1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long hyp_idmap_start; 29 static unsigned long hyp_idmap_end; 30 static phys_addr_t hyp_idmap_vector; 31 32 static unsigned long io_map_base; 33 34 35 /* 36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 39 * long will also starve other vCPUs. We have to also make sure that the page 40 * tables are not freed while we released the lock. 41 */ 42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr, 43 phys_addr_t end, 44 int (*fn)(struct kvm_pgtable *, u64, u64), 45 bool resched) 46 { 47 int ret; 48 u64 next; 49 50 do { 51 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 52 if (!pgt) 53 return -EINVAL; 54 55 next = stage2_pgd_addr_end(kvm, addr, end); 56 ret = fn(pgt, addr, next - addr); 57 if (ret) 58 break; 59 60 if (resched && next != end) 61 cond_resched_rwlock_write(&kvm->mmu_lock); 62 } while (addr = next, addr != end); 63 64 return ret; 65 } 66 67 #define stage2_apply_range_resched(kvm, addr, end, fn) \ 68 stage2_apply_range(kvm, addr, end, fn, true) 69 70 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 71 { 72 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 73 } 74 75 /** 76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 77 * @kvm: pointer to kvm structure. 78 * 79 * Interface to HYP function to flush all VM TLB entries 80 */ 81 void kvm_flush_remote_tlbs(struct kvm *kvm) 82 { 83 ++kvm->stat.generic.remote_tlb_flush_requests; 84 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 85 } 86 87 static bool kvm_is_device_pfn(unsigned long pfn) 88 { 89 return !pfn_is_map_memory(pfn); 90 } 91 92 static void *stage2_memcache_zalloc_page(void *arg) 93 { 94 struct kvm_mmu_memory_cache *mc = arg; 95 96 /* Allocated with __GFP_ZERO, so no need to zero */ 97 return kvm_mmu_memory_cache_alloc(mc); 98 } 99 100 static void *kvm_host_zalloc_pages_exact(size_t size) 101 { 102 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 103 } 104 105 static void kvm_host_get_page(void *addr) 106 { 107 get_page(virt_to_page(addr)); 108 } 109 110 static void kvm_host_put_page(void *addr) 111 { 112 put_page(virt_to_page(addr)); 113 } 114 115 static int kvm_host_page_count(void *addr) 116 { 117 return page_count(virt_to_page(addr)); 118 } 119 120 static phys_addr_t kvm_host_pa(void *addr) 121 { 122 return __pa(addr); 123 } 124 125 static void *kvm_host_va(phys_addr_t phys) 126 { 127 return __va(phys); 128 } 129 130 static void clean_dcache_guest_page(void *va, size_t size) 131 { 132 __clean_dcache_guest_page(va, size); 133 } 134 135 static void invalidate_icache_guest_page(void *va, size_t size) 136 { 137 __invalidate_icache_guest_page(va, size); 138 } 139 140 /* 141 * Unmapping vs dcache management: 142 * 143 * If a guest maps certain memory pages as uncached, all writes will 144 * bypass the data cache and go directly to RAM. However, the CPUs 145 * can still speculate reads (not writes) and fill cache lines with 146 * data. 147 * 148 * Those cache lines will be *clean* cache lines though, so a 149 * clean+invalidate operation is equivalent to an invalidate 150 * operation, because no cache lines are marked dirty. 151 * 152 * Those clean cache lines could be filled prior to an uncached write 153 * by the guest, and the cache coherent IO subsystem would therefore 154 * end up writing old data to disk. 155 * 156 * This is why right after unmapping a page/section and invalidating 157 * the corresponding TLBs, we flush to make sure the IO subsystem will 158 * never hit in the cache. 159 * 160 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 161 * we then fully enforce cacheability of RAM, no matter what the guest 162 * does. 163 */ 164 /** 165 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 166 * @mmu: The KVM stage-2 MMU pointer 167 * @start: The intermediate physical base address of the range to unmap 168 * @size: The size of the area to unmap 169 * @may_block: Whether or not we are permitted to block 170 * 171 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 172 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 173 * destroying the VM), otherwise another faulting VCPU may come in and mess 174 * with things behind our backs. 175 */ 176 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 177 bool may_block) 178 { 179 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 180 phys_addr_t end = start + size; 181 182 lockdep_assert_held_write(&kvm->mmu_lock); 183 WARN_ON(size & ~PAGE_MASK); 184 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap, 185 may_block)); 186 } 187 188 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 189 { 190 __unmap_stage2_range(mmu, start, size, true); 191 } 192 193 static void stage2_flush_memslot(struct kvm *kvm, 194 struct kvm_memory_slot *memslot) 195 { 196 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 197 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 198 199 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush); 200 } 201 202 /** 203 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 204 * @kvm: The struct kvm pointer 205 * 206 * Go through the stage 2 page tables and invalidate any cache lines 207 * backing memory already mapped to the VM. 208 */ 209 static void stage2_flush_vm(struct kvm *kvm) 210 { 211 struct kvm_memslots *slots; 212 struct kvm_memory_slot *memslot; 213 int idx, bkt; 214 215 idx = srcu_read_lock(&kvm->srcu); 216 write_lock(&kvm->mmu_lock); 217 218 slots = kvm_memslots(kvm); 219 kvm_for_each_memslot(memslot, bkt, slots) 220 stage2_flush_memslot(kvm, memslot); 221 222 write_unlock(&kvm->mmu_lock); 223 srcu_read_unlock(&kvm->srcu, idx); 224 } 225 226 /** 227 * free_hyp_pgds - free Hyp-mode page tables 228 */ 229 void free_hyp_pgds(void) 230 { 231 mutex_lock(&kvm_hyp_pgd_mutex); 232 if (hyp_pgtable) { 233 kvm_pgtable_hyp_destroy(hyp_pgtable); 234 kfree(hyp_pgtable); 235 hyp_pgtable = NULL; 236 } 237 mutex_unlock(&kvm_hyp_pgd_mutex); 238 } 239 240 static bool kvm_host_owns_hyp_mappings(void) 241 { 242 if (is_kernel_in_hyp_mode()) 243 return false; 244 245 if (static_branch_likely(&kvm_protected_mode_initialized)) 246 return false; 247 248 /* 249 * This can happen at boot time when __create_hyp_mappings() is called 250 * after the hyp protection has been enabled, but the static key has 251 * not been flipped yet. 252 */ 253 if (!hyp_pgtable && is_protected_kvm_enabled()) 254 return false; 255 256 WARN_ON(!hyp_pgtable); 257 258 return true; 259 } 260 261 int __create_hyp_mappings(unsigned long start, unsigned long size, 262 unsigned long phys, enum kvm_pgtable_prot prot) 263 { 264 int err; 265 266 if (WARN_ON(!kvm_host_owns_hyp_mappings())) 267 return -EINVAL; 268 269 mutex_lock(&kvm_hyp_pgd_mutex); 270 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 271 mutex_unlock(&kvm_hyp_pgd_mutex); 272 273 return err; 274 } 275 276 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 277 { 278 if (!is_vmalloc_addr(kaddr)) { 279 BUG_ON(!virt_addr_valid(kaddr)); 280 return __pa(kaddr); 281 } else { 282 return page_to_phys(vmalloc_to_page(kaddr)) + 283 offset_in_page(kaddr); 284 } 285 } 286 287 struct hyp_shared_pfn { 288 u64 pfn; 289 int count; 290 struct rb_node node; 291 }; 292 293 static DEFINE_MUTEX(hyp_shared_pfns_lock); 294 static struct rb_root hyp_shared_pfns = RB_ROOT; 295 296 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node, 297 struct rb_node **parent) 298 { 299 struct hyp_shared_pfn *this; 300 301 *node = &hyp_shared_pfns.rb_node; 302 *parent = NULL; 303 while (**node) { 304 this = container_of(**node, struct hyp_shared_pfn, node); 305 *parent = **node; 306 if (this->pfn < pfn) 307 *node = &((**node)->rb_left); 308 else if (this->pfn > pfn) 309 *node = &((**node)->rb_right); 310 else 311 return this; 312 } 313 314 return NULL; 315 } 316 317 static int share_pfn_hyp(u64 pfn) 318 { 319 struct rb_node **node, *parent; 320 struct hyp_shared_pfn *this; 321 int ret = 0; 322 323 mutex_lock(&hyp_shared_pfns_lock); 324 this = find_shared_pfn(pfn, &node, &parent); 325 if (this) { 326 this->count++; 327 goto unlock; 328 } 329 330 this = kzalloc(sizeof(*this), GFP_KERNEL); 331 if (!this) { 332 ret = -ENOMEM; 333 goto unlock; 334 } 335 336 this->pfn = pfn; 337 this->count = 1; 338 rb_link_node(&this->node, parent, node); 339 rb_insert_color(&this->node, &hyp_shared_pfns); 340 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1); 341 unlock: 342 mutex_unlock(&hyp_shared_pfns_lock); 343 344 return ret; 345 } 346 347 static int unshare_pfn_hyp(u64 pfn) 348 { 349 struct rb_node **node, *parent; 350 struct hyp_shared_pfn *this; 351 int ret = 0; 352 353 mutex_lock(&hyp_shared_pfns_lock); 354 this = find_shared_pfn(pfn, &node, &parent); 355 if (WARN_ON(!this)) { 356 ret = -ENOENT; 357 goto unlock; 358 } 359 360 this->count--; 361 if (this->count) 362 goto unlock; 363 364 rb_erase(&this->node, &hyp_shared_pfns); 365 kfree(this); 366 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1); 367 unlock: 368 mutex_unlock(&hyp_shared_pfns_lock); 369 370 return ret; 371 } 372 373 int kvm_share_hyp(void *from, void *to) 374 { 375 phys_addr_t start, end, cur; 376 u64 pfn; 377 int ret; 378 379 if (is_kernel_in_hyp_mode()) 380 return 0; 381 382 /* 383 * The share hcall maps things in the 'fixed-offset' region of the hyp 384 * VA space, so we can only share physically contiguous data-structures 385 * for now. 386 */ 387 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to)) 388 return -EINVAL; 389 390 if (kvm_host_owns_hyp_mappings()) 391 return create_hyp_mappings(from, to, PAGE_HYP); 392 393 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 394 end = PAGE_ALIGN(__pa(to)); 395 for (cur = start; cur < end; cur += PAGE_SIZE) { 396 pfn = __phys_to_pfn(cur); 397 ret = share_pfn_hyp(pfn); 398 if (ret) 399 return ret; 400 } 401 402 return 0; 403 } 404 405 void kvm_unshare_hyp(void *from, void *to) 406 { 407 phys_addr_t start, end, cur; 408 u64 pfn; 409 410 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from) 411 return; 412 413 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 414 end = PAGE_ALIGN(__pa(to)); 415 for (cur = start; cur < end; cur += PAGE_SIZE) { 416 pfn = __phys_to_pfn(cur); 417 WARN_ON(unshare_pfn_hyp(pfn)); 418 } 419 } 420 421 /** 422 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 423 * @from: The virtual kernel start address of the range 424 * @to: The virtual kernel end address of the range (exclusive) 425 * @prot: The protection to be applied to this range 426 * 427 * The same virtual address as the kernel virtual address is also used 428 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 429 * physical pages. 430 */ 431 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 432 { 433 phys_addr_t phys_addr; 434 unsigned long virt_addr; 435 unsigned long start = kern_hyp_va((unsigned long)from); 436 unsigned long end = kern_hyp_va((unsigned long)to); 437 438 if (is_kernel_in_hyp_mode()) 439 return 0; 440 441 if (!kvm_host_owns_hyp_mappings()) 442 return -EPERM; 443 444 start = start & PAGE_MASK; 445 end = PAGE_ALIGN(end); 446 447 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 448 int err; 449 450 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 451 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 452 prot); 453 if (err) 454 return err; 455 } 456 457 return 0; 458 } 459 460 461 /** 462 * hyp_alloc_private_va_range - Allocates a private VA range. 463 * @size: The size of the VA range to reserve. 464 * @haddr: The hypervisor virtual start address of the allocation. 465 * 466 * The private virtual address (VA) range is allocated below io_map_base 467 * and aligned based on the order of @size. 468 * 469 * Return: 0 on success or negative error code on failure. 470 */ 471 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr) 472 { 473 unsigned long base; 474 int ret = 0; 475 476 mutex_lock(&kvm_hyp_pgd_mutex); 477 478 /* 479 * This assumes that we have enough space below the idmap 480 * page to allocate our VAs. If not, the check below will 481 * kick. A potential alternative would be to detect that 482 * overflow and switch to an allocation above the idmap. 483 * 484 * The allocated size is always a multiple of PAGE_SIZE. 485 */ 486 base = io_map_base - PAGE_ALIGN(size); 487 488 /* Align the allocation based on the order of its size */ 489 base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size)); 490 491 /* 492 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 493 * allocating the new area, as it would indicate we've 494 * overflowed the idmap/IO address range. 495 */ 496 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 497 ret = -ENOMEM; 498 else 499 *haddr = io_map_base = base; 500 501 mutex_unlock(&kvm_hyp_pgd_mutex); 502 503 return ret; 504 } 505 506 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 507 unsigned long *haddr, 508 enum kvm_pgtable_prot prot) 509 { 510 unsigned long addr; 511 int ret = 0; 512 513 if (!kvm_host_owns_hyp_mappings()) { 514 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 515 phys_addr, size, prot); 516 if (IS_ERR_VALUE(addr)) 517 return addr; 518 *haddr = addr; 519 520 return 0; 521 } 522 523 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 524 ret = hyp_alloc_private_va_range(size, &addr); 525 if (ret) 526 return ret; 527 528 ret = __create_hyp_mappings(addr, size, phys_addr, prot); 529 if (ret) 530 return ret; 531 532 *haddr = addr + offset_in_page(phys_addr); 533 return ret; 534 } 535 536 /** 537 * create_hyp_io_mappings - Map IO into both kernel and HYP 538 * @phys_addr: The physical start address which gets mapped 539 * @size: Size of the region being mapped 540 * @kaddr: Kernel VA for this mapping 541 * @haddr: HYP VA for this mapping 542 */ 543 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 544 void __iomem **kaddr, 545 void __iomem **haddr) 546 { 547 unsigned long addr; 548 int ret; 549 550 if (is_protected_kvm_enabled()) 551 return -EPERM; 552 553 *kaddr = ioremap(phys_addr, size); 554 if (!*kaddr) 555 return -ENOMEM; 556 557 if (is_kernel_in_hyp_mode()) { 558 *haddr = *kaddr; 559 return 0; 560 } 561 562 ret = __create_hyp_private_mapping(phys_addr, size, 563 &addr, PAGE_HYP_DEVICE); 564 if (ret) { 565 iounmap(*kaddr); 566 *kaddr = NULL; 567 *haddr = NULL; 568 return ret; 569 } 570 571 *haddr = (void __iomem *)addr; 572 return 0; 573 } 574 575 /** 576 * create_hyp_exec_mappings - Map an executable range into HYP 577 * @phys_addr: The physical start address which gets mapped 578 * @size: Size of the region being mapped 579 * @haddr: HYP VA for this mapping 580 */ 581 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 582 void **haddr) 583 { 584 unsigned long addr; 585 int ret; 586 587 BUG_ON(is_kernel_in_hyp_mode()); 588 589 ret = __create_hyp_private_mapping(phys_addr, size, 590 &addr, PAGE_HYP_EXEC); 591 if (ret) { 592 *haddr = NULL; 593 return ret; 594 } 595 596 *haddr = (void *)addr; 597 return 0; 598 } 599 600 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { 601 /* We shouldn't need any other callback to walk the PT */ 602 .phys_to_virt = kvm_host_va, 603 }; 604 605 static int get_user_mapping_size(struct kvm *kvm, u64 addr) 606 { 607 struct kvm_pgtable pgt = { 608 .pgd = (kvm_pte_t *)kvm->mm->pgd, 609 .ia_bits = VA_BITS, 610 .start_level = (KVM_PGTABLE_MAX_LEVELS - 611 CONFIG_PGTABLE_LEVELS), 612 .mm_ops = &kvm_user_mm_ops, 613 }; 614 kvm_pte_t pte = 0; /* Keep GCC quiet... */ 615 u32 level = ~0; 616 int ret; 617 618 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); 619 VM_BUG_ON(ret); 620 VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS); 621 VM_BUG_ON(!(pte & PTE_VALID)); 622 623 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); 624 } 625 626 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 627 .zalloc_page = stage2_memcache_zalloc_page, 628 .zalloc_pages_exact = kvm_host_zalloc_pages_exact, 629 .free_pages_exact = free_pages_exact, 630 .get_page = kvm_host_get_page, 631 .put_page = kvm_host_put_page, 632 .page_count = kvm_host_page_count, 633 .phys_to_virt = kvm_host_va, 634 .virt_to_phys = kvm_host_pa, 635 .dcache_clean_inval_poc = clean_dcache_guest_page, 636 .icache_inval_pou = invalidate_icache_guest_page, 637 }; 638 639 /** 640 * kvm_init_stage2_mmu - Initialise a S2 MMU structure 641 * @kvm: The pointer to the KVM structure 642 * @mmu: The pointer to the s2 MMU structure 643 * 644 * Allocates only the stage-2 HW PGD level table(s). 645 * Note we don't need locking here as this is only called when the VM is 646 * created, which can only be done once. 647 */ 648 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) 649 { 650 int cpu, err; 651 struct kvm_pgtable *pgt; 652 653 if (mmu->pgt != NULL) { 654 kvm_err("kvm_arch already initialized?\n"); 655 return -EINVAL; 656 } 657 658 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); 659 if (!pgt) 660 return -ENOMEM; 661 662 mmu->arch = &kvm->arch; 663 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops); 664 if (err) 665 goto out_free_pgtable; 666 667 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 668 if (!mmu->last_vcpu_ran) { 669 err = -ENOMEM; 670 goto out_destroy_pgtable; 671 } 672 673 for_each_possible_cpu(cpu) 674 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 675 676 mmu->pgt = pgt; 677 mmu->pgd_phys = __pa(pgt->pgd); 678 return 0; 679 680 out_destroy_pgtable: 681 kvm_pgtable_stage2_destroy(pgt); 682 out_free_pgtable: 683 kfree(pgt); 684 return err; 685 } 686 687 static void stage2_unmap_memslot(struct kvm *kvm, 688 struct kvm_memory_slot *memslot) 689 { 690 hva_t hva = memslot->userspace_addr; 691 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 692 phys_addr_t size = PAGE_SIZE * memslot->npages; 693 hva_t reg_end = hva + size; 694 695 /* 696 * A memory region could potentially cover multiple VMAs, and any holes 697 * between them, so iterate over all of them to find out if we should 698 * unmap any of them. 699 * 700 * +--------------------------------------------+ 701 * +---------------+----------------+ +----------------+ 702 * | : VMA 1 | VMA 2 | | VMA 3 : | 703 * +---------------+----------------+ +----------------+ 704 * | memory region | 705 * +--------------------------------------------+ 706 */ 707 do { 708 struct vm_area_struct *vma; 709 hva_t vm_start, vm_end; 710 711 vma = find_vma_intersection(current->mm, hva, reg_end); 712 if (!vma) 713 break; 714 715 /* 716 * Take the intersection of this VMA with the memory region 717 */ 718 vm_start = max(hva, vma->vm_start); 719 vm_end = min(reg_end, vma->vm_end); 720 721 if (!(vma->vm_flags & VM_PFNMAP)) { 722 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 723 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 724 } 725 hva = vm_end; 726 } while (hva < reg_end); 727 } 728 729 /** 730 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 731 * @kvm: The struct kvm pointer 732 * 733 * Go through the memregions and unmap any regular RAM 734 * backing memory already mapped to the VM. 735 */ 736 void stage2_unmap_vm(struct kvm *kvm) 737 { 738 struct kvm_memslots *slots; 739 struct kvm_memory_slot *memslot; 740 int idx, bkt; 741 742 idx = srcu_read_lock(&kvm->srcu); 743 mmap_read_lock(current->mm); 744 write_lock(&kvm->mmu_lock); 745 746 slots = kvm_memslots(kvm); 747 kvm_for_each_memslot(memslot, bkt, slots) 748 stage2_unmap_memslot(kvm, memslot); 749 750 write_unlock(&kvm->mmu_lock); 751 mmap_read_unlock(current->mm); 752 srcu_read_unlock(&kvm->srcu, idx); 753 } 754 755 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 756 { 757 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 758 struct kvm_pgtable *pgt = NULL; 759 760 write_lock(&kvm->mmu_lock); 761 pgt = mmu->pgt; 762 if (pgt) { 763 mmu->pgd_phys = 0; 764 mmu->pgt = NULL; 765 free_percpu(mmu->last_vcpu_ran); 766 } 767 write_unlock(&kvm->mmu_lock); 768 769 if (pgt) { 770 kvm_pgtable_stage2_destroy(pgt); 771 kfree(pgt); 772 } 773 } 774 775 /** 776 * kvm_phys_addr_ioremap - map a device range to guest IPA 777 * 778 * @kvm: The KVM pointer 779 * @guest_ipa: The IPA at which to insert the mapping 780 * @pa: The physical address of the device 781 * @size: The size of the mapping 782 * @writable: Whether or not to create a writable mapping 783 */ 784 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 785 phys_addr_t pa, unsigned long size, bool writable) 786 { 787 phys_addr_t addr; 788 int ret = 0; 789 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO }; 790 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 791 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 792 KVM_PGTABLE_PROT_R | 793 (writable ? KVM_PGTABLE_PROT_W : 0); 794 795 if (is_protected_kvm_enabled()) 796 return -EPERM; 797 798 size += offset_in_page(guest_ipa); 799 guest_ipa &= PAGE_MASK; 800 801 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 802 ret = kvm_mmu_topup_memory_cache(&cache, 803 kvm_mmu_cache_min_pages(kvm)); 804 if (ret) 805 break; 806 807 write_lock(&kvm->mmu_lock); 808 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 809 &cache); 810 write_unlock(&kvm->mmu_lock); 811 if (ret) 812 break; 813 814 pa += PAGE_SIZE; 815 } 816 817 kvm_mmu_free_memory_cache(&cache); 818 return ret; 819 } 820 821 /** 822 * stage2_wp_range() - write protect stage2 memory region range 823 * @mmu: The KVM stage-2 MMU pointer 824 * @addr: Start address of range 825 * @end: End address of range 826 */ 827 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 828 { 829 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 830 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect); 831 } 832 833 /** 834 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 835 * @kvm: The KVM pointer 836 * @slot: The memory slot to write protect 837 * 838 * Called to start logging dirty pages after memory region 839 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 840 * all present PUD, PMD and PTEs are write protected in the memory region. 841 * Afterwards read of dirty page log can be called. 842 * 843 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 844 * serializing operations for VM memory regions. 845 */ 846 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 847 { 848 struct kvm_memslots *slots = kvm_memslots(kvm); 849 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 850 phys_addr_t start, end; 851 852 if (WARN_ON_ONCE(!memslot)) 853 return; 854 855 start = memslot->base_gfn << PAGE_SHIFT; 856 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 857 858 write_lock(&kvm->mmu_lock); 859 stage2_wp_range(&kvm->arch.mmu, start, end); 860 write_unlock(&kvm->mmu_lock); 861 kvm_flush_remote_tlbs(kvm); 862 } 863 864 /** 865 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 866 * @kvm: The KVM pointer 867 * @slot: The memory slot associated with mask 868 * @gfn_offset: The gfn offset in memory slot 869 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 870 * slot to be write protected 871 * 872 * Walks bits set in mask write protects the associated pte's. Caller must 873 * acquire kvm_mmu_lock. 874 */ 875 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 876 struct kvm_memory_slot *slot, 877 gfn_t gfn_offset, unsigned long mask) 878 { 879 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 880 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 881 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 882 883 stage2_wp_range(&kvm->arch.mmu, start, end); 884 } 885 886 /* 887 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 888 * dirty pages. 889 * 890 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 891 * enable dirty logging for them. 892 */ 893 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 894 struct kvm_memory_slot *slot, 895 gfn_t gfn_offset, unsigned long mask) 896 { 897 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 898 } 899 900 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 901 { 902 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 903 } 904 905 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 906 unsigned long hva, 907 unsigned long map_size) 908 { 909 gpa_t gpa_start; 910 hva_t uaddr_start, uaddr_end; 911 size_t size; 912 913 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 914 if (map_size == PAGE_SIZE) 915 return true; 916 917 size = memslot->npages * PAGE_SIZE; 918 919 gpa_start = memslot->base_gfn << PAGE_SHIFT; 920 921 uaddr_start = memslot->userspace_addr; 922 uaddr_end = uaddr_start + size; 923 924 /* 925 * Pages belonging to memslots that don't have the same alignment 926 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 927 * PMD/PUD entries, because we'll end up mapping the wrong pages. 928 * 929 * Consider a layout like the following: 930 * 931 * memslot->userspace_addr: 932 * +-----+--------------------+--------------------+---+ 933 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 934 * +-----+--------------------+--------------------+---+ 935 * 936 * memslot->base_gfn << PAGE_SHIFT: 937 * +---+--------------------+--------------------+-----+ 938 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 939 * +---+--------------------+--------------------+-----+ 940 * 941 * If we create those stage-2 blocks, we'll end up with this incorrect 942 * mapping: 943 * d -> f 944 * e -> g 945 * f -> h 946 */ 947 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 948 return false; 949 950 /* 951 * Next, let's make sure we're not trying to map anything not covered 952 * by the memslot. This means we have to prohibit block size mappings 953 * for the beginning and end of a non-block aligned and non-block sized 954 * memory slot (illustrated by the head and tail parts of the 955 * userspace view above containing pages 'abcde' and 'xyz', 956 * respectively). 957 * 958 * Note that it doesn't matter if we do the check using the 959 * userspace_addr or the base_gfn, as both are equally aligned (per 960 * the check above) and equally sized. 961 */ 962 return (hva & ~(map_size - 1)) >= uaddr_start && 963 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 964 } 965 966 /* 967 * Check if the given hva is backed by a transparent huge page (THP) and 968 * whether it can be mapped using block mapping in stage2. If so, adjust 969 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 970 * supported. This will need to be updated to support other THP sizes. 971 * 972 * Returns the size of the mapping. 973 */ 974 static unsigned long 975 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, 976 unsigned long hva, kvm_pfn_t *pfnp, 977 phys_addr_t *ipap) 978 { 979 kvm_pfn_t pfn = *pfnp; 980 981 /* 982 * Make sure the adjustment is done only for THP pages. Also make 983 * sure that the HVA and IPA are sufficiently aligned and that the 984 * block map is contained within the memslot. 985 */ 986 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) && 987 get_user_mapping_size(kvm, hva) >= PMD_SIZE) { 988 /* 989 * The address we faulted on is backed by a transparent huge 990 * page. However, because we map the compound huge page and 991 * not the individual tail page, we need to transfer the 992 * refcount to the head page. We have to be careful that the 993 * THP doesn't start to split while we are adjusting the 994 * refcounts. 995 * 996 * We are sure this doesn't happen, because mmu_notifier_retry 997 * was successful and we are holding the mmu_lock, so if this 998 * THP is trying to split, it will be blocked in the mmu 999 * notifier before touching any of the pages, specifically 1000 * before being able to call __split_huge_page_refcount(). 1001 * 1002 * We can therefore safely transfer the refcount from PG_tail 1003 * to PG_head and switch the pfn from a tail page to the head 1004 * page accordingly. 1005 */ 1006 *ipap &= PMD_MASK; 1007 kvm_release_pfn_clean(pfn); 1008 pfn &= ~(PTRS_PER_PMD - 1); 1009 get_page(pfn_to_page(pfn)); 1010 *pfnp = pfn; 1011 1012 return PMD_SIZE; 1013 } 1014 1015 /* Use page mapping if we cannot use block mapping. */ 1016 return PAGE_SIZE; 1017 } 1018 1019 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) 1020 { 1021 unsigned long pa; 1022 1023 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) 1024 return huge_page_shift(hstate_vma(vma)); 1025 1026 if (!(vma->vm_flags & VM_PFNMAP)) 1027 return PAGE_SHIFT; 1028 1029 VM_BUG_ON(is_vm_hugetlb_page(vma)); 1030 1031 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); 1032 1033 #ifndef __PAGETABLE_PMD_FOLDED 1034 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && 1035 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && 1036 ALIGN(hva, PUD_SIZE) <= vma->vm_end) 1037 return PUD_SHIFT; 1038 #endif 1039 1040 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && 1041 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && 1042 ALIGN(hva, PMD_SIZE) <= vma->vm_end) 1043 return PMD_SHIFT; 1044 1045 return PAGE_SHIFT; 1046 } 1047 1048 /* 1049 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be 1050 * able to see the page's tags and therefore they must be initialised first. If 1051 * PG_mte_tagged is set, tags have already been initialised. 1052 * 1053 * The race in the test/set of the PG_mte_tagged flag is handled by: 1054 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs 1055 * racing to santise the same page 1056 * - mmap_lock protects between a VM faulting a page in and the VMM performing 1057 * an mprotect() to add VM_MTE 1058 */ 1059 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, 1060 unsigned long size) 1061 { 1062 unsigned long i, nr_pages = size >> PAGE_SHIFT; 1063 struct page *page; 1064 1065 if (!kvm_has_mte(kvm)) 1066 return 0; 1067 1068 /* 1069 * pfn_to_online_page() is used to reject ZONE_DEVICE pages 1070 * that may not support tags. 1071 */ 1072 page = pfn_to_online_page(pfn); 1073 1074 if (!page) 1075 return -EFAULT; 1076 1077 for (i = 0; i < nr_pages; i++, page++) { 1078 if (!test_bit(PG_mte_tagged, &page->flags)) { 1079 mte_clear_page_tags(page_address(page)); 1080 set_bit(PG_mte_tagged, &page->flags); 1081 } 1082 } 1083 1084 return 0; 1085 } 1086 1087 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1088 struct kvm_memory_slot *memslot, unsigned long hva, 1089 unsigned long fault_status) 1090 { 1091 int ret = 0; 1092 bool write_fault, writable, force_pte = false; 1093 bool exec_fault; 1094 bool device = false; 1095 bool shared; 1096 unsigned long mmu_seq; 1097 struct kvm *kvm = vcpu->kvm; 1098 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1099 struct vm_area_struct *vma; 1100 short vma_shift; 1101 gfn_t gfn; 1102 kvm_pfn_t pfn; 1103 bool logging_active = memslot_is_logging(memslot); 1104 bool use_read_lock = false; 1105 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); 1106 unsigned long vma_pagesize, fault_granule; 1107 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 1108 struct kvm_pgtable *pgt; 1109 1110 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); 1111 write_fault = kvm_is_write_fault(vcpu); 1112 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 1113 VM_BUG_ON(write_fault && exec_fault); 1114 1115 if (fault_status == FSC_PERM && !write_fault && !exec_fault) { 1116 kvm_err("Unexpected L2 read permission error\n"); 1117 return -EFAULT; 1118 } 1119 1120 /* 1121 * Let's check if we will get back a huge page backed by hugetlbfs, or 1122 * get block mapping for device MMIO region. 1123 */ 1124 mmap_read_lock(current->mm); 1125 vma = vma_lookup(current->mm, hva); 1126 if (unlikely(!vma)) { 1127 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1128 mmap_read_unlock(current->mm); 1129 return -EFAULT; 1130 } 1131 1132 /* 1133 * logging_active is guaranteed to never be true for VM_PFNMAP 1134 * memslots. 1135 */ 1136 if (logging_active) { 1137 force_pte = true; 1138 vma_shift = PAGE_SHIFT; 1139 use_read_lock = (fault_status == FSC_PERM && write_fault && 1140 fault_granule == PAGE_SIZE); 1141 } else { 1142 vma_shift = get_vma_page_shift(vma, hva); 1143 } 1144 1145 shared = (vma->vm_flags & VM_SHARED); 1146 1147 switch (vma_shift) { 1148 #ifndef __PAGETABLE_PMD_FOLDED 1149 case PUD_SHIFT: 1150 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 1151 break; 1152 fallthrough; 1153 #endif 1154 case CONT_PMD_SHIFT: 1155 vma_shift = PMD_SHIFT; 1156 fallthrough; 1157 case PMD_SHIFT: 1158 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 1159 break; 1160 fallthrough; 1161 case CONT_PTE_SHIFT: 1162 vma_shift = PAGE_SHIFT; 1163 force_pte = true; 1164 fallthrough; 1165 case PAGE_SHIFT: 1166 break; 1167 default: 1168 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 1169 } 1170 1171 vma_pagesize = 1UL << vma_shift; 1172 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 1173 fault_ipa &= ~(vma_pagesize - 1); 1174 1175 gfn = fault_ipa >> PAGE_SHIFT; 1176 mmap_read_unlock(current->mm); 1177 1178 /* 1179 * Permission faults just need to update the existing leaf entry, 1180 * and so normally don't require allocations from the memcache. The 1181 * only exception to this is when dirty logging is enabled at runtime 1182 * and a write fault needs to collapse a block entry into a table. 1183 */ 1184 if (fault_status != FSC_PERM || (logging_active && write_fault)) { 1185 ret = kvm_mmu_topup_memory_cache(memcache, 1186 kvm_mmu_cache_min_pages(kvm)); 1187 if (ret) 1188 return ret; 1189 } 1190 1191 mmu_seq = vcpu->kvm->mmu_notifier_seq; 1192 /* 1193 * Ensure the read of mmu_notifier_seq happens before we call 1194 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 1195 * the page we just got a reference to gets unmapped before we have a 1196 * chance to grab the mmu_lock, which ensure that if the page gets 1197 * unmapped afterwards, the call to kvm_unmap_gfn will take it away 1198 * from us again properly. This smp_rmb() interacts with the smp_wmb() 1199 * in kvm_mmu_notifier_invalidate_<page|range_end>. 1200 * 1201 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is 1202 * used to avoid unnecessary overhead introduced to locate the memory 1203 * slot because it's always fixed even @gfn is adjusted for huge pages. 1204 */ 1205 smp_rmb(); 1206 1207 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 1208 write_fault, &writable, NULL); 1209 if (pfn == KVM_PFN_ERR_HWPOISON) { 1210 kvm_send_hwpoison_signal(hva, vma_shift); 1211 return 0; 1212 } 1213 if (is_error_noslot_pfn(pfn)) 1214 return -EFAULT; 1215 1216 if (kvm_is_device_pfn(pfn)) { 1217 /* 1218 * If the page was identified as device early by looking at 1219 * the VMA flags, vma_pagesize is already representing the 1220 * largest quantity we can map. If instead it was mapped 1221 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE 1222 * and must not be upgraded. 1223 * 1224 * In both cases, we don't let transparent_hugepage_adjust() 1225 * change things at the last minute. 1226 */ 1227 device = true; 1228 } else if (logging_active && !write_fault) { 1229 /* 1230 * Only actually map the page as writable if this was a write 1231 * fault. 1232 */ 1233 writable = false; 1234 } 1235 1236 if (exec_fault && device) 1237 return -ENOEXEC; 1238 1239 /* 1240 * To reduce MMU contentions and enhance concurrency during dirty 1241 * logging dirty logging, only acquire read lock for permission 1242 * relaxation. 1243 */ 1244 if (use_read_lock) 1245 read_lock(&kvm->mmu_lock); 1246 else 1247 write_lock(&kvm->mmu_lock); 1248 pgt = vcpu->arch.hw_mmu->pgt; 1249 if (mmu_notifier_retry(kvm, mmu_seq)) 1250 goto out_unlock; 1251 1252 /* 1253 * If we are not forced to use page mapping, check if we are 1254 * backed by a THP and thus use block mapping if possible. 1255 */ 1256 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { 1257 if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE) 1258 vma_pagesize = fault_granule; 1259 else 1260 vma_pagesize = transparent_hugepage_adjust(kvm, memslot, 1261 hva, &pfn, 1262 &fault_ipa); 1263 } 1264 1265 if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) { 1266 /* Check the VMM hasn't introduced a new VM_SHARED VMA */ 1267 if (!shared) 1268 ret = sanitise_mte_tags(kvm, pfn, vma_pagesize); 1269 else 1270 ret = -EFAULT; 1271 if (ret) 1272 goto out_unlock; 1273 } 1274 1275 if (writable) 1276 prot |= KVM_PGTABLE_PROT_W; 1277 1278 if (exec_fault) 1279 prot |= KVM_PGTABLE_PROT_X; 1280 1281 if (device) 1282 prot |= KVM_PGTABLE_PROT_DEVICE; 1283 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 1284 prot |= KVM_PGTABLE_PROT_X; 1285 1286 /* 1287 * Under the premise of getting a FSC_PERM fault, we just need to relax 1288 * permissions only if vma_pagesize equals fault_granule. Otherwise, 1289 * kvm_pgtable_stage2_map() should be called to change block size. 1290 */ 1291 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) { 1292 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 1293 } else { 1294 WARN_ONCE(use_read_lock, "Attempted stage-2 map outside of write lock\n"); 1295 1296 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 1297 __pfn_to_phys(pfn), prot, 1298 memcache); 1299 } 1300 1301 /* Mark the page dirty only if the fault is handled successfully */ 1302 if (writable && !ret) { 1303 kvm_set_pfn_dirty(pfn); 1304 mark_page_dirty_in_slot(kvm, memslot, gfn); 1305 } 1306 1307 out_unlock: 1308 if (use_read_lock) 1309 read_unlock(&kvm->mmu_lock); 1310 else 1311 write_unlock(&kvm->mmu_lock); 1312 kvm_set_pfn_accessed(pfn); 1313 kvm_release_pfn_clean(pfn); 1314 return ret != -EAGAIN ? ret : 0; 1315 } 1316 1317 /* Resolve the access fault by making the page young again. */ 1318 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1319 { 1320 pte_t pte; 1321 kvm_pte_t kpte; 1322 struct kvm_s2_mmu *mmu; 1323 1324 trace_kvm_access_fault(fault_ipa); 1325 1326 write_lock(&vcpu->kvm->mmu_lock); 1327 mmu = vcpu->arch.hw_mmu; 1328 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1329 write_unlock(&vcpu->kvm->mmu_lock); 1330 1331 pte = __pte(kpte); 1332 if (pte_valid(pte)) 1333 kvm_set_pfn_accessed(pte_pfn(pte)); 1334 } 1335 1336 /** 1337 * kvm_handle_guest_abort - handles all 2nd stage aborts 1338 * @vcpu: the VCPU pointer 1339 * 1340 * Any abort that gets to the host is almost guaranteed to be caused by a 1341 * missing second stage translation table entry, which can mean that either the 1342 * guest simply needs more memory and we must allocate an appropriate page or it 1343 * can mean that the guest tried to access I/O memory, which is emulated by user 1344 * space. The distinction is based on the IPA causing the fault and whether this 1345 * memory region has been registered as standard RAM by user space. 1346 */ 1347 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1348 { 1349 unsigned long fault_status; 1350 phys_addr_t fault_ipa; 1351 struct kvm_memory_slot *memslot; 1352 unsigned long hva; 1353 bool is_iabt, write_fault, writable; 1354 gfn_t gfn; 1355 int ret, idx; 1356 1357 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 1358 1359 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1360 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1361 1362 if (fault_status == FSC_FAULT) { 1363 /* Beyond sanitised PARange (which is the IPA limit) */ 1364 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) { 1365 kvm_inject_size_fault(vcpu); 1366 return 1; 1367 } 1368 1369 /* Falls between the IPA range and the PARange? */ 1370 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) { 1371 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); 1372 1373 if (is_iabt) 1374 kvm_inject_pabt(vcpu, fault_ipa); 1375 else 1376 kvm_inject_dabt(vcpu, fault_ipa); 1377 return 1; 1378 } 1379 } 1380 1381 /* Synchronous External Abort? */ 1382 if (kvm_vcpu_abt_issea(vcpu)) { 1383 /* 1384 * For RAS the host kernel may handle this abort. 1385 * There is no need to pass the error into the guest. 1386 */ 1387 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1388 kvm_inject_vabt(vcpu); 1389 1390 return 1; 1391 } 1392 1393 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1394 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1395 1396 /* Check the stage-2 fault is trans. fault or write fault */ 1397 if (fault_status != FSC_FAULT && fault_status != FSC_PERM && 1398 fault_status != FSC_ACCESS) { 1399 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1400 kvm_vcpu_trap_get_class(vcpu), 1401 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1402 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1403 return -EFAULT; 1404 } 1405 1406 idx = srcu_read_lock(&vcpu->kvm->srcu); 1407 1408 gfn = fault_ipa >> PAGE_SHIFT; 1409 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1410 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1411 write_fault = kvm_is_write_fault(vcpu); 1412 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1413 /* 1414 * The guest has put either its instructions or its page-tables 1415 * somewhere it shouldn't have. Userspace won't be able to do 1416 * anything about this (there's no syndrome for a start), so 1417 * re-inject the abort back into the guest. 1418 */ 1419 if (is_iabt) { 1420 ret = -ENOEXEC; 1421 goto out; 1422 } 1423 1424 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1425 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1426 ret = 1; 1427 goto out_unlock; 1428 } 1429 1430 /* 1431 * Check for a cache maintenance operation. Since we 1432 * ended-up here, we know it is outside of any memory 1433 * slot. But we can't find out if that is for a device, 1434 * or if the guest is just being stupid. The only thing 1435 * we know for sure is that this range cannot be cached. 1436 * 1437 * So let's assume that the guest is just being 1438 * cautious, and skip the instruction. 1439 */ 1440 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1441 kvm_incr_pc(vcpu); 1442 ret = 1; 1443 goto out_unlock; 1444 } 1445 1446 /* 1447 * The IPA is reported as [MAX:12], so we need to 1448 * complement it with the bottom 12 bits from the 1449 * faulting VA. This is always 12 bits, irrespective 1450 * of the page size. 1451 */ 1452 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1453 ret = io_mem_abort(vcpu, fault_ipa); 1454 goto out_unlock; 1455 } 1456 1457 /* Userspace should not be able to register out-of-bounds IPAs */ 1458 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1459 1460 if (fault_status == FSC_ACCESS) { 1461 handle_access_fault(vcpu, fault_ipa); 1462 ret = 1; 1463 goto out_unlock; 1464 } 1465 1466 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1467 if (ret == 0) 1468 ret = 1; 1469 out: 1470 if (ret == -ENOEXEC) { 1471 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1472 ret = 1; 1473 } 1474 out_unlock: 1475 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1476 return ret; 1477 } 1478 1479 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1480 { 1481 if (!kvm->arch.mmu.pgt) 1482 return false; 1483 1484 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1485 (range->end - range->start) << PAGE_SHIFT, 1486 range->may_block); 1487 1488 return false; 1489 } 1490 1491 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1492 { 1493 kvm_pfn_t pfn = pte_pfn(range->pte); 1494 int ret; 1495 1496 if (!kvm->arch.mmu.pgt) 1497 return false; 1498 1499 WARN_ON(range->end - range->start != 1); 1500 1501 ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE); 1502 if (ret) 1503 return false; 1504 1505 /* 1506 * We've moved a page around, probably through CoW, so let's treat 1507 * it just like a translation fault and the map handler will clean 1508 * the cache to the PoC. 1509 * 1510 * The MMU notifiers will have unmapped a huge PMD before calling 1511 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and 1512 * therefore we never need to clear out a huge PMD through this 1513 * calling path and a memcache is not required. 1514 */ 1515 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT, 1516 PAGE_SIZE, __pfn_to_phys(pfn), 1517 KVM_PGTABLE_PROT_R, NULL); 1518 1519 return false; 1520 } 1521 1522 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1523 { 1524 u64 size = (range->end - range->start) << PAGE_SHIFT; 1525 kvm_pte_t kpte; 1526 pte_t pte; 1527 1528 if (!kvm->arch.mmu.pgt) 1529 return false; 1530 1531 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1532 1533 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, 1534 range->start << PAGE_SHIFT); 1535 pte = __pte(kpte); 1536 return pte_valid(pte) && pte_young(pte); 1537 } 1538 1539 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1540 { 1541 if (!kvm->arch.mmu.pgt) 1542 return false; 1543 1544 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, 1545 range->start << PAGE_SHIFT); 1546 } 1547 1548 phys_addr_t kvm_mmu_get_httbr(void) 1549 { 1550 return __pa(hyp_pgtable->pgd); 1551 } 1552 1553 phys_addr_t kvm_get_idmap_vector(void) 1554 { 1555 return hyp_idmap_vector; 1556 } 1557 1558 static int kvm_map_idmap_text(void) 1559 { 1560 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1561 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1562 PAGE_HYP_EXEC); 1563 if (err) 1564 kvm_err("Failed to idmap %lx-%lx\n", 1565 hyp_idmap_start, hyp_idmap_end); 1566 1567 return err; 1568 } 1569 1570 static void *kvm_hyp_zalloc_page(void *arg) 1571 { 1572 return (void *)get_zeroed_page(GFP_KERNEL); 1573 } 1574 1575 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1576 .zalloc_page = kvm_hyp_zalloc_page, 1577 .get_page = kvm_host_get_page, 1578 .put_page = kvm_host_put_page, 1579 .phys_to_virt = kvm_host_va, 1580 .virt_to_phys = kvm_host_pa, 1581 }; 1582 1583 int kvm_mmu_init(u32 *hyp_va_bits) 1584 { 1585 int err; 1586 1587 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1588 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1589 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1590 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1591 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1592 1593 /* 1594 * We rely on the linker script to ensure at build time that the HYP 1595 * init code does not cross a page boundary. 1596 */ 1597 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1598 1599 *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1600 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 1601 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1602 kvm_debug("HYP VA range: %lx:%lx\n", 1603 kern_hyp_va(PAGE_OFFSET), 1604 kern_hyp_va((unsigned long)high_memory - 1)); 1605 1606 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1607 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1608 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1609 /* 1610 * The idmap page is intersecting with the VA space, 1611 * it is not safe to continue further. 1612 */ 1613 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1614 err = -EINVAL; 1615 goto out; 1616 } 1617 1618 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1619 if (!hyp_pgtable) { 1620 kvm_err("Hyp mode page-table not allocated\n"); 1621 err = -ENOMEM; 1622 goto out; 1623 } 1624 1625 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 1626 if (err) 1627 goto out_free_pgtable; 1628 1629 err = kvm_map_idmap_text(); 1630 if (err) 1631 goto out_destroy_pgtable; 1632 1633 io_map_base = hyp_idmap_start; 1634 return 0; 1635 1636 out_destroy_pgtable: 1637 kvm_pgtable_hyp_destroy(hyp_pgtable); 1638 out_free_pgtable: 1639 kfree(hyp_pgtable); 1640 hyp_pgtable = NULL; 1641 out: 1642 return err; 1643 } 1644 1645 void kvm_arch_commit_memory_region(struct kvm *kvm, 1646 struct kvm_memory_slot *old, 1647 const struct kvm_memory_slot *new, 1648 enum kvm_mr_change change) 1649 { 1650 /* 1651 * At this point memslot has been committed and there is an 1652 * allocated dirty_bitmap[], dirty pages will be tracked while the 1653 * memory slot is write protected. 1654 */ 1655 if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1656 /* 1657 * If we're with initial-all-set, we don't need to write 1658 * protect any pages because they're all reported as dirty. 1659 * Huge pages and normal pages will be write protect gradually. 1660 */ 1661 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1662 kvm_mmu_wp_memory_region(kvm, new->id); 1663 } 1664 } 1665 } 1666 1667 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1668 const struct kvm_memory_slot *old, 1669 struct kvm_memory_slot *new, 1670 enum kvm_mr_change change) 1671 { 1672 hva_t hva, reg_end; 1673 int ret = 0; 1674 1675 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 1676 change != KVM_MR_FLAGS_ONLY) 1677 return 0; 1678 1679 /* 1680 * Prevent userspace from creating a memory region outside of the IPA 1681 * space addressable by the KVM guest IPA space. 1682 */ 1683 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) 1684 return -EFAULT; 1685 1686 hva = new->userspace_addr; 1687 reg_end = hva + (new->npages << PAGE_SHIFT); 1688 1689 mmap_read_lock(current->mm); 1690 /* 1691 * A memory region could potentially cover multiple VMAs, and any holes 1692 * between them, so iterate over all of them. 1693 * 1694 * +--------------------------------------------+ 1695 * +---------------+----------------+ +----------------+ 1696 * | : VMA 1 | VMA 2 | | VMA 3 : | 1697 * +---------------+----------------+ +----------------+ 1698 * | memory region | 1699 * +--------------------------------------------+ 1700 */ 1701 do { 1702 struct vm_area_struct *vma; 1703 1704 vma = find_vma_intersection(current->mm, hva, reg_end); 1705 if (!vma) 1706 break; 1707 1708 /* 1709 * VM_SHARED mappings are not allowed with MTE to avoid races 1710 * when updating the PG_mte_tagged page flag, see 1711 * sanitise_mte_tags for more details. 1712 */ 1713 if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) { 1714 ret = -EINVAL; 1715 break; 1716 } 1717 1718 if (vma->vm_flags & VM_PFNMAP) { 1719 /* IO region dirty page logging not allowed */ 1720 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1721 ret = -EINVAL; 1722 break; 1723 } 1724 } 1725 hva = min(reg_end, vma->vm_end); 1726 } while (hva < reg_end); 1727 1728 mmap_read_unlock(current->mm); 1729 return ret; 1730 } 1731 1732 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1733 { 1734 } 1735 1736 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 1737 { 1738 } 1739 1740 void kvm_arch_flush_shadow_all(struct kvm *kvm) 1741 { 1742 kvm_free_stage2_pgd(&kvm->arch.mmu); 1743 } 1744 1745 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1746 struct kvm_memory_slot *slot) 1747 { 1748 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 1749 phys_addr_t size = slot->npages << PAGE_SHIFT; 1750 1751 write_lock(&kvm->mmu_lock); 1752 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 1753 write_unlock(&kvm->mmu_lock); 1754 } 1755 1756 /* 1757 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 1758 * 1759 * Main problems: 1760 * - S/W ops are local to a CPU (not broadcast) 1761 * - We have line migration behind our back (speculation) 1762 * - System caches don't support S/W at all (damn!) 1763 * 1764 * In the face of the above, the best we can do is to try and convert 1765 * S/W ops to VA ops. Because the guest is not allowed to infer the 1766 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 1767 * which is a rather good thing for us. 1768 * 1769 * Also, it is only used when turning caches on/off ("The expected 1770 * usage of the cache maintenance instructions that operate by set/way 1771 * is associated with the cache maintenance instructions associated 1772 * with the powerdown and powerup of caches, if this is required by 1773 * the implementation."). 1774 * 1775 * We use the following policy: 1776 * 1777 * - If we trap a S/W operation, we enable VM trapping to detect 1778 * caches being turned on/off, and do a full clean. 1779 * 1780 * - We flush the caches on both caches being turned on and off. 1781 * 1782 * - Once the caches are enabled, we stop trapping VM ops. 1783 */ 1784 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 1785 { 1786 unsigned long hcr = *vcpu_hcr(vcpu); 1787 1788 /* 1789 * If this is the first time we do a S/W operation 1790 * (i.e. HCR_TVM not set) flush the whole memory, and set the 1791 * VM trapping. 1792 * 1793 * Otherwise, rely on the VM trapping to wait for the MMU + 1794 * Caches to be turned off. At that point, we'll be able to 1795 * clean the caches again. 1796 */ 1797 if (!(hcr & HCR_TVM)) { 1798 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 1799 vcpu_has_cache_enabled(vcpu)); 1800 stage2_flush_vm(vcpu->kvm); 1801 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 1802 } 1803 } 1804 1805 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 1806 { 1807 bool now_enabled = vcpu_has_cache_enabled(vcpu); 1808 1809 /* 1810 * If switching the MMU+caches on, need to invalidate the caches. 1811 * If switching it off, need to clean the caches. 1812 * Clean + invalidate does the trick always. 1813 */ 1814 if (now_enabled != was_enabled) 1815 stage2_flush_vm(vcpu->kvm); 1816 1817 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 1818 if (now_enabled) 1819 *vcpu_hcr(vcpu) &= ~HCR_TVM; 1820 1821 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 1822 } 1823