1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long __ro_after_init hyp_idmap_start; 29 static unsigned long __ro_after_init hyp_idmap_end; 30 static phys_addr_t __ro_after_init hyp_idmap_vector; 31 32 static unsigned long __ro_after_init io_map_base; 33 34 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end, 35 phys_addr_t size) 36 { 37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size); 38 39 return (boundary - 1 < end - 1) ? boundary : end; 40 } 41 42 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) 43 { 44 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); 45 46 return __stage2_range_addr_end(addr, end, size); 47 } 48 49 /* 50 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 51 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 52 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 53 * long will also starve other vCPUs. We have to also make sure that the page 54 * tables are not freed while we released the lock. 55 */ 56 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, 57 phys_addr_t end, 58 int (*fn)(struct kvm_pgtable *, u64, u64), 59 bool resched) 60 { 61 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 62 int ret; 63 u64 next; 64 65 do { 66 struct kvm_pgtable *pgt = mmu->pgt; 67 if (!pgt) 68 return -EINVAL; 69 70 next = stage2_range_addr_end(addr, end); 71 ret = fn(pgt, addr, next - addr); 72 if (ret) 73 break; 74 75 if (resched && next != end) 76 cond_resched_rwlock_write(&kvm->mmu_lock); 77 } while (addr = next, addr != end); 78 79 return ret; 80 } 81 82 #define stage2_apply_range_resched(mmu, addr, end, fn) \ 83 stage2_apply_range(mmu, addr, end, fn, true) 84 85 /* 86 * Get the maximum number of page-tables pages needed to split a range 87 * of blocks into PAGE_SIZE PTEs. It assumes the range is already 88 * mapped at level 2, or at level 1 if allowed. 89 */ 90 static int kvm_mmu_split_nr_page_tables(u64 range) 91 { 92 int n = 0; 93 94 if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2) 95 n += DIV_ROUND_UP(range, PUD_SIZE); 96 n += DIV_ROUND_UP(range, PMD_SIZE); 97 return n; 98 } 99 100 static bool need_split_memcache_topup_or_resched(struct kvm *kvm) 101 { 102 struct kvm_mmu_memory_cache *cache; 103 u64 chunk_size, min; 104 105 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 106 return true; 107 108 chunk_size = kvm->arch.mmu.split_page_chunk_size; 109 min = kvm_mmu_split_nr_page_tables(chunk_size); 110 cache = &kvm->arch.mmu.split_page_cache; 111 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 112 } 113 114 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr, 115 phys_addr_t end) 116 { 117 struct kvm_mmu_memory_cache *cache; 118 struct kvm_pgtable *pgt; 119 int ret, cache_capacity; 120 u64 next, chunk_size; 121 122 lockdep_assert_held_write(&kvm->mmu_lock); 123 124 chunk_size = kvm->arch.mmu.split_page_chunk_size; 125 cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size); 126 127 if (chunk_size == 0) 128 return 0; 129 130 cache = &kvm->arch.mmu.split_page_cache; 131 132 do { 133 if (need_split_memcache_topup_or_resched(kvm)) { 134 write_unlock(&kvm->mmu_lock); 135 cond_resched(); 136 /* Eager page splitting is best-effort. */ 137 ret = __kvm_mmu_topup_memory_cache(cache, 138 cache_capacity, 139 cache_capacity); 140 write_lock(&kvm->mmu_lock); 141 if (ret) 142 break; 143 } 144 145 pgt = kvm->arch.mmu.pgt; 146 if (!pgt) 147 return -EINVAL; 148 149 next = __stage2_range_addr_end(addr, end, chunk_size); 150 ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache); 151 if (ret) 152 break; 153 } while (addr = next, addr != end); 154 155 return ret; 156 } 157 158 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 159 { 160 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 161 } 162 163 /** 164 * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8 165 * @kvm: pointer to kvm structure. 166 * 167 * Interface to HYP function to flush all VM TLB entries 168 */ 169 int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 170 { 171 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 172 return 0; 173 } 174 175 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 176 gfn_t gfn, u64 nr_pages) 177 { 178 kvm_tlb_flush_vmid_range(&kvm->arch.mmu, 179 gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT); 180 return 0; 181 } 182 183 static bool kvm_is_device_pfn(unsigned long pfn) 184 { 185 return !pfn_is_map_memory(pfn); 186 } 187 188 static void *stage2_memcache_zalloc_page(void *arg) 189 { 190 struct kvm_mmu_memory_cache *mc = arg; 191 void *virt; 192 193 /* Allocated with __GFP_ZERO, so no need to zero */ 194 virt = kvm_mmu_memory_cache_alloc(mc); 195 if (virt) 196 kvm_account_pgtable_pages(virt, 1); 197 return virt; 198 } 199 200 static void *kvm_host_zalloc_pages_exact(size_t size) 201 { 202 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 203 } 204 205 static void *kvm_s2_zalloc_pages_exact(size_t size) 206 { 207 void *virt = kvm_host_zalloc_pages_exact(size); 208 209 if (virt) 210 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT)); 211 return virt; 212 } 213 214 static void kvm_s2_free_pages_exact(void *virt, size_t size) 215 { 216 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT)); 217 free_pages_exact(virt, size); 218 } 219 220 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops; 221 222 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head) 223 { 224 struct page *page = container_of(head, struct page, rcu_head); 225 void *pgtable = page_to_virt(page); 226 s8 level = page_private(page); 227 228 kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level); 229 } 230 231 static void stage2_free_unlinked_table(void *addr, s8 level) 232 { 233 struct page *page = virt_to_page(addr); 234 235 set_page_private(page, (unsigned long)level); 236 call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb); 237 } 238 239 static void kvm_host_get_page(void *addr) 240 { 241 get_page(virt_to_page(addr)); 242 } 243 244 static void kvm_host_put_page(void *addr) 245 { 246 put_page(virt_to_page(addr)); 247 } 248 249 static void kvm_s2_put_page(void *addr) 250 { 251 struct page *p = virt_to_page(addr); 252 /* Dropping last refcount, the page will be freed */ 253 if (page_count(p) == 1) 254 kvm_account_pgtable_pages(addr, -1); 255 put_page(p); 256 } 257 258 static int kvm_host_page_count(void *addr) 259 { 260 return page_count(virt_to_page(addr)); 261 } 262 263 static phys_addr_t kvm_host_pa(void *addr) 264 { 265 return __pa(addr); 266 } 267 268 static void *kvm_host_va(phys_addr_t phys) 269 { 270 return __va(phys); 271 } 272 273 static void clean_dcache_guest_page(void *va, size_t size) 274 { 275 __clean_dcache_guest_page(va, size); 276 } 277 278 static void invalidate_icache_guest_page(void *va, size_t size) 279 { 280 __invalidate_icache_guest_page(va, size); 281 } 282 283 /* 284 * Unmapping vs dcache management: 285 * 286 * If a guest maps certain memory pages as uncached, all writes will 287 * bypass the data cache and go directly to RAM. However, the CPUs 288 * can still speculate reads (not writes) and fill cache lines with 289 * data. 290 * 291 * Those cache lines will be *clean* cache lines though, so a 292 * clean+invalidate operation is equivalent to an invalidate 293 * operation, because no cache lines are marked dirty. 294 * 295 * Those clean cache lines could be filled prior to an uncached write 296 * by the guest, and the cache coherent IO subsystem would therefore 297 * end up writing old data to disk. 298 * 299 * This is why right after unmapping a page/section and invalidating 300 * the corresponding TLBs, we flush to make sure the IO subsystem will 301 * never hit in the cache. 302 * 303 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 304 * we then fully enforce cacheability of RAM, no matter what the guest 305 * does. 306 */ 307 /** 308 * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range 309 * @mmu: The KVM stage-2 MMU pointer 310 * @start: The intermediate physical base address of the range to unmap 311 * @size: The size of the area to unmap 312 * @may_block: Whether or not we are permitted to block 313 * 314 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 315 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 316 * destroying the VM), otherwise another faulting VCPU may come in and mess 317 * with things behind our backs. 318 */ 319 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 320 bool may_block) 321 { 322 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 323 phys_addr_t end = start + size; 324 325 lockdep_assert_held_write(&kvm->mmu_lock); 326 WARN_ON(size & ~PAGE_MASK); 327 WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap, 328 may_block)); 329 } 330 331 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 332 { 333 __unmap_stage2_range(mmu, start, size, true); 334 } 335 336 static void stage2_flush_memslot(struct kvm *kvm, 337 struct kvm_memory_slot *memslot) 338 { 339 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 340 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 341 342 stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush); 343 } 344 345 /** 346 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 347 * @kvm: The struct kvm pointer 348 * 349 * Go through the stage 2 page tables and invalidate any cache lines 350 * backing memory already mapped to the VM. 351 */ 352 static void stage2_flush_vm(struct kvm *kvm) 353 { 354 struct kvm_memslots *slots; 355 struct kvm_memory_slot *memslot; 356 int idx, bkt; 357 358 idx = srcu_read_lock(&kvm->srcu); 359 write_lock(&kvm->mmu_lock); 360 361 slots = kvm_memslots(kvm); 362 kvm_for_each_memslot(memslot, bkt, slots) 363 stage2_flush_memslot(kvm, memslot); 364 365 write_unlock(&kvm->mmu_lock); 366 srcu_read_unlock(&kvm->srcu, idx); 367 } 368 369 /** 370 * free_hyp_pgds - free Hyp-mode page tables 371 */ 372 void __init free_hyp_pgds(void) 373 { 374 mutex_lock(&kvm_hyp_pgd_mutex); 375 if (hyp_pgtable) { 376 kvm_pgtable_hyp_destroy(hyp_pgtable); 377 kfree(hyp_pgtable); 378 hyp_pgtable = NULL; 379 } 380 mutex_unlock(&kvm_hyp_pgd_mutex); 381 } 382 383 static bool kvm_host_owns_hyp_mappings(void) 384 { 385 if (is_kernel_in_hyp_mode()) 386 return false; 387 388 if (static_branch_likely(&kvm_protected_mode_initialized)) 389 return false; 390 391 /* 392 * This can happen at boot time when __create_hyp_mappings() is called 393 * after the hyp protection has been enabled, but the static key has 394 * not been flipped yet. 395 */ 396 if (!hyp_pgtable && is_protected_kvm_enabled()) 397 return false; 398 399 WARN_ON(!hyp_pgtable); 400 401 return true; 402 } 403 404 int __create_hyp_mappings(unsigned long start, unsigned long size, 405 unsigned long phys, enum kvm_pgtable_prot prot) 406 { 407 int err; 408 409 if (WARN_ON(!kvm_host_owns_hyp_mappings())) 410 return -EINVAL; 411 412 mutex_lock(&kvm_hyp_pgd_mutex); 413 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 414 mutex_unlock(&kvm_hyp_pgd_mutex); 415 416 return err; 417 } 418 419 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 420 { 421 if (!is_vmalloc_addr(kaddr)) { 422 BUG_ON(!virt_addr_valid(kaddr)); 423 return __pa(kaddr); 424 } else { 425 return page_to_phys(vmalloc_to_page(kaddr)) + 426 offset_in_page(kaddr); 427 } 428 } 429 430 struct hyp_shared_pfn { 431 u64 pfn; 432 int count; 433 struct rb_node node; 434 }; 435 436 static DEFINE_MUTEX(hyp_shared_pfns_lock); 437 static struct rb_root hyp_shared_pfns = RB_ROOT; 438 439 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node, 440 struct rb_node **parent) 441 { 442 struct hyp_shared_pfn *this; 443 444 *node = &hyp_shared_pfns.rb_node; 445 *parent = NULL; 446 while (**node) { 447 this = container_of(**node, struct hyp_shared_pfn, node); 448 *parent = **node; 449 if (this->pfn < pfn) 450 *node = &((**node)->rb_left); 451 else if (this->pfn > pfn) 452 *node = &((**node)->rb_right); 453 else 454 return this; 455 } 456 457 return NULL; 458 } 459 460 static int share_pfn_hyp(u64 pfn) 461 { 462 struct rb_node **node, *parent; 463 struct hyp_shared_pfn *this; 464 int ret = 0; 465 466 mutex_lock(&hyp_shared_pfns_lock); 467 this = find_shared_pfn(pfn, &node, &parent); 468 if (this) { 469 this->count++; 470 goto unlock; 471 } 472 473 this = kzalloc(sizeof(*this), GFP_KERNEL); 474 if (!this) { 475 ret = -ENOMEM; 476 goto unlock; 477 } 478 479 this->pfn = pfn; 480 this->count = 1; 481 rb_link_node(&this->node, parent, node); 482 rb_insert_color(&this->node, &hyp_shared_pfns); 483 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1); 484 unlock: 485 mutex_unlock(&hyp_shared_pfns_lock); 486 487 return ret; 488 } 489 490 static int unshare_pfn_hyp(u64 pfn) 491 { 492 struct rb_node **node, *parent; 493 struct hyp_shared_pfn *this; 494 int ret = 0; 495 496 mutex_lock(&hyp_shared_pfns_lock); 497 this = find_shared_pfn(pfn, &node, &parent); 498 if (WARN_ON(!this)) { 499 ret = -ENOENT; 500 goto unlock; 501 } 502 503 this->count--; 504 if (this->count) 505 goto unlock; 506 507 rb_erase(&this->node, &hyp_shared_pfns); 508 kfree(this); 509 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1); 510 unlock: 511 mutex_unlock(&hyp_shared_pfns_lock); 512 513 return ret; 514 } 515 516 int kvm_share_hyp(void *from, void *to) 517 { 518 phys_addr_t start, end, cur; 519 u64 pfn; 520 int ret; 521 522 if (is_kernel_in_hyp_mode()) 523 return 0; 524 525 /* 526 * The share hcall maps things in the 'fixed-offset' region of the hyp 527 * VA space, so we can only share physically contiguous data-structures 528 * for now. 529 */ 530 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to)) 531 return -EINVAL; 532 533 if (kvm_host_owns_hyp_mappings()) 534 return create_hyp_mappings(from, to, PAGE_HYP); 535 536 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 537 end = PAGE_ALIGN(__pa(to)); 538 for (cur = start; cur < end; cur += PAGE_SIZE) { 539 pfn = __phys_to_pfn(cur); 540 ret = share_pfn_hyp(pfn); 541 if (ret) 542 return ret; 543 } 544 545 return 0; 546 } 547 548 void kvm_unshare_hyp(void *from, void *to) 549 { 550 phys_addr_t start, end, cur; 551 u64 pfn; 552 553 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from) 554 return; 555 556 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 557 end = PAGE_ALIGN(__pa(to)); 558 for (cur = start; cur < end; cur += PAGE_SIZE) { 559 pfn = __phys_to_pfn(cur); 560 WARN_ON(unshare_pfn_hyp(pfn)); 561 } 562 } 563 564 /** 565 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 566 * @from: The virtual kernel start address of the range 567 * @to: The virtual kernel end address of the range (exclusive) 568 * @prot: The protection to be applied to this range 569 * 570 * The same virtual address as the kernel virtual address is also used 571 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 572 * physical pages. 573 */ 574 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 575 { 576 phys_addr_t phys_addr; 577 unsigned long virt_addr; 578 unsigned long start = kern_hyp_va((unsigned long)from); 579 unsigned long end = kern_hyp_va((unsigned long)to); 580 581 if (is_kernel_in_hyp_mode()) 582 return 0; 583 584 if (!kvm_host_owns_hyp_mappings()) 585 return -EPERM; 586 587 start = start & PAGE_MASK; 588 end = PAGE_ALIGN(end); 589 590 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 591 int err; 592 593 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 594 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 595 prot); 596 if (err) 597 return err; 598 } 599 600 return 0; 601 } 602 603 static int __hyp_alloc_private_va_range(unsigned long base) 604 { 605 lockdep_assert_held(&kvm_hyp_pgd_mutex); 606 607 if (!PAGE_ALIGNED(base)) 608 return -EINVAL; 609 610 /* 611 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 612 * allocating the new area, as it would indicate we've 613 * overflowed the idmap/IO address range. 614 */ 615 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 616 return -ENOMEM; 617 618 io_map_base = base; 619 620 return 0; 621 } 622 623 /** 624 * hyp_alloc_private_va_range - Allocates a private VA range. 625 * @size: The size of the VA range to reserve. 626 * @haddr: The hypervisor virtual start address of the allocation. 627 * 628 * The private virtual address (VA) range is allocated below io_map_base 629 * and aligned based on the order of @size. 630 * 631 * Return: 0 on success or negative error code on failure. 632 */ 633 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr) 634 { 635 unsigned long base; 636 int ret = 0; 637 638 mutex_lock(&kvm_hyp_pgd_mutex); 639 640 /* 641 * This assumes that we have enough space below the idmap 642 * page to allocate our VAs. If not, the check in 643 * __hyp_alloc_private_va_range() will kick. A potential 644 * alternative would be to detect that overflow and switch 645 * to an allocation above the idmap. 646 * 647 * The allocated size is always a multiple of PAGE_SIZE. 648 */ 649 size = PAGE_ALIGN(size); 650 base = io_map_base - size; 651 ret = __hyp_alloc_private_va_range(base); 652 653 mutex_unlock(&kvm_hyp_pgd_mutex); 654 655 if (!ret) 656 *haddr = base; 657 658 return ret; 659 } 660 661 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 662 unsigned long *haddr, 663 enum kvm_pgtable_prot prot) 664 { 665 unsigned long addr; 666 int ret = 0; 667 668 if (!kvm_host_owns_hyp_mappings()) { 669 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 670 phys_addr, size, prot); 671 if (IS_ERR_VALUE(addr)) 672 return addr; 673 *haddr = addr; 674 675 return 0; 676 } 677 678 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 679 ret = hyp_alloc_private_va_range(size, &addr); 680 if (ret) 681 return ret; 682 683 ret = __create_hyp_mappings(addr, size, phys_addr, prot); 684 if (ret) 685 return ret; 686 687 *haddr = addr + offset_in_page(phys_addr); 688 return ret; 689 } 690 691 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr) 692 { 693 unsigned long base; 694 size_t size; 695 int ret; 696 697 mutex_lock(&kvm_hyp_pgd_mutex); 698 /* 699 * Efficient stack verification using the PAGE_SHIFT bit implies 700 * an alignment of our allocation on the order of the size. 701 */ 702 size = PAGE_SIZE * 2; 703 base = ALIGN_DOWN(io_map_base - size, size); 704 705 ret = __hyp_alloc_private_va_range(base); 706 707 mutex_unlock(&kvm_hyp_pgd_mutex); 708 709 if (ret) { 710 kvm_err("Cannot allocate hyp stack guard page\n"); 711 return ret; 712 } 713 714 /* 715 * Since the stack grows downwards, map the stack to the page 716 * at the higher address and leave the lower guard page 717 * unbacked. 718 * 719 * Any valid stack address now has the PAGE_SHIFT bit as 1 720 * and addresses corresponding to the guard page have the 721 * PAGE_SHIFT bit as 0 - this is used for overflow detection. 722 */ 723 ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr, 724 PAGE_HYP); 725 if (ret) 726 kvm_err("Cannot map hyp stack\n"); 727 728 *haddr = base + size; 729 730 return ret; 731 } 732 733 /** 734 * create_hyp_io_mappings - Map IO into both kernel and HYP 735 * @phys_addr: The physical start address which gets mapped 736 * @size: Size of the region being mapped 737 * @kaddr: Kernel VA for this mapping 738 * @haddr: HYP VA for this mapping 739 */ 740 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 741 void __iomem **kaddr, 742 void __iomem **haddr) 743 { 744 unsigned long addr; 745 int ret; 746 747 if (is_protected_kvm_enabled()) 748 return -EPERM; 749 750 *kaddr = ioremap(phys_addr, size); 751 if (!*kaddr) 752 return -ENOMEM; 753 754 if (is_kernel_in_hyp_mode()) { 755 *haddr = *kaddr; 756 return 0; 757 } 758 759 ret = __create_hyp_private_mapping(phys_addr, size, 760 &addr, PAGE_HYP_DEVICE); 761 if (ret) { 762 iounmap(*kaddr); 763 *kaddr = NULL; 764 *haddr = NULL; 765 return ret; 766 } 767 768 *haddr = (void __iomem *)addr; 769 return 0; 770 } 771 772 /** 773 * create_hyp_exec_mappings - Map an executable range into HYP 774 * @phys_addr: The physical start address which gets mapped 775 * @size: Size of the region being mapped 776 * @haddr: HYP VA for this mapping 777 */ 778 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 779 void **haddr) 780 { 781 unsigned long addr; 782 int ret; 783 784 BUG_ON(is_kernel_in_hyp_mode()); 785 786 ret = __create_hyp_private_mapping(phys_addr, size, 787 &addr, PAGE_HYP_EXEC); 788 if (ret) { 789 *haddr = NULL; 790 return ret; 791 } 792 793 *haddr = (void *)addr; 794 return 0; 795 } 796 797 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { 798 /* We shouldn't need any other callback to walk the PT */ 799 .phys_to_virt = kvm_host_va, 800 }; 801 802 static int get_user_mapping_size(struct kvm *kvm, u64 addr) 803 { 804 struct kvm_pgtable pgt = { 805 .pgd = (kvm_pteref_t)kvm->mm->pgd, 806 .ia_bits = vabits_actual, 807 .start_level = (KVM_PGTABLE_LAST_LEVEL - 808 ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1), 809 .mm_ops = &kvm_user_mm_ops, 810 }; 811 unsigned long flags; 812 kvm_pte_t pte = 0; /* Keep GCC quiet... */ 813 s8 level = S8_MAX; 814 int ret; 815 816 /* 817 * Disable IRQs so that we hazard against a concurrent 818 * teardown of the userspace page tables (which relies on 819 * IPI-ing threads). 820 */ 821 local_irq_save(flags); 822 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); 823 local_irq_restore(flags); 824 825 if (ret) 826 return ret; 827 828 /* 829 * Not seeing an error, but not updating level? Something went 830 * deeply wrong... 831 */ 832 if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL)) 833 return -EFAULT; 834 if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL)) 835 return -EFAULT; 836 837 /* Oops, the userspace PTs are gone... Replay the fault */ 838 if (!kvm_pte_valid(pte)) 839 return -EAGAIN; 840 841 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); 842 } 843 844 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 845 .zalloc_page = stage2_memcache_zalloc_page, 846 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact, 847 .free_pages_exact = kvm_s2_free_pages_exact, 848 .free_unlinked_table = stage2_free_unlinked_table, 849 .get_page = kvm_host_get_page, 850 .put_page = kvm_s2_put_page, 851 .page_count = kvm_host_page_count, 852 .phys_to_virt = kvm_host_va, 853 .virt_to_phys = kvm_host_pa, 854 .dcache_clean_inval_poc = clean_dcache_guest_page, 855 .icache_inval_pou = invalidate_icache_guest_page, 856 }; 857 858 /** 859 * kvm_init_stage2_mmu - Initialise a S2 MMU structure 860 * @kvm: The pointer to the KVM structure 861 * @mmu: The pointer to the s2 MMU structure 862 * @type: The machine type of the virtual machine 863 * 864 * Allocates only the stage-2 HW PGD level table(s). 865 * Note we don't need locking here as this is only called when the VM is 866 * created, which can only be done once. 867 */ 868 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type) 869 { 870 u32 kvm_ipa_limit = get_kvm_ipa_limit(); 871 int cpu, err; 872 struct kvm_pgtable *pgt; 873 u64 mmfr0, mmfr1; 874 u32 phys_shift; 875 876 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK) 877 return -EINVAL; 878 879 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type); 880 if (is_protected_kvm_enabled()) { 881 phys_shift = kvm_ipa_limit; 882 } else if (phys_shift) { 883 if (phys_shift > kvm_ipa_limit || 884 phys_shift < ARM64_MIN_PARANGE_BITS) 885 return -EINVAL; 886 } else { 887 phys_shift = KVM_PHYS_SHIFT; 888 if (phys_shift > kvm_ipa_limit) { 889 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n", 890 current->comm); 891 return -EINVAL; 892 } 893 } 894 895 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 896 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 897 mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift); 898 899 if (mmu->pgt != NULL) { 900 kvm_err("kvm_arch already initialized?\n"); 901 return -EINVAL; 902 } 903 904 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); 905 if (!pgt) 906 return -ENOMEM; 907 908 mmu->arch = &kvm->arch; 909 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops); 910 if (err) 911 goto out_free_pgtable; 912 913 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 914 if (!mmu->last_vcpu_ran) { 915 err = -ENOMEM; 916 goto out_destroy_pgtable; 917 } 918 919 for_each_possible_cpu(cpu) 920 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 921 922 /* The eager page splitting is disabled by default */ 923 mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 924 mmu->split_page_cache.gfp_zero = __GFP_ZERO; 925 926 mmu->pgt = pgt; 927 mmu->pgd_phys = __pa(pgt->pgd); 928 return 0; 929 930 out_destroy_pgtable: 931 kvm_pgtable_stage2_destroy(pgt); 932 out_free_pgtable: 933 kfree(pgt); 934 return err; 935 } 936 937 void kvm_uninit_stage2_mmu(struct kvm *kvm) 938 { 939 kvm_free_stage2_pgd(&kvm->arch.mmu); 940 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); 941 } 942 943 static void stage2_unmap_memslot(struct kvm *kvm, 944 struct kvm_memory_slot *memslot) 945 { 946 hva_t hva = memslot->userspace_addr; 947 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 948 phys_addr_t size = PAGE_SIZE * memslot->npages; 949 hva_t reg_end = hva + size; 950 951 /* 952 * A memory region could potentially cover multiple VMAs, and any holes 953 * between them, so iterate over all of them to find out if we should 954 * unmap any of them. 955 * 956 * +--------------------------------------------+ 957 * +---------------+----------------+ +----------------+ 958 * | : VMA 1 | VMA 2 | | VMA 3 : | 959 * +---------------+----------------+ +----------------+ 960 * | memory region | 961 * +--------------------------------------------+ 962 */ 963 do { 964 struct vm_area_struct *vma; 965 hva_t vm_start, vm_end; 966 967 vma = find_vma_intersection(current->mm, hva, reg_end); 968 if (!vma) 969 break; 970 971 /* 972 * Take the intersection of this VMA with the memory region 973 */ 974 vm_start = max(hva, vma->vm_start); 975 vm_end = min(reg_end, vma->vm_end); 976 977 if (!(vma->vm_flags & VM_PFNMAP)) { 978 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 979 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 980 } 981 hva = vm_end; 982 } while (hva < reg_end); 983 } 984 985 /** 986 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 987 * @kvm: The struct kvm pointer 988 * 989 * Go through the memregions and unmap any regular RAM 990 * backing memory already mapped to the VM. 991 */ 992 void stage2_unmap_vm(struct kvm *kvm) 993 { 994 struct kvm_memslots *slots; 995 struct kvm_memory_slot *memslot; 996 int idx, bkt; 997 998 idx = srcu_read_lock(&kvm->srcu); 999 mmap_read_lock(current->mm); 1000 write_lock(&kvm->mmu_lock); 1001 1002 slots = kvm_memslots(kvm); 1003 kvm_for_each_memslot(memslot, bkt, slots) 1004 stage2_unmap_memslot(kvm, memslot); 1005 1006 write_unlock(&kvm->mmu_lock); 1007 mmap_read_unlock(current->mm); 1008 srcu_read_unlock(&kvm->srcu, idx); 1009 } 1010 1011 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 1012 { 1013 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 1014 struct kvm_pgtable *pgt = NULL; 1015 1016 write_lock(&kvm->mmu_lock); 1017 pgt = mmu->pgt; 1018 if (pgt) { 1019 mmu->pgd_phys = 0; 1020 mmu->pgt = NULL; 1021 free_percpu(mmu->last_vcpu_ran); 1022 } 1023 write_unlock(&kvm->mmu_lock); 1024 1025 if (pgt) { 1026 kvm_pgtable_stage2_destroy(pgt); 1027 kfree(pgt); 1028 } 1029 } 1030 1031 static void hyp_mc_free_fn(void *addr, void *unused) 1032 { 1033 free_page((unsigned long)addr); 1034 } 1035 1036 static void *hyp_mc_alloc_fn(void *unused) 1037 { 1038 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT); 1039 } 1040 1041 void free_hyp_memcache(struct kvm_hyp_memcache *mc) 1042 { 1043 if (is_protected_kvm_enabled()) 1044 __free_hyp_memcache(mc, hyp_mc_free_fn, 1045 kvm_host_va, NULL); 1046 } 1047 1048 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages) 1049 { 1050 if (!is_protected_kvm_enabled()) 1051 return 0; 1052 1053 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn, 1054 kvm_host_pa, NULL); 1055 } 1056 1057 /** 1058 * kvm_phys_addr_ioremap - map a device range to guest IPA 1059 * 1060 * @kvm: The KVM pointer 1061 * @guest_ipa: The IPA at which to insert the mapping 1062 * @pa: The physical address of the device 1063 * @size: The size of the mapping 1064 * @writable: Whether or not to create a writable mapping 1065 */ 1066 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 1067 phys_addr_t pa, unsigned long size, bool writable) 1068 { 1069 phys_addr_t addr; 1070 int ret = 0; 1071 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO }; 1072 struct kvm_s2_mmu *mmu = &kvm->arch.mmu; 1073 struct kvm_pgtable *pgt = mmu->pgt; 1074 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 1075 KVM_PGTABLE_PROT_R | 1076 (writable ? KVM_PGTABLE_PROT_W : 0); 1077 1078 if (is_protected_kvm_enabled()) 1079 return -EPERM; 1080 1081 size += offset_in_page(guest_ipa); 1082 guest_ipa &= PAGE_MASK; 1083 1084 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 1085 ret = kvm_mmu_topup_memory_cache(&cache, 1086 kvm_mmu_cache_min_pages(mmu)); 1087 if (ret) 1088 break; 1089 1090 write_lock(&kvm->mmu_lock); 1091 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 1092 &cache, 0); 1093 write_unlock(&kvm->mmu_lock); 1094 if (ret) 1095 break; 1096 1097 pa += PAGE_SIZE; 1098 } 1099 1100 kvm_mmu_free_memory_cache(&cache); 1101 return ret; 1102 } 1103 1104 /** 1105 * stage2_wp_range() - write protect stage2 memory region range 1106 * @mmu: The KVM stage-2 MMU pointer 1107 * @addr: Start address of range 1108 * @end: End address of range 1109 */ 1110 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 1111 { 1112 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect); 1113 } 1114 1115 /** 1116 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 1117 * @kvm: The KVM pointer 1118 * @slot: The memory slot to write protect 1119 * 1120 * Called to start logging dirty pages after memory region 1121 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 1122 * all present PUD, PMD and PTEs are write protected in the memory region. 1123 * Afterwards read of dirty page log can be called. 1124 * 1125 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 1126 * serializing operations for VM memory regions. 1127 */ 1128 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 1129 { 1130 struct kvm_memslots *slots = kvm_memslots(kvm); 1131 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 1132 phys_addr_t start, end; 1133 1134 if (WARN_ON_ONCE(!memslot)) 1135 return; 1136 1137 start = memslot->base_gfn << PAGE_SHIFT; 1138 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 1139 1140 write_lock(&kvm->mmu_lock); 1141 stage2_wp_range(&kvm->arch.mmu, start, end); 1142 write_unlock(&kvm->mmu_lock); 1143 kvm_flush_remote_tlbs_memslot(kvm, memslot); 1144 } 1145 1146 /** 1147 * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE 1148 * pages for memory slot 1149 * @kvm: The KVM pointer 1150 * @slot: The memory slot to split 1151 * 1152 * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired, 1153 * serializing operations for VM memory regions. 1154 */ 1155 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot) 1156 { 1157 struct kvm_memslots *slots; 1158 struct kvm_memory_slot *memslot; 1159 phys_addr_t start, end; 1160 1161 lockdep_assert_held(&kvm->slots_lock); 1162 1163 slots = kvm_memslots(kvm); 1164 memslot = id_to_memslot(slots, slot); 1165 1166 start = memslot->base_gfn << PAGE_SHIFT; 1167 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 1168 1169 write_lock(&kvm->mmu_lock); 1170 kvm_mmu_split_huge_pages(kvm, start, end); 1171 write_unlock(&kvm->mmu_lock); 1172 } 1173 1174 /* 1175 * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages. 1176 * @kvm: The KVM pointer 1177 * @slot: The memory slot associated with mask 1178 * @gfn_offset: The gfn offset in memory slot 1179 * @mask: The mask of pages at offset 'gfn_offset' in this memory 1180 * slot to enable dirty logging on 1181 * 1182 * Writes protect selected pages to enable dirty logging, and then 1183 * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock. 1184 */ 1185 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1186 struct kvm_memory_slot *slot, 1187 gfn_t gfn_offset, unsigned long mask) 1188 { 1189 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 1190 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 1191 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 1192 1193 lockdep_assert_held_write(&kvm->mmu_lock); 1194 1195 stage2_wp_range(&kvm->arch.mmu, start, end); 1196 1197 /* 1198 * Eager-splitting is done when manual-protect is set. We 1199 * also check for initially-all-set because we can avoid 1200 * eager-splitting if initially-all-set is false. 1201 * Initially-all-set equal false implies that huge-pages were 1202 * already split when enabling dirty logging: no need to do it 1203 * again. 1204 */ 1205 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1206 kvm_mmu_split_huge_pages(kvm, start, end); 1207 } 1208 1209 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 1210 { 1211 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 1212 } 1213 1214 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 1215 unsigned long hva, 1216 unsigned long map_size) 1217 { 1218 gpa_t gpa_start; 1219 hva_t uaddr_start, uaddr_end; 1220 size_t size; 1221 1222 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 1223 if (map_size == PAGE_SIZE) 1224 return true; 1225 1226 size = memslot->npages * PAGE_SIZE; 1227 1228 gpa_start = memslot->base_gfn << PAGE_SHIFT; 1229 1230 uaddr_start = memslot->userspace_addr; 1231 uaddr_end = uaddr_start + size; 1232 1233 /* 1234 * Pages belonging to memslots that don't have the same alignment 1235 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 1236 * PMD/PUD entries, because we'll end up mapping the wrong pages. 1237 * 1238 * Consider a layout like the following: 1239 * 1240 * memslot->userspace_addr: 1241 * +-----+--------------------+--------------------+---+ 1242 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 1243 * +-----+--------------------+--------------------+---+ 1244 * 1245 * memslot->base_gfn << PAGE_SHIFT: 1246 * +---+--------------------+--------------------+-----+ 1247 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 1248 * +---+--------------------+--------------------+-----+ 1249 * 1250 * If we create those stage-2 blocks, we'll end up with this incorrect 1251 * mapping: 1252 * d -> f 1253 * e -> g 1254 * f -> h 1255 */ 1256 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 1257 return false; 1258 1259 /* 1260 * Next, let's make sure we're not trying to map anything not covered 1261 * by the memslot. This means we have to prohibit block size mappings 1262 * for the beginning and end of a non-block aligned and non-block sized 1263 * memory slot (illustrated by the head and tail parts of the 1264 * userspace view above containing pages 'abcde' and 'xyz', 1265 * respectively). 1266 * 1267 * Note that it doesn't matter if we do the check using the 1268 * userspace_addr or the base_gfn, as both are equally aligned (per 1269 * the check above) and equally sized. 1270 */ 1271 return (hva & ~(map_size - 1)) >= uaddr_start && 1272 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 1273 } 1274 1275 /* 1276 * Check if the given hva is backed by a transparent huge page (THP) and 1277 * whether it can be mapped using block mapping in stage2. If so, adjust 1278 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 1279 * supported. This will need to be updated to support other THP sizes. 1280 * 1281 * Returns the size of the mapping. 1282 */ 1283 static long 1284 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, 1285 unsigned long hva, kvm_pfn_t *pfnp, 1286 phys_addr_t *ipap) 1287 { 1288 kvm_pfn_t pfn = *pfnp; 1289 1290 /* 1291 * Make sure the adjustment is done only for THP pages. Also make 1292 * sure that the HVA and IPA are sufficiently aligned and that the 1293 * block map is contained within the memslot. 1294 */ 1295 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { 1296 int sz = get_user_mapping_size(kvm, hva); 1297 1298 if (sz < 0) 1299 return sz; 1300 1301 if (sz < PMD_SIZE) 1302 return PAGE_SIZE; 1303 1304 *ipap &= PMD_MASK; 1305 pfn &= ~(PTRS_PER_PMD - 1); 1306 *pfnp = pfn; 1307 1308 return PMD_SIZE; 1309 } 1310 1311 /* Use page mapping if we cannot use block mapping. */ 1312 return PAGE_SIZE; 1313 } 1314 1315 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) 1316 { 1317 unsigned long pa; 1318 1319 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) 1320 return huge_page_shift(hstate_vma(vma)); 1321 1322 if (!(vma->vm_flags & VM_PFNMAP)) 1323 return PAGE_SHIFT; 1324 1325 VM_BUG_ON(is_vm_hugetlb_page(vma)); 1326 1327 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); 1328 1329 #ifndef __PAGETABLE_PMD_FOLDED 1330 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && 1331 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && 1332 ALIGN(hva, PUD_SIZE) <= vma->vm_end) 1333 return PUD_SHIFT; 1334 #endif 1335 1336 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && 1337 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && 1338 ALIGN(hva, PMD_SIZE) <= vma->vm_end) 1339 return PMD_SHIFT; 1340 1341 return PAGE_SHIFT; 1342 } 1343 1344 /* 1345 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be 1346 * able to see the page's tags and therefore they must be initialised first. If 1347 * PG_mte_tagged is set, tags have already been initialised. 1348 * 1349 * The race in the test/set of the PG_mte_tagged flag is handled by: 1350 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs 1351 * racing to santise the same page 1352 * - mmap_lock protects between a VM faulting a page in and the VMM performing 1353 * an mprotect() to add VM_MTE 1354 */ 1355 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, 1356 unsigned long size) 1357 { 1358 unsigned long i, nr_pages = size >> PAGE_SHIFT; 1359 struct page *page = pfn_to_page(pfn); 1360 1361 if (!kvm_has_mte(kvm)) 1362 return; 1363 1364 for (i = 0; i < nr_pages; i++, page++) { 1365 if (try_page_mte_tagging(page)) { 1366 mte_clear_page_tags(page_address(page)); 1367 set_page_mte_tagged(page); 1368 } 1369 } 1370 } 1371 1372 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma) 1373 { 1374 return vma->vm_flags & VM_MTE_ALLOWED; 1375 } 1376 1377 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1378 struct kvm_memory_slot *memslot, unsigned long hva, 1379 bool fault_is_perm) 1380 { 1381 int ret = 0; 1382 bool write_fault, writable, force_pte = false; 1383 bool exec_fault, mte_allowed; 1384 bool device = false, vfio_allow_any_uc = false; 1385 unsigned long mmu_seq; 1386 struct kvm *kvm = vcpu->kvm; 1387 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1388 struct vm_area_struct *vma; 1389 short vma_shift; 1390 gfn_t gfn; 1391 kvm_pfn_t pfn; 1392 bool logging_active = memslot_is_logging(memslot); 1393 long vma_pagesize, fault_granule; 1394 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 1395 struct kvm_pgtable *pgt; 1396 1397 if (fault_is_perm) 1398 fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu); 1399 write_fault = kvm_is_write_fault(vcpu); 1400 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 1401 VM_BUG_ON(write_fault && exec_fault); 1402 1403 if (fault_is_perm && !write_fault && !exec_fault) { 1404 kvm_err("Unexpected L2 read permission error\n"); 1405 return -EFAULT; 1406 } 1407 1408 /* 1409 * Permission faults just need to update the existing leaf entry, 1410 * and so normally don't require allocations from the memcache. The 1411 * only exception to this is when dirty logging is enabled at runtime 1412 * and a write fault needs to collapse a block entry into a table. 1413 */ 1414 if (!fault_is_perm || (logging_active && write_fault)) { 1415 ret = kvm_mmu_topup_memory_cache(memcache, 1416 kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu)); 1417 if (ret) 1418 return ret; 1419 } 1420 1421 /* 1422 * Let's check if we will get back a huge page backed by hugetlbfs, or 1423 * get block mapping for device MMIO region. 1424 */ 1425 mmap_read_lock(current->mm); 1426 vma = vma_lookup(current->mm, hva); 1427 if (unlikely(!vma)) { 1428 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1429 mmap_read_unlock(current->mm); 1430 return -EFAULT; 1431 } 1432 1433 /* 1434 * logging_active is guaranteed to never be true for VM_PFNMAP 1435 * memslots. 1436 */ 1437 if (logging_active) { 1438 force_pte = true; 1439 vma_shift = PAGE_SHIFT; 1440 } else { 1441 vma_shift = get_vma_page_shift(vma, hva); 1442 } 1443 1444 switch (vma_shift) { 1445 #ifndef __PAGETABLE_PMD_FOLDED 1446 case PUD_SHIFT: 1447 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 1448 break; 1449 fallthrough; 1450 #endif 1451 case CONT_PMD_SHIFT: 1452 vma_shift = PMD_SHIFT; 1453 fallthrough; 1454 case PMD_SHIFT: 1455 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 1456 break; 1457 fallthrough; 1458 case CONT_PTE_SHIFT: 1459 vma_shift = PAGE_SHIFT; 1460 force_pte = true; 1461 fallthrough; 1462 case PAGE_SHIFT: 1463 break; 1464 default: 1465 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 1466 } 1467 1468 vma_pagesize = 1UL << vma_shift; 1469 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 1470 fault_ipa &= ~(vma_pagesize - 1); 1471 1472 gfn = fault_ipa >> PAGE_SHIFT; 1473 mte_allowed = kvm_vma_mte_allowed(vma); 1474 1475 vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED; 1476 1477 /* Don't use the VMA after the unlock -- it may have vanished */ 1478 vma = NULL; 1479 1480 /* 1481 * Read mmu_invalidate_seq so that KVM can detect if the results of 1482 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to 1483 * acquiring kvm->mmu_lock. 1484 * 1485 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs 1486 * with the smp_wmb() in kvm_mmu_invalidate_end(). 1487 */ 1488 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 1489 mmap_read_unlock(current->mm); 1490 1491 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, 1492 write_fault, &writable, NULL); 1493 if (pfn == KVM_PFN_ERR_HWPOISON) { 1494 kvm_send_hwpoison_signal(hva, vma_shift); 1495 return 0; 1496 } 1497 if (is_error_noslot_pfn(pfn)) 1498 return -EFAULT; 1499 1500 if (kvm_is_device_pfn(pfn)) { 1501 /* 1502 * If the page was identified as device early by looking at 1503 * the VMA flags, vma_pagesize is already representing the 1504 * largest quantity we can map. If instead it was mapped 1505 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE 1506 * and must not be upgraded. 1507 * 1508 * In both cases, we don't let transparent_hugepage_adjust() 1509 * change things at the last minute. 1510 */ 1511 device = true; 1512 } else if (logging_active && !write_fault) { 1513 /* 1514 * Only actually map the page as writable if this was a write 1515 * fault. 1516 */ 1517 writable = false; 1518 } 1519 1520 if (exec_fault && device) 1521 return -ENOEXEC; 1522 1523 read_lock(&kvm->mmu_lock); 1524 pgt = vcpu->arch.hw_mmu->pgt; 1525 if (mmu_invalidate_retry(kvm, mmu_seq)) { 1526 ret = -EAGAIN; 1527 goto out_unlock; 1528 } 1529 1530 /* 1531 * If we are not forced to use page mapping, check if we are 1532 * backed by a THP and thus use block mapping if possible. 1533 */ 1534 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { 1535 if (fault_is_perm && fault_granule > PAGE_SIZE) 1536 vma_pagesize = fault_granule; 1537 else 1538 vma_pagesize = transparent_hugepage_adjust(kvm, memslot, 1539 hva, &pfn, 1540 &fault_ipa); 1541 1542 if (vma_pagesize < 0) { 1543 ret = vma_pagesize; 1544 goto out_unlock; 1545 } 1546 } 1547 1548 if (!fault_is_perm && !device && kvm_has_mte(kvm)) { 1549 /* Check the VMM hasn't introduced a new disallowed VMA */ 1550 if (mte_allowed) { 1551 sanitise_mte_tags(kvm, pfn, vma_pagesize); 1552 } else { 1553 ret = -EFAULT; 1554 goto out_unlock; 1555 } 1556 } 1557 1558 if (writable) 1559 prot |= KVM_PGTABLE_PROT_W; 1560 1561 if (exec_fault) 1562 prot |= KVM_PGTABLE_PROT_X; 1563 1564 if (device) { 1565 if (vfio_allow_any_uc) 1566 prot |= KVM_PGTABLE_PROT_NORMAL_NC; 1567 else 1568 prot |= KVM_PGTABLE_PROT_DEVICE; 1569 } else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC)) { 1570 prot |= KVM_PGTABLE_PROT_X; 1571 } 1572 1573 /* 1574 * Under the premise of getting a FSC_PERM fault, we just need to relax 1575 * permissions only if vma_pagesize equals fault_granule. Otherwise, 1576 * kvm_pgtable_stage2_map() should be called to change block size. 1577 */ 1578 if (fault_is_perm && vma_pagesize == fault_granule) 1579 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 1580 else 1581 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 1582 __pfn_to_phys(pfn), prot, 1583 memcache, 1584 KVM_PGTABLE_WALK_HANDLE_FAULT | 1585 KVM_PGTABLE_WALK_SHARED); 1586 out_unlock: 1587 read_unlock(&kvm->mmu_lock); 1588 1589 /* Mark the page dirty only if the fault is handled successfully */ 1590 if (writable && !ret) { 1591 kvm_set_pfn_dirty(pfn); 1592 mark_page_dirty_in_slot(kvm, memslot, gfn); 1593 } 1594 1595 kvm_release_pfn_clean(pfn); 1596 return ret != -EAGAIN ? ret : 0; 1597 } 1598 1599 /* Resolve the access fault by making the page young again. */ 1600 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1601 { 1602 kvm_pte_t pte; 1603 struct kvm_s2_mmu *mmu; 1604 1605 trace_kvm_access_fault(fault_ipa); 1606 1607 read_lock(&vcpu->kvm->mmu_lock); 1608 mmu = vcpu->arch.hw_mmu; 1609 pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1610 read_unlock(&vcpu->kvm->mmu_lock); 1611 1612 if (kvm_pte_valid(pte)) 1613 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte)); 1614 } 1615 1616 /** 1617 * kvm_handle_guest_abort - handles all 2nd stage aborts 1618 * @vcpu: the VCPU pointer 1619 * 1620 * Any abort that gets to the host is almost guaranteed to be caused by a 1621 * missing second stage translation table entry, which can mean that either the 1622 * guest simply needs more memory and we must allocate an appropriate page or it 1623 * can mean that the guest tried to access I/O memory, which is emulated by user 1624 * space. The distinction is based on the IPA causing the fault and whether this 1625 * memory region has been registered as standard RAM by user space. 1626 */ 1627 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1628 { 1629 unsigned long esr; 1630 phys_addr_t fault_ipa; 1631 struct kvm_memory_slot *memslot; 1632 unsigned long hva; 1633 bool is_iabt, write_fault, writable; 1634 gfn_t gfn; 1635 int ret, idx; 1636 1637 esr = kvm_vcpu_get_esr(vcpu); 1638 1639 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1640 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1641 1642 if (esr_fsc_is_translation_fault(esr)) { 1643 /* Beyond sanitised PARange (which is the IPA limit) */ 1644 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) { 1645 kvm_inject_size_fault(vcpu); 1646 return 1; 1647 } 1648 1649 /* Falls between the IPA range and the PARange? */ 1650 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) { 1651 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); 1652 1653 if (is_iabt) 1654 kvm_inject_pabt(vcpu, fault_ipa); 1655 else 1656 kvm_inject_dabt(vcpu, fault_ipa); 1657 return 1; 1658 } 1659 } 1660 1661 /* Synchronous External Abort? */ 1662 if (kvm_vcpu_abt_issea(vcpu)) { 1663 /* 1664 * For RAS the host kernel may handle this abort. 1665 * There is no need to pass the error into the guest. 1666 */ 1667 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1668 kvm_inject_vabt(vcpu); 1669 1670 return 1; 1671 } 1672 1673 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1674 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1675 1676 /* Check the stage-2 fault is trans. fault or write fault */ 1677 if (!esr_fsc_is_translation_fault(esr) && 1678 !esr_fsc_is_permission_fault(esr) && 1679 !esr_fsc_is_access_flag_fault(esr)) { 1680 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1681 kvm_vcpu_trap_get_class(vcpu), 1682 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1683 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1684 return -EFAULT; 1685 } 1686 1687 idx = srcu_read_lock(&vcpu->kvm->srcu); 1688 1689 gfn = fault_ipa >> PAGE_SHIFT; 1690 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1691 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1692 write_fault = kvm_is_write_fault(vcpu); 1693 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1694 /* 1695 * The guest has put either its instructions or its page-tables 1696 * somewhere it shouldn't have. Userspace won't be able to do 1697 * anything about this (there's no syndrome for a start), so 1698 * re-inject the abort back into the guest. 1699 */ 1700 if (is_iabt) { 1701 ret = -ENOEXEC; 1702 goto out; 1703 } 1704 1705 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1706 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1707 ret = 1; 1708 goto out_unlock; 1709 } 1710 1711 /* 1712 * Check for a cache maintenance operation. Since we 1713 * ended-up here, we know it is outside of any memory 1714 * slot. But we can't find out if that is for a device, 1715 * or if the guest is just being stupid. The only thing 1716 * we know for sure is that this range cannot be cached. 1717 * 1718 * So let's assume that the guest is just being 1719 * cautious, and skip the instruction. 1720 */ 1721 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1722 kvm_incr_pc(vcpu); 1723 ret = 1; 1724 goto out_unlock; 1725 } 1726 1727 /* 1728 * The IPA is reported as [MAX:12], so we need to 1729 * complement it with the bottom 12 bits from the 1730 * faulting VA. This is always 12 bits, irrespective 1731 * of the page size. 1732 */ 1733 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1734 ret = io_mem_abort(vcpu, fault_ipa); 1735 goto out_unlock; 1736 } 1737 1738 /* Userspace should not be able to register out-of-bounds IPAs */ 1739 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->arch.hw_mmu)); 1740 1741 if (esr_fsc_is_access_flag_fault(esr)) { 1742 handle_access_fault(vcpu, fault_ipa); 1743 ret = 1; 1744 goto out_unlock; 1745 } 1746 1747 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, 1748 esr_fsc_is_permission_fault(esr)); 1749 if (ret == 0) 1750 ret = 1; 1751 out: 1752 if (ret == -ENOEXEC) { 1753 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1754 ret = 1; 1755 } 1756 out_unlock: 1757 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1758 return ret; 1759 } 1760 1761 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1762 { 1763 if (!kvm->arch.mmu.pgt) 1764 return false; 1765 1766 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1767 (range->end - range->start) << PAGE_SHIFT, 1768 range->may_block); 1769 1770 return false; 1771 } 1772 1773 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1774 { 1775 u64 size = (range->end - range->start) << PAGE_SHIFT; 1776 1777 if (!kvm->arch.mmu.pgt) 1778 return false; 1779 1780 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt, 1781 range->start << PAGE_SHIFT, 1782 size, true); 1783 } 1784 1785 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1786 { 1787 u64 size = (range->end - range->start) << PAGE_SHIFT; 1788 1789 if (!kvm->arch.mmu.pgt) 1790 return false; 1791 1792 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt, 1793 range->start << PAGE_SHIFT, 1794 size, false); 1795 } 1796 1797 phys_addr_t kvm_mmu_get_httbr(void) 1798 { 1799 return __pa(hyp_pgtable->pgd); 1800 } 1801 1802 phys_addr_t kvm_get_idmap_vector(void) 1803 { 1804 return hyp_idmap_vector; 1805 } 1806 1807 static int kvm_map_idmap_text(void) 1808 { 1809 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1810 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1811 PAGE_HYP_EXEC); 1812 if (err) 1813 kvm_err("Failed to idmap %lx-%lx\n", 1814 hyp_idmap_start, hyp_idmap_end); 1815 1816 return err; 1817 } 1818 1819 static void *kvm_hyp_zalloc_page(void *arg) 1820 { 1821 return (void *)get_zeroed_page(GFP_KERNEL); 1822 } 1823 1824 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1825 .zalloc_page = kvm_hyp_zalloc_page, 1826 .get_page = kvm_host_get_page, 1827 .put_page = kvm_host_put_page, 1828 .phys_to_virt = kvm_host_va, 1829 .virt_to_phys = kvm_host_pa, 1830 }; 1831 1832 int __init kvm_mmu_init(u32 *hyp_va_bits) 1833 { 1834 int err; 1835 u32 idmap_bits; 1836 u32 kernel_bits; 1837 1838 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1839 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1840 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1841 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1842 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1843 1844 /* 1845 * We rely on the linker script to ensure at build time that the HYP 1846 * init code does not cross a page boundary. 1847 */ 1848 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1849 1850 /* 1851 * The ID map is always configured for 48 bits of translation, which 1852 * may be fewer than the number of VA bits used by the regular kernel 1853 * stage 1, when VA_BITS=52. 1854 * 1855 * At EL2, there is only one TTBR register, and we can't switch between 1856 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom 1857 * line: we need to use the extended range with *both* our translation 1858 * tables. 1859 * 1860 * So use the maximum of the idmap VA bits and the regular kernel stage 1861 * 1 VA bits to assure that the hypervisor can both ID map its code page 1862 * and map any kernel memory. 1863 */ 1864 idmap_bits = IDMAP_VA_BITS; 1865 kernel_bits = vabits_actual; 1866 *hyp_va_bits = max(idmap_bits, kernel_bits); 1867 1868 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 1869 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1870 kvm_debug("HYP VA range: %lx:%lx\n", 1871 kern_hyp_va(PAGE_OFFSET), 1872 kern_hyp_va((unsigned long)high_memory - 1)); 1873 1874 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1875 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1876 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1877 /* 1878 * The idmap page is intersecting with the VA space, 1879 * it is not safe to continue further. 1880 */ 1881 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1882 err = -EINVAL; 1883 goto out; 1884 } 1885 1886 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1887 if (!hyp_pgtable) { 1888 kvm_err("Hyp mode page-table not allocated\n"); 1889 err = -ENOMEM; 1890 goto out; 1891 } 1892 1893 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 1894 if (err) 1895 goto out_free_pgtable; 1896 1897 err = kvm_map_idmap_text(); 1898 if (err) 1899 goto out_destroy_pgtable; 1900 1901 io_map_base = hyp_idmap_start; 1902 return 0; 1903 1904 out_destroy_pgtable: 1905 kvm_pgtable_hyp_destroy(hyp_pgtable); 1906 out_free_pgtable: 1907 kfree(hyp_pgtable); 1908 hyp_pgtable = NULL; 1909 out: 1910 return err; 1911 } 1912 1913 void kvm_arch_commit_memory_region(struct kvm *kvm, 1914 struct kvm_memory_slot *old, 1915 const struct kvm_memory_slot *new, 1916 enum kvm_mr_change change) 1917 { 1918 bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES; 1919 1920 /* 1921 * At this point memslot has been committed and there is an 1922 * allocated dirty_bitmap[], dirty pages will be tracked while the 1923 * memory slot is write protected. 1924 */ 1925 if (log_dirty_pages) { 1926 1927 if (change == KVM_MR_DELETE) 1928 return; 1929 1930 /* 1931 * Huge and normal pages are write-protected and split 1932 * on either of these two cases: 1933 * 1934 * 1. with initial-all-set: gradually with CLEAR ioctls, 1935 */ 1936 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1937 return; 1938 /* 1939 * or 1940 * 2. without initial-all-set: all in one shot when 1941 * enabling dirty logging. 1942 */ 1943 kvm_mmu_wp_memory_region(kvm, new->id); 1944 kvm_mmu_split_memory_region(kvm, new->id); 1945 } else { 1946 /* 1947 * Free any leftovers from the eager page splitting cache. Do 1948 * this when deleting, moving, disabling dirty logging, or 1949 * creating the memslot (a nop). Doing it for deletes makes 1950 * sure we don't leak memory, and there's no need to keep the 1951 * cache around for any of the other cases. 1952 */ 1953 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); 1954 } 1955 } 1956 1957 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1958 const struct kvm_memory_slot *old, 1959 struct kvm_memory_slot *new, 1960 enum kvm_mr_change change) 1961 { 1962 hva_t hva, reg_end; 1963 int ret = 0; 1964 1965 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 1966 change != KVM_MR_FLAGS_ONLY) 1967 return 0; 1968 1969 /* 1970 * Prevent userspace from creating a memory region outside of the IPA 1971 * space addressable by the KVM guest IPA space. 1972 */ 1973 if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT)) 1974 return -EFAULT; 1975 1976 hva = new->userspace_addr; 1977 reg_end = hva + (new->npages << PAGE_SHIFT); 1978 1979 mmap_read_lock(current->mm); 1980 /* 1981 * A memory region could potentially cover multiple VMAs, and any holes 1982 * between them, so iterate over all of them. 1983 * 1984 * +--------------------------------------------+ 1985 * +---------------+----------------+ +----------------+ 1986 * | : VMA 1 | VMA 2 | | VMA 3 : | 1987 * +---------------+----------------+ +----------------+ 1988 * | memory region | 1989 * +--------------------------------------------+ 1990 */ 1991 do { 1992 struct vm_area_struct *vma; 1993 1994 vma = find_vma_intersection(current->mm, hva, reg_end); 1995 if (!vma) 1996 break; 1997 1998 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) { 1999 ret = -EINVAL; 2000 break; 2001 } 2002 2003 if (vma->vm_flags & VM_PFNMAP) { 2004 /* IO region dirty page logging not allowed */ 2005 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 2006 ret = -EINVAL; 2007 break; 2008 } 2009 } 2010 hva = min(reg_end, vma->vm_end); 2011 } while (hva < reg_end); 2012 2013 mmap_read_unlock(current->mm); 2014 return ret; 2015 } 2016 2017 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 2018 { 2019 } 2020 2021 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 2022 { 2023 } 2024 2025 void kvm_arch_flush_shadow_all(struct kvm *kvm) 2026 { 2027 kvm_uninit_stage2_mmu(kvm); 2028 } 2029 2030 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 2031 struct kvm_memory_slot *slot) 2032 { 2033 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 2034 phys_addr_t size = slot->npages << PAGE_SHIFT; 2035 2036 write_lock(&kvm->mmu_lock); 2037 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 2038 write_unlock(&kvm->mmu_lock); 2039 } 2040 2041 /* 2042 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 2043 * 2044 * Main problems: 2045 * - S/W ops are local to a CPU (not broadcast) 2046 * - We have line migration behind our back (speculation) 2047 * - System caches don't support S/W at all (damn!) 2048 * 2049 * In the face of the above, the best we can do is to try and convert 2050 * S/W ops to VA ops. Because the guest is not allowed to infer the 2051 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 2052 * which is a rather good thing for us. 2053 * 2054 * Also, it is only used when turning caches on/off ("The expected 2055 * usage of the cache maintenance instructions that operate by set/way 2056 * is associated with the cache maintenance instructions associated 2057 * with the powerdown and powerup of caches, if this is required by 2058 * the implementation."). 2059 * 2060 * We use the following policy: 2061 * 2062 * - If we trap a S/W operation, we enable VM trapping to detect 2063 * caches being turned on/off, and do a full clean. 2064 * 2065 * - We flush the caches on both caches being turned on and off. 2066 * 2067 * - Once the caches are enabled, we stop trapping VM ops. 2068 */ 2069 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 2070 { 2071 unsigned long hcr = *vcpu_hcr(vcpu); 2072 2073 /* 2074 * If this is the first time we do a S/W operation 2075 * (i.e. HCR_TVM not set) flush the whole memory, and set the 2076 * VM trapping. 2077 * 2078 * Otherwise, rely on the VM trapping to wait for the MMU + 2079 * Caches to be turned off. At that point, we'll be able to 2080 * clean the caches again. 2081 */ 2082 if (!(hcr & HCR_TVM)) { 2083 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 2084 vcpu_has_cache_enabled(vcpu)); 2085 stage2_flush_vm(vcpu->kvm); 2086 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 2087 } 2088 } 2089 2090 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 2091 { 2092 bool now_enabled = vcpu_has_cache_enabled(vcpu); 2093 2094 /* 2095 * If switching the MMU+caches on, need to invalidate the caches. 2096 * If switching it off, need to clean the caches. 2097 * Clean + invalidate does the trick always. 2098 */ 2099 if (now_enabled != was_enabled) 2100 stage2_flush_vm(vcpu->kvm); 2101 2102 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 2103 if (now_enabled) 2104 *vcpu_hcr(vcpu) &= ~HCR_TVM; 2105 2106 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 2107 } 2108