xref: /linux/arch/arm64/kvm/hyp/vhe/tlb.c (revision 52a9dab6d892763b2a8334a568bd4e2c1a6fde66)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/irqflags.h>
8 
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/tlbflush.h>
12 
13 struct tlb_inv_context {
14 	unsigned long	flags;
15 	u64		tcr;
16 	u64		sctlr;
17 };
18 
19 static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
20 				  struct tlb_inv_context *cxt)
21 {
22 	u64 val;
23 
24 	local_irq_save(cxt->flags);
25 
26 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
27 		/*
28 		 * For CPUs that are affected by ARM errata 1165522 or 1530923,
29 		 * we cannot trust stage-1 to be in a correct state at that
30 		 * point. Since we do not want to force a full load of the
31 		 * vcpu state, we prevent the EL1 page-table walker to
32 		 * allocate new TLBs. This is done by setting the EPD bits
33 		 * in the TCR_EL1 register. We also need to prevent it to
34 		 * allocate IPA->PA walks, so we enable the S1 MMU...
35 		 */
36 		val = cxt->tcr = read_sysreg_el1(SYS_TCR);
37 		val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
38 		write_sysreg_el1(val, SYS_TCR);
39 		val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR);
40 		val |= SCTLR_ELx_M;
41 		write_sysreg_el1(val, SYS_SCTLR);
42 	}
43 
44 	/*
45 	 * With VHE enabled, we have HCR_EL2.{E2H,TGE} = {1,1}, and
46 	 * most TLB operations target EL2/EL0. In order to affect the
47 	 * guest TLBs (EL1/EL0), we need to change one of these two
48 	 * bits. Changing E2H is impossible (goodbye TTBR1_EL2), so
49 	 * let's flip TGE before executing the TLB operation.
50 	 *
51 	 * ARM erratum 1165522 requires some special handling (again),
52 	 * as we need to make sure both stages of translation are in
53 	 * place before clearing TGE. __load_stage2() already
54 	 * has an ISB in order to deal with this.
55 	 */
56 	__load_stage2(mmu, mmu->arch);
57 	val = read_sysreg(hcr_el2);
58 	val &= ~HCR_TGE;
59 	write_sysreg(val, hcr_el2);
60 	isb();
61 }
62 
63 static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
64 {
65 	/*
66 	 * We're done with the TLB operation, let's restore the host's
67 	 * view of HCR_EL2.
68 	 */
69 	write_sysreg(0, vttbr_el2);
70 	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
71 	isb();
72 
73 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
74 		/* Restore the registers to what they were */
75 		write_sysreg_el1(cxt->tcr, SYS_TCR);
76 		write_sysreg_el1(cxt->sctlr, SYS_SCTLR);
77 	}
78 
79 	local_irq_restore(cxt->flags);
80 }
81 
82 void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
83 			      phys_addr_t ipa, int level)
84 {
85 	struct tlb_inv_context cxt;
86 
87 	dsb(ishst);
88 
89 	/* Switch to requested VMID */
90 	__tlb_switch_to_guest(mmu, &cxt);
91 
92 	/*
93 	 * We could do so much better if we had the VA as well.
94 	 * Instead, we invalidate Stage-2 for this IPA, and the
95 	 * whole of Stage-1. Weep...
96 	 */
97 	ipa >>= 12;
98 	__tlbi_level(ipas2e1is, ipa, level);
99 
100 	/*
101 	 * We have to ensure completion of the invalidation at Stage-2,
102 	 * since a table walk on another CPU could refill a TLB with a
103 	 * complete (S1 + S2) walk based on the old Stage-2 mapping if
104 	 * the Stage-1 invalidation happened first.
105 	 */
106 	dsb(ish);
107 	__tlbi(vmalle1is);
108 	dsb(ish);
109 	isb();
110 
111 	__tlb_switch_to_host(&cxt);
112 }
113 
114 void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
115 {
116 	struct tlb_inv_context cxt;
117 
118 	dsb(ishst);
119 
120 	/* Switch to requested VMID */
121 	__tlb_switch_to_guest(mmu, &cxt);
122 
123 	__tlbi(vmalls12e1is);
124 	dsb(ish);
125 	isb();
126 
127 	__tlb_switch_to_host(&cxt);
128 }
129 
130 void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
131 {
132 	struct tlb_inv_context cxt;
133 
134 	/* Switch to requested VMID */
135 	__tlb_switch_to_guest(mmu, &cxt);
136 
137 	__tlbi(vmalle1);
138 	asm volatile("ic iallu");
139 	dsb(nsh);
140 	isb();
141 
142 	__tlb_switch_to_host(&cxt);
143 }
144 
145 void __kvm_flush_vm_context(void)
146 {
147 	dsb(ishst);
148 	__tlbi(alle1is);
149 
150 	/*
151 	 * VIPT and PIPT caches are not affected by VMID, so no maintenance
152 	 * is necessary across a VMID rollover.
153 	 *
154 	 * VPIPT caches constrain lookup and maintenance to the active VMID,
155 	 * so we need to invalidate lines with a stale VMID to avoid an ABA
156 	 * race after multiple rollovers.
157 	 *
158 	 */
159 	if (icache_is_vpipt())
160 		asm volatile("ic ialluis");
161 
162 	dsb(ish);
163 }
164