xref: /linux/arch/arm64/kvm/hyp/vhe/sysreg-sr.c (revision b3ad940a088761fd183dccd65c6ee20b360e8c4b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012-2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/sysreg-sr.h>
8 
9 #include <linux/compiler.h>
10 #include <linux/kvm_host.h>
11 
12 #include <asm/kprobes.h>
13 #include <asm/kvm_asm.h>
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_hyp.h>
16 #include <asm/kvm_nested.h>
17 
18 static void __sysreg_save_vel2_state(struct kvm_vcpu *vcpu)
19 {
20 	/* These registers are common with EL1 */
21 	__vcpu_sys_reg(vcpu, PAR_EL1)	= read_sysreg(par_el1);
22 	__vcpu_sys_reg(vcpu, TPIDR_EL1)	= read_sysreg(tpidr_el1);
23 
24 	__vcpu_sys_reg(vcpu, ESR_EL2)	= read_sysreg_el1(SYS_ESR);
25 	__vcpu_sys_reg(vcpu, AFSR0_EL2)	= read_sysreg_el1(SYS_AFSR0);
26 	__vcpu_sys_reg(vcpu, AFSR1_EL2)	= read_sysreg_el1(SYS_AFSR1);
27 	__vcpu_sys_reg(vcpu, FAR_EL2)	= read_sysreg_el1(SYS_FAR);
28 	__vcpu_sys_reg(vcpu, MAIR_EL2)	= read_sysreg_el1(SYS_MAIR);
29 	__vcpu_sys_reg(vcpu, VBAR_EL2)	= read_sysreg_el1(SYS_VBAR);
30 	__vcpu_sys_reg(vcpu, CONTEXTIDR_EL2) = read_sysreg_el1(SYS_CONTEXTIDR);
31 	__vcpu_sys_reg(vcpu, AMAIR_EL2)	= read_sysreg_el1(SYS_AMAIR);
32 
33 	/*
34 	 * In VHE mode those registers are compatible between EL1 and EL2,
35 	 * and the guest uses the _EL1 versions on the CPU naturally.
36 	 * So we save them into their _EL2 versions here.
37 	 * For nVHE mode we trap accesses to those registers, so our
38 	 * _EL2 copy in sys_regs[] is always up-to-date and we don't need
39 	 * to save anything here.
40 	 */
41 	if (vcpu_el2_e2h_is_set(vcpu)) {
42 		u64 val;
43 
44 		/*
45 		 * We don't save CPTR_EL2, as accesses to CPACR_EL1
46 		 * are always trapped, ensuring that the in-memory
47 		 * copy is always up-to-date. A small blessing...
48 		 */
49 		__vcpu_sys_reg(vcpu, SCTLR_EL2)	= read_sysreg_el1(SYS_SCTLR);
50 		__vcpu_sys_reg(vcpu, TTBR0_EL2)	= read_sysreg_el1(SYS_TTBR0);
51 		__vcpu_sys_reg(vcpu, TTBR1_EL2)	= read_sysreg_el1(SYS_TTBR1);
52 		__vcpu_sys_reg(vcpu, TCR_EL2)	= read_sysreg_el1(SYS_TCR);
53 
54 		if (ctxt_has_tcrx(&vcpu->arch.ctxt)) {
55 			__vcpu_sys_reg(vcpu, TCR2_EL2) = read_sysreg_el1(SYS_TCR2);
56 
57 			if (ctxt_has_s1pie(&vcpu->arch.ctxt)) {
58 				__vcpu_sys_reg(vcpu, PIRE0_EL2) = read_sysreg_el1(SYS_PIRE0);
59 				__vcpu_sys_reg(vcpu, PIR_EL2) = read_sysreg_el1(SYS_PIR);
60 			}
61 		}
62 
63 		/*
64 		 * The EL1 view of CNTKCTL_EL1 has a bunch of RES0 bits where
65 		 * the interesting CNTHCTL_EL2 bits live. So preserve these
66 		 * bits when reading back the guest-visible value.
67 		 */
68 		val = read_sysreg_el1(SYS_CNTKCTL);
69 		val &= CNTKCTL_VALID_BITS;
70 		__vcpu_sys_reg(vcpu, CNTHCTL_EL2) &= ~CNTKCTL_VALID_BITS;
71 		__vcpu_sys_reg(vcpu, CNTHCTL_EL2) |= val;
72 	}
73 
74 	__vcpu_sys_reg(vcpu, SP_EL2)	= read_sysreg(sp_el1);
75 	__vcpu_sys_reg(vcpu, ELR_EL2)	= read_sysreg_el1(SYS_ELR);
76 	__vcpu_sys_reg(vcpu, SPSR_EL2)	= read_sysreg_el1(SYS_SPSR);
77 }
78 
79 static void __sysreg_restore_vel2_state(struct kvm_vcpu *vcpu)
80 {
81 	u64 val;
82 
83 	/* These registers are common with EL1 */
84 	write_sysreg(__vcpu_sys_reg(vcpu, PAR_EL1),	par_el1);
85 	write_sysreg(__vcpu_sys_reg(vcpu, TPIDR_EL1),	tpidr_el1);
86 
87 	write_sysreg(__vcpu_sys_reg(vcpu, MPIDR_EL1),		vmpidr_el2);
88 	write_sysreg_el1(__vcpu_sys_reg(vcpu, MAIR_EL2),	SYS_MAIR);
89 	write_sysreg_el1(__vcpu_sys_reg(vcpu, VBAR_EL2),	SYS_VBAR);
90 	write_sysreg_el1(__vcpu_sys_reg(vcpu, CONTEXTIDR_EL2),	SYS_CONTEXTIDR);
91 	write_sysreg_el1(__vcpu_sys_reg(vcpu, AMAIR_EL2),	SYS_AMAIR);
92 
93 	if (vcpu_el2_e2h_is_set(vcpu)) {
94 		/*
95 		 * In VHE mode those registers are compatible between
96 		 * EL1 and EL2.
97 		 */
98 		write_sysreg_el1(__vcpu_sys_reg(vcpu, SCTLR_EL2),   SYS_SCTLR);
99 		write_sysreg_el1(__vcpu_sys_reg(vcpu, CPTR_EL2),    SYS_CPACR);
100 		write_sysreg_el1(__vcpu_sys_reg(vcpu, TTBR0_EL2),   SYS_TTBR0);
101 		write_sysreg_el1(__vcpu_sys_reg(vcpu, TTBR1_EL2),   SYS_TTBR1);
102 		write_sysreg_el1(__vcpu_sys_reg(vcpu, TCR_EL2),	    SYS_TCR);
103 		write_sysreg_el1(__vcpu_sys_reg(vcpu, CNTHCTL_EL2), SYS_CNTKCTL);
104 	} else {
105 		/*
106 		 * CNTHCTL_EL2 only affects EL1 when running nVHE, so
107 		 * no need to restore it.
108 		 */
109 		val = translate_sctlr_el2_to_sctlr_el1(__vcpu_sys_reg(vcpu, SCTLR_EL2));
110 		write_sysreg_el1(val, SYS_SCTLR);
111 		val = translate_cptr_el2_to_cpacr_el1(__vcpu_sys_reg(vcpu, CPTR_EL2));
112 		write_sysreg_el1(val, SYS_CPACR);
113 		val = translate_ttbr0_el2_to_ttbr0_el1(__vcpu_sys_reg(vcpu, TTBR0_EL2));
114 		write_sysreg_el1(val, SYS_TTBR0);
115 		val = translate_tcr_el2_to_tcr_el1(__vcpu_sys_reg(vcpu, TCR_EL2));
116 		write_sysreg_el1(val, SYS_TCR);
117 	}
118 
119 	if (ctxt_has_tcrx(&vcpu->arch.ctxt)) {
120 		write_sysreg_el1(__vcpu_sys_reg(vcpu, TCR2_EL2), SYS_TCR2);
121 
122 		if (ctxt_has_s1pie(&vcpu->arch.ctxt)) {
123 			write_sysreg_el1(__vcpu_sys_reg(vcpu, PIR_EL2), SYS_PIR);
124 			write_sysreg_el1(__vcpu_sys_reg(vcpu, PIRE0_EL2), SYS_PIRE0);
125 		}
126 	}
127 
128 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ESR_EL2),		SYS_ESR);
129 	write_sysreg_el1(__vcpu_sys_reg(vcpu, AFSR0_EL2),	SYS_AFSR0);
130 	write_sysreg_el1(__vcpu_sys_reg(vcpu, AFSR1_EL2),	SYS_AFSR1);
131 	write_sysreg_el1(__vcpu_sys_reg(vcpu, FAR_EL2),		SYS_FAR);
132 	write_sysreg(__vcpu_sys_reg(vcpu, SP_EL2),		sp_el1);
133 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ELR_EL2),		SYS_ELR);
134 	write_sysreg_el1(__vcpu_sys_reg(vcpu, SPSR_EL2),	SYS_SPSR);
135 }
136 
137 /*
138  * VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and
139  * pstate, which are handled as part of the el2 return state) on every
140  * switch (sp_el0 is being dealt with in the assembly code).
141  * tpidr_el0 and tpidrro_el0 only need to be switched when going
142  * to host userspace or a different VCPU.  EL1 registers only need to be
143  * switched when potentially going to run a different VCPU.  The latter two
144  * classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
145  */
146 
147 void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
148 {
149 	__sysreg_save_common_state(ctxt);
150 }
151 NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);
152 
153 void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
154 {
155 	__sysreg_save_common_state(ctxt);
156 	__sysreg_save_el2_return_state(ctxt);
157 }
158 NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);
159 
160 void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
161 {
162 	__sysreg_restore_common_state(ctxt);
163 }
164 NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);
165 
166 void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
167 {
168 	__sysreg_restore_common_state(ctxt);
169 	__sysreg_restore_el2_return_state(ctxt);
170 }
171 NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);
172 
173 /**
174  * __vcpu_load_switch_sysregs - Load guest system registers to the physical CPU
175  *
176  * @vcpu: The VCPU pointer
177  *
178  * Load system registers that do not affect the host's execution, for
179  * example EL1 system registers on a VHE system where the host kernel
180  * runs at EL2.  This function is called from KVM's vcpu_load() function
181  * and loading system register state early avoids having to load them on
182  * every entry to the VM.
183  */
184 void __vcpu_load_switch_sysregs(struct kvm_vcpu *vcpu)
185 {
186 	struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
187 	struct kvm_cpu_context *host_ctxt;
188 	u64 mpidr;
189 
190 	host_ctxt = host_data_ptr(host_ctxt);
191 	__sysreg_save_user_state(host_ctxt);
192 
193 	/*
194 	 * When running a normal EL1 guest, we only load a new vcpu
195 	 * after a context switch, which imvolves a DSB, so all
196 	 * speculative EL1&0 walks will have already completed.
197 	 * If running NV, the vcpu may transition between vEL1 and
198 	 * vEL2 without a context switch, so make sure we complete
199 	 * those walks before loading a new context.
200 	 */
201 	if (vcpu_has_nv(vcpu))
202 		dsb(nsh);
203 
204 	/*
205 	 * Load guest EL1 and user state
206 	 *
207 	 * We must restore the 32-bit state before the sysregs, thanks
208 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
209 	 */
210 	__sysreg32_restore_state(vcpu);
211 	__sysreg_restore_user_state(guest_ctxt);
212 
213 	if (unlikely(__is_hyp_ctxt(guest_ctxt))) {
214 		__sysreg_restore_vel2_state(vcpu);
215 	} else {
216 		if (vcpu_has_nv(vcpu)) {
217 			/*
218 			 * Use the guest hypervisor's VPIDR_EL2 when in a
219 			 * nested state. The hardware value of MIDR_EL1 gets
220 			 * restored on put.
221 			 */
222 			write_sysreg(ctxt_sys_reg(guest_ctxt, VPIDR_EL2), vpidr_el2);
223 
224 			/*
225 			 * As we're restoring a nested guest, set the value
226 			 * provided by the guest hypervisor.
227 			 */
228 			mpidr = ctxt_sys_reg(guest_ctxt, VMPIDR_EL2);
229 		} else {
230 			mpidr = ctxt_sys_reg(guest_ctxt, MPIDR_EL1);
231 		}
232 
233 		__sysreg_restore_el1_state(guest_ctxt, mpidr);
234 	}
235 
236 	vcpu_set_flag(vcpu, SYSREGS_ON_CPU);
237 }
238 
239 /**
240  * __vcpu_put_switch_sysregs - Restore host system registers to the physical CPU
241  *
242  * @vcpu: The VCPU pointer
243  *
244  * Save guest system registers that do not affect the host's execution, for
245  * example EL1 system registers on a VHE system where the host kernel
246  * runs at EL2.  This function is called from KVM's vcpu_put() function
247  * and deferring saving system register state until we're no longer running the
248  * VCPU avoids having to save them on every exit from the VM.
249  */
250 void __vcpu_put_switch_sysregs(struct kvm_vcpu *vcpu)
251 {
252 	struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
253 	struct kvm_cpu_context *host_ctxt;
254 
255 	host_ctxt = host_data_ptr(host_ctxt);
256 
257 	if (unlikely(__is_hyp_ctxt(guest_ctxt)))
258 		__sysreg_save_vel2_state(vcpu);
259 	else
260 		__sysreg_save_el1_state(guest_ctxt);
261 
262 	__sysreg_save_user_state(guest_ctxt);
263 	__sysreg32_save_state(vcpu);
264 
265 	/* Restore host user state */
266 	__sysreg_restore_user_state(host_ctxt);
267 
268 	/* If leaving a nesting guest, restore MIDR_EL1 default view */
269 	if (vcpu_has_nv(vcpu))
270 		write_sysreg(read_cpuid_id(),	vpidr_el2);
271 
272 	vcpu_clear_flag(vcpu, SYSREGS_ON_CPU);
273 }
274