with the bottom 12 bits from the
1875 		 * faulting VA. This is always 12 bits, irrespective
1876 		 * of the page size.
1877 		 */
1878 		ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1879 		ret = io_mem_abort(vcpu, ipa);
1880 		goto out_unlock;
1881 	}
1882 
1883 	/* Userspace should not be able to register out-of-bounds IPAs */
1884 	VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
1885 
1886 	if (esr_fsc_is_access_flag_fault(esr)) {
1887 		handle_access_fault(vcpu, fault_ipa);
1888 		ret = 1;
1889 		goto out_unlock;
1890 	}
1891 
1892 	ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
1893 			     esr_fsc_is_permission_fault(esr));
1894 	if (ret == 0)
1895 		ret = 1;
1896 out:
1897 	if (ret == -ENOEXEC) {
1898 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1899 		ret = 1;
1900 	}
1901 out_unlock:
1902 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1903 	return ret;
1904 }
1905 
1906 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1907 {
1908 	if (!kvm->arch.mmu.pgt)
1909 		return false;
1910 
1911 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1912 			     (range->end - range->start) << PAGE_SHIFT,
1913 			     range->may_block);
1914 
1915 	kvm_nested_s2_unmap(kvm);
1916 	return false;
1917 }
1918 
1919 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1920 {
1921 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1922 
1923 	if (!kvm->arch.mmu.pgt)
1924 		return false;
1925 
1926 	return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1927 						   range->start << PAGE_SHIFT,
1928 						   size, true);
1929 	/*
1930 	 * TODO: Handle nested_mmu structures here using the reverse mapping in
1931 	 * a later version of patch series.
1932 	 */
1933 }
1934 
1935 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1936 {
1937 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1938 
1939 	if (!kvm->arch.mmu.pgt)
1940 		return false;
1941 
1942 	return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1943 						   range->start << PAGE_SHIFT,
1944 						   size, false);
1945 }
1946 
1947 phys_addr_t kvm_mmu_get_httbr(void)
1948 {
1949 	return __pa(hyp_pgtable->pgd);
1950 }
1951 
1952 phys_addr_t kvm_get_idmap_vector(void)
1953 {
1954 	return hyp_idmap_vector;
1955 }
1956 
1957 static int kvm_map_idmap_text(void)
1958 {
1959 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1960 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1961 					PAGE_HYP_EXEC);
1962 	if (err)
1963 		kvm_err("Failed to idmap %lx-%lx\n",
1964 			hyp_idmap_start, hyp_idmap_end);
1965 
1966 	return err;
1967 }
1968 
1969 static void *kvm_hyp_zalloc_page(void *arg)
1970 {
1971 	return (void *)get_zeroed_page(GFP_KERNEL);
1972 }
1973 
1974 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1975 	.zalloc_page		= kvm_hyp_zalloc_page,
1976 	.get_page		= kvm_host_get_page,
1977 	.put_page		= kvm_host_put_page,
1978 	.phys_to_virt		= kvm_host_va,
1979 	.virt_to_phys		= kvm_host_pa,
1980 };
1981 
1982 int __init kvm_mmu_init(u32 *hyp_va_bits)
1983 {
1984 	int err;
1985 	u32 idmap_bits;
1986 	u32 kernel_bits;
1987 
1988 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1989 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1990 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1991 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1992 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1993 
1994 	/*
1995 	 * We rely on the linker script to ensure at build time that the HYP
1996 	 * init code does not cross a page boundary.
1997 	 */
1998 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1999 
2000 	/*
2001 	 * The ID map is always configured for 48 bits of translation, which
2002 	 * may be fewer than the number of VA bits used by the regular kernel
2003 	 * stage 1, when VA_BITS=52.
2004 	 *
2005 	 * At EL2, there is only one TTBR register, and we can't switch between
2006 	 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
2007 	 * line: we need to use the extended range with *both* our translation
2008 	 * tables.
2009 	 *
2010 	 * So use the maximum of the idmap VA bits and the regular kernel stage
2011 	 * 1 VA bits to assure that the hypervisor can both ID map its code page
2012 	 * and map any kernel memory.
2013 	 */
2014 	idmap_bits = IDMAP_VA_BITS;
2015 	kernel_bits = vabits_actual;
2016 	*hyp_va_bits = max(idmap_bits, kernel_bits);
2017 
2018 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
2019 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2020 	kvm_debug("HYP VA range: %lx:%lx\n",
2021 		  kern_hyp_va(PAGE_OFFSET),
2022 		  kern_hyp_va((unsigned long)high_memory - 1));
2023 
2024 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2025 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2026 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2027 		/*
2028 		 * The idmap page is intersecting with the VA space,
2029 		 * it is not safe to continue further.
2030 		 */
2031 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2032 		err = -EINVAL;
2033 		goto out;
2034 	}
2035 
2036 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
2037 	if (!hyp_pgtable) {
2038 		kvm_err("Hyp mode page-table not allocated\n");
2039 		err = -ENOMEM;
2040 		goto out;
2041 	}
2042 
2043 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
2044 	if (err)
2045 		goto out_free_pgtable;
2046 
2047 	err = kvm_map_idmap_text();
2048 	if (err)
2049 		goto out_destroy_pgtable;
2050 
2051 	io_map_base = hyp_idmap_start;
2052 	return 0;
2053 
2054 out_destroy_pgtable:
2055 	kvm_pgtable_hyp_destroy(hyp_pgtable);
2056 out_free_pgtable:
2057 	kfree(hyp_pgtable);
2058 	hyp_pgtable = NULL;
2059 out:
2060 	return err;
2061 }
2062 
2063 void kvm_arch_commit_memory_region(struct kvm *kvm,
2064 				   struct kvm_memory_slot *old,
2065 				   const struct kvm_memory_slot *new,
2066 				   enum kvm_mr_change change)
2067 {
2068 	bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
2069 
2070 	/*
2071 	 * At this point memslot has been committed and there is an
2072 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
2073 	 * memory slot is write protected.
2074 	 */
2075 	if (log_dirty_pages) {
2076 
2077 		if (change == KVM_MR_DELETE)
2078 			return;
2079 
2080 		/*
2081 		 * Huge and normal pages are write-protected and split
2082 		 * on either of these two cases:
2083 		 *
2084 		 * 1. with initial-all-set: gradually with CLEAR ioctls,
2085 		 */
2086 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
2087 			return;
2088 		/*
2089 		 * or
2090 		 * 2. without initial-all-set: all in one shot when
2091 		 *    enabling dirty logging.
2092 		 */
2093 		kvm_mmu_wp_memory_region(kvm, new->id);
2094 		kvm_mmu_split_memory_region(kvm, new->id);
2095 	} else {
2096 		/*
2097 		 * Free any leftovers from the eager page splitting cache. Do
2098 		 * this when deleting, moving, disabling dirty logging, or
2099 		 * creating the memslot (a nop). Doing it for deletes makes
2100 		 * sure we don't leak memory, and there's no need to keep the
2101 		 * cache around for any of the other cases.
2102 		 */
2103 		kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2104 	}
2105 }
2106 
2107 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2108 				   const struct kvm_memory_slot *old,
2109 				   struct kvm_memory_slot *new,
2110 				   enum kvm_mr_change change)
2111 {
2112 	hva_t hva, reg_end;
2113 	int ret = 0;
2114 
2115 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2116 			change != KVM_MR_FLAGS_ONLY)
2117 		return 0;
2118 
2119 	/*
2120 	 * Prevent userspace from creating a memory region outside of the IPA
2121 	 * space addressable by the KVM guest IPA space.
2122 	 */
2123 	if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2124 		return -EFAULT;
2125 
2126 	hva = new->userspace_addr;
2127 	reg_end = hva + (new->npages << PAGE_SHIFT);
2128 
2129 	mmap_read_lock(current->mm);
2130 	/*
2131 	 * A memory region could potentially cover multiple VMAs, and any holes
2132 	 * between them, so iterate over all of them.
2133 	 *
2134 	 *     +--------------------------------------------+
2135 	 * +---------------+----------------+   +----------------+
2136 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2137 	 * +---------------+----------------+   +----------------+
2138 	 *     |               memory region                |
2139 	 *     +--------------------------------------------+
2140 	 */
2141 	do {
2142 		struct vm_area_struct *vma;
2143 
2144 		vma = find_vma_intersection(current->mm, hva, reg_end);
2145 		if (!vma)
2146 			break;
2147 
2148 		if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2149 			ret = -EINVAL;
2150 			break;
2151 		}
2152 
2153 		if (vma->vm_flags & VM_PFNMAP) {
2154 			/* IO region dirty page logging not allowed */
2155 			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2156 				ret = -EINVAL;
2157 				break;
2158 			}
2159 		}
2160 		hva = min(reg_end, vma->vm_end);
2161 	} while (hva < reg_end);
2162 
2163 	mmap_read_unlock(current->mm);
2164 	return ret;
2165 }
2166 
2167 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2168 {
2169 }
2170 
2171 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2172 {
2173 }
2174 
2175 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2176 				   struct kvm_memory_slot *slot)
2177 {
2178 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2179 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2180 
2181 	write_lock(&kvm->mmu_lock);
2182 	kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size);
2183 	kvm_nested_s2_unmap(kvm);
2184 	write_unlock(&kvm->mmu_lock);
2185 }
2186 
2187 /*
2188  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2189  *
2190  * Main problems:
2191  * - S/W ops are local to a CPU (not broadcast)
2192  * - We have line migration behind our back (speculation)
2193  * - System caches don't support S/W at all (damn!)
2194  *
2195  * In the face of the above, the best we can do is to try and convert
2196  * S/W ops to VA ops. Because the guest is not allowed to infer the
2197  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2198  * which is a rather good thing for us.
2199  *
2200  * Also, it is only used when turning caches on/off ("The expected
2201  * usage of the cache maintenance instructions that operate by set/way
2202  * is associated with the cache maintenance instructions associated
2203  * with the powerdown and powerup of caches, if this is required by
2204  * the implementation.").
2205  *
2206  * We use the following policy:
2207  *
2208  * - If we trap a S/W operation, we enable VM trapping to detect
2209  *   caches being turned on/off, and do a full clean.
2210  *
2211  * - We flush the caches on both caches being turned on and off.
2212  *
2213  * - Once the caches are enabled, we stop trapping VM ops.
2214  */
2215 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2216 {
2217 	unsigned long hcr = *vcpu_hcr(vcpu);
2218 
2219 	/*
2220 	 * If this is the first time we do a S/W operation
2221 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2222 	 * VM trapping.
2223 	 *
2224 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2225 	 * Caches to be turned off. At that point, we'll be able to
2226 	 * clean the caches again.
2227 	 */
2228 	if (!(hcr & HCR_TVM)) {
2229 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2230 					vcpu_has_cache_enabled(vcpu));
2231 		stage2_flush_vm(vcpu->kvm);
2232 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2233 	}
2234 }
2235 
2236 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2237 {
2238 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2239 
2240 	/*
2241 	 * If switching the MMU+caches on, need to invalidate the caches.
2242 	 * If switching it off, need to clean the caches.
2243 	 * Clean + invalidate does the trick always.
2244 	 */
2245 	if (now_enabled != was_enabled)
2246 		stage2_flush_vm(vcpu->kvm);
2247 
2248 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2249 	if (now_enabled)
2250 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2251 
2252 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2253 }
2254