xref: /linux/arch/arm64/kvm/hyp/vhe/sysreg-sr.c (revision b9527b38c66730061c245e353dab42ef7dda33c6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012-2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/sysreg-sr.h>
8 
9 #include <linux/compiler.h>
10 #include <linux/kvm_host.h>
11 
12 #include <asm/kprobes.h>
13 #include <asm/kvm_asm.h>
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_hyp.h>
16 #include <asm/kvm_nested.h>
17 
18 static void __sysreg_save_vel2_state(struct kvm_vcpu *vcpu)
19 {
20 	/* These registers are common with EL1 */
21 	__vcpu_sys_reg(vcpu, PAR_EL1)	= read_sysreg(par_el1);
22 	__vcpu_sys_reg(vcpu, TPIDR_EL1)	= read_sysreg(tpidr_el1);
23 
24 	__vcpu_sys_reg(vcpu, ESR_EL2)	= read_sysreg_el1(SYS_ESR);
25 	__vcpu_sys_reg(vcpu, AFSR0_EL2)	= read_sysreg_el1(SYS_AFSR0);
26 	__vcpu_sys_reg(vcpu, AFSR1_EL2)	= read_sysreg_el1(SYS_AFSR1);
27 	__vcpu_sys_reg(vcpu, FAR_EL2)	= read_sysreg_el1(SYS_FAR);
28 	__vcpu_sys_reg(vcpu, MAIR_EL2)	= read_sysreg_el1(SYS_MAIR);
29 	__vcpu_sys_reg(vcpu, VBAR_EL2)	= read_sysreg_el1(SYS_VBAR);
30 	__vcpu_sys_reg(vcpu, CONTEXTIDR_EL2) = read_sysreg_el1(SYS_CONTEXTIDR);
31 	__vcpu_sys_reg(vcpu, AMAIR_EL2)	= read_sysreg_el1(SYS_AMAIR);
32 
33 	/*
34 	 * In VHE mode those registers are compatible between EL1 and EL2,
35 	 * and the guest uses the _EL1 versions on the CPU naturally.
36 	 * So we save them into their _EL2 versions here.
37 	 * For nVHE mode we trap accesses to those registers, so our
38 	 * _EL2 copy in sys_regs[] is always up-to-date and we don't need
39 	 * to save anything here.
40 	 */
41 	if (vcpu_el2_e2h_is_set(vcpu)) {
42 		u64 val;
43 
44 		/*
45 		 * We don't save CPTR_EL2, as accesses to CPACR_EL1
46 		 * are always trapped, ensuring that the in-memory
47 		 * copy is always up-to-date. A small blessing...
48 		 */
49 		__vcpu_sys_reg(vcpu, SCTLR_EL2)	= read_sysreg_el1(SYS_SCTLR);
50 		__vcpu_sys_reg(vcpu, TTBR0_EL2)	= read_sysreg_el1(SYS_TTBR0);
51 		__vcpu_sys_reg(vcpu, TTBR1_EL2)	= read_sysreg_el1(SYS_TTBR1);
52 		__vcpu_sys_reg(vcpu, TCR_EL2)	= read_sysreg_el1(SYS_TCR);
53 
54 		/*
55 		 * The EL1 view of CNTKCTL_EL1 has a bunch of RES0 bits where
56 		 * the interesting CNTHCTL_EL2 bits live. So preserve these
57 		 * bits when reading back the guest-visible value.
58 		 */
59 		val = read_sysreg_el1(SYS_CNTKCTL);
60 		val &= CNTKCTL_VALID_BITS;
61 		__vcpu_sys_reg(vcpu, CNTHCTL_EL2) &= ~CNTKCTL_VALID_BITS;
62 		__vcpu_sys_reg(vcpu, CNTHCTL_EL2) |= val;
63 	}
64 
65 	__vcpu_sys_reg(vcpu, SP_EL2)	= read_sysreg(sp_el1);
66 	__vcpu_sys_reg(vcpu, ELR_EL2)	= read_sysreg_el1(SYS_ELR);
67 	__vcpu_sys_reg(vcpu, SPSR_EL2)	= read_sysreg_el1(SYS_SPSR);
68 }
69 
70 static void __sysreg_restore_vel2_state(struct kvm_vcpu *vcpu)
71 {
72 	u64 val;
73 
74 	/* These registers are common with EL1 */
75 	write_sysreg(__vcpu_sys_reg(vcpu, PAR_EL1),	par_el1);
76 	write_sysreg(__vcpu_sys_reg(vcpu, TPIDR_EL1),	tpidr_el1);
77 
78 	write_sysreg(__vcpu_sys_reg(vcpu, MPIDR_EL1),		vmpidr_el2);
79 	write_sysreg_el1(__vcpu_sys_reg(vcpu, MAIR_EL2),	SYS_MAIR);
80 	write_sysreg_el1(__vcpu_sys_reg(vcpu, VBAR_EL2),	SYS_VBAR);
81 	write_sysreg_el1(__vcpu_sys_reg(vcpu, CONTEXTIDR_EL2),	SYS_CONTEXTIDR);
82 	write_sysreg_el1(__vcpu_sys_reg(vcpu, AMAIR_EL2),	SYS_AMAIR);
83 
84 	if (vcpu_el2_e2h_is_set(vcpu)) {
85 		/*
86 		 * In VHE mode those registers are compatible between
87 		 * EL1 and EL2.
88 		 */
89 		write_sysreg_el1(__vcpu_sys_reg(vcpu, SCTLR_EL2),   SYS_SCTLR);
90 		write_sysreg_el1(__vcpu_sys_reg(vcpu, CPTR_EL2),    SYS_CPACR);
91 		write_sysreg_el1(__vcpu_sys_reg(vcpu, TTBR0_EL2),   SYS_TTBR0);
92 		write_sysreg_el1(__vcpu_sys_reg(vcpu, TTBR1_EL2),   SYS_TTBR1);
93 		write_sysreg_el1(__vcpu_sys_reg(vcpu, TCR_EL2),	    SYS_TCR);
94 		write_sysreg_el1(__vcpu_sys_reg(vcpu, CNTHCTL_EL2), SYS_CNTKCTL);
95 	} else {
96 		/*
97 		 * CNTHCTL_EL2 only affects EL1 when running nVHE, so
98 		 * no need to restore it.
99 		 */
100 		val = translate_sctlr_el2_to_sctlr_el1(__vcpu_sys_reg(vcpu, SCTLR_EL2));
101 		write_sysreg_el1(val, SYS_SCTLR);
102 		val = translate_cptr_el2_to_cpacr_el1(__vcpu_sys_reg(vcpu, CPTR_EL2));
103 		write_sysreg_el1(val, SYS_CPACR);
104 		val = translate_ttbr0_el2_to_ttbr0_el1(__vcpu_sys_reg(vcpu, TTBR0_EL2));
105 		write_sysreg_el1(val, SYS_TTBR0);
106 		val = translate_tcr_el2_to_tcr_el1(__vcpu_sys_reg(vcpu, TCR_EL2));
107 		write_sysreg_el1(val, SYS_TCR);
108 	}
109 
110 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ESR_EL2),		SYS_ESR);
111 	write_sysreg_el1(__vcpu_sys_reg(vcpu, AFSR0_EL2),	SYS_AFSR0);
112 	write_sysreg_el1(__vcpu_sys_reg(vcpu, AFSR1_EL2),	SYS_AFSR1);
113 	write_sysreg_el1(__vcpu_sys_reg(vcpu, FAR_EL2),		SYS_FAR);
114 	write_sysreg(__vcpu_sys_reg(vcpu, SP_EL2),		sp_el1);
115 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ELR_EL2),		SYS_ELR);
116 	write_sysreg_el1(__vcpu_sys_reg(vcpu, SPSR_EL2),	SYS_SPSR);
117 }
118 
119 /*
120  * VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and
121  * pstate, which are handled as part of the el2 return state) on every
122  * switch (sp_el0 is being dealt with in the assembly code).
123  * tpidr_el0 and tpidrro_el0 only need to be switched when going
124  * to host userspace or a different VCPU.  EL1 registers only need to be
125  * switched when potentially going to run a different VCPU.  The latter two
126  * classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
127  */
128 
129 void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
130 {
131 	__sysreg_save_common_state(ctxt);
132 }
133 NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);
134 
135 void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
136 {
137 	__sysreg_save_common_state(ctxt);
138 	__sysreg_save_el2_return_state(ctxt);
139 }
140 NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);
141 
142 void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
143 {
144 	__sysreg_restore_common_state(ctxt);
145 }
146 NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);
147 
148 void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
149 {
150 	__sysreg_restore_common_state(ctxt);
151 	__sysreg_restore_el2_return_state(ctxt);
152 }
153 NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);
154 
155 /**
156  * __vcpu_load_switch_sysregs - Load guest system registers to the physical CPU
157  *
158  * @vcpu: The VCPU pointer
159  *
160  * Load system registers that do not affect the host's execution, for
161  * example EL1 system registers on a VHE system where the host kernel
162  * runs at EL2.  This function is called from KVM's vcpu_load() function
163  * and loading system register state early avoids having to load them on
164  * every entry to the VM.
165  */
166 void __vcpu_load_switch_sysregs(struct kvm_vcpu *vcpu)
167 {
168 	struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
169 	struct kvm_cpu_context *host_ctxt;
170 	u64 mpidr;
171 
172 	host_ctxt = host_data_ptr(host_ctxt);
173 	__sysreg_save_user_state(host_ctxt);
174 
175 	/*
176 	 * When running a normal EL1 guest, we only load a new vcpu
177 	 * after a context switch, which imvolves a DSB, so all
178 	 * speculative EL1&0 walks will have already completed.
179 	 * If running NV, the vcpu may transition between vEL1 and
180 	 * vEL2 without a context switch, so make sure we complete
181 	 * those walks before loading a new context.
182 	 */
183 	if (vcpu_has_nv(vcpu))
184 		dsb(nsh);
185 
186 	/*
187 	 * Load guest EL1 and user state
188 	 *
189 	 * We must restore the 32-bit state before the sysregs, thanks
190 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
191 	 */
192 	__sysreg32_restore_state(vcpu);
193 	__sysreg_restore_user_state(guest_ctxt);
194 
195 	if (unlikely(__is_hyp_ctxt(guest_ctxt))) {
196 		__sysreg_restore_vel2_state(vcpu);
197 	} else {
198 		if (vcpu_has_nv(vcpu)) {
199 			/*
200 			 * Use the guest hypervisor's VPIDR_EL2 when in a
201 			 * nested state. The hardware value of MIDR_EL1 gets
202 			 * restored on put.
203 			 */
204 			write_sysreg(ctxt_sys_reg(guest_ctxt, VPIDR_EL2), vpidr_el2);
205 
206 			/*
207 			 * As we're restoring a nested guest, set the value
208 			 * provided by the guest hypervisor.
209 			 */
210 			mpidr = ctxt_sys_reg(guest_ctxt, VMPIDR_EL2);
211 		} else {
212 			mpidr = ctxt_sys_reg(guest_ctxt, MPIDR_EL1);
213 		}
214 
215 		__sysreg_restore_el1_state(guest_ctxt, mpidr);
216 	}
217 
218 	vcpu_set_flag(vcpu, SYSREGS_ON_CPU);
219 }
220 
221 /**
222  * __vcpu_put_switch_sysregs - Restore host system registers to the physical CPU
223  *
224  * @vcpu: The VCPU pointer
225  *
226  * Save guest system registers that do not affect the host's execution, for
227  * example EL1 system registers on a VHE system where the host kernel
228  * runs at EL2.  This function is called from KVM's vcpu_put() function
229  * and deferring saving system register state until we're no longer running the
230  * VCPU avoids having to save them on every exit from the VM.
231  */
232 void __vcpu_put_switch_sysregs(struct kvm_vcpu *vcpu)
233 {
234 	struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
235 	struct kvm_cpu_context *host_ctxt;
236 
237 	host_ctxt = host_data_ptr(host_ctxt);
238 
239 	if (unlikely(__is_hyp_ctxt(guest_ctxt)))
240 		__sysreg_save_vel2_state(vcpu);
241 	else
242 		__sysreg_save_el1_state(guest_ctxt);
243 
244 	__sysreg_save_user_state(guest_ctxt);
245 	__sysreg32_save_state(vcpu);
246 
247 	/* Restore host user state */
248 	__sysreg_restore_user_state(host_ctxt);
249 
250 	/* If leaving a nesting guest, restore MIDR_EL1 default view */
251 	if (vcpu_has_nv(vcpu))
252 		write_sysreg(read_cpuid_id(),	vpidr_el2);
253 
254 	vcpu_clear_flag(vcpu, SYSREGS_ON_CPU);
255 }
256