xref: /linux/arch/arm64/kvm/hyp/vhe/sysreg-sr.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012-2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/sysreg-sr.h>
8 
9 #include <linux/compiler.h>
10 #include <linux/kvm_host.h>
11 
12 #include <asm/kprobes.h>
13 #include <asm/kvm_asm.h>
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_hyp.h>
16 #include <asm/kvm_nested.h>
17 
18 static void __sysreg_save_vel2_state(struct kvm_vcpu *vcpu)
19 {
20 	/* These registers are common with EL1 */
21 	__vcpu_sys_reg(vcpu, PAR_EL1)	= read_sysreg(par_el1);
22 	__vcpu_sys_reg(vcpu, TPIDR_EL1)	= read_sysreg(tpidr_el1);
23 
24 	__vcpu_sys_reg(vcpu, ESR_EL2)	= read_sysreg_el1(SYS_ESR);
25 	__vcpu_sys_reg(vcpu, AFSR0_EL2)	= read_sysreg_el1(SYS_AFSR0);
26 	__vcpu_sys_reg(vcpu, AFSR1_EL2)	= read_sysreg_el1(SYS_AFSR1);
27 	__vcpu_sys_reg(vcpu, FAR_EL2)	= read_sysreg_el1(SYS_FAR);
28 	__vcpu_sys_reg(vcpu, MAIR_EL2)	= read_sysreg_el1(SYS_MAIR);
29 	__vcpu_sys_reg(vcpu, VBAR_EL2)	= read_sysreg_el1(SYS_VBAR);
30 	__vcpu_sys_reg(vcpu, CONTEXTIDR_EL2) = read_sysreg_el1(SYS_CONTEXTIDR);
31 	__vcpu_sys_reg(vcpu, AMAIR_EL2)	= read_sysreg_el1(SYS_AMAIR);
32 
33 	/*
34 	 * In VHE mode those registers are compatible between EL1 and EL2,
35 	 * and the guest uses the _EL1 versions on the CPU naturally.
36 	 * So we save them into their _EL2 versions here.
37 	 * For nVHE mode we trap accesses to those registers, so our
38 	 * _EL2 copy in sys_regs[] is always up-to-date and we don't need
39 	 * to save anything here.
40 	 */
41 	if (vcpu_el2_e2h_is_set(vcpu)) {
42 		u64 val;
43 
44 		/*
45 		 * We don't save CPTR_EL2, as accesses to CPACR_EL1
46 		 * are always trapped, ensuring that the in-memory
47 		 * copy is always up-to-date. A small blessing...
48 		 */
49 		__vcpu_sys_reg(vcpu, SCTLR_EL2)	= read_sysreg_el1(SYS_SCTLR);
50 		__vcpu_sys_reg(vcpu, TTBR0_EL2)	= read_sysreg_el1(SYS_TTBR0);
51 		__vcpu_sys_reg(vcpu, TTBR1_EL2)	= read_sysreg_el1(SYS_TTBR1);
52 		__vcpu_sys_reg(vcpu, TCR_EL2)	= read_sysreg_el1(SYS_TCR);
53 
54 		if (ctxt_has_tcrx(&vcpu->arch.ctxt)) {
55 			__vcpu_sys_reg(vcpu, TCR2_EL2) = read_sysreg_el1(SYS_TCR2);
56 
57 			if (ctxt_has_s1pie(&vcpu->arch.ctxt)) {
58 				__vcpu_sys_reg(vcpu, PIRE0_EL2) = read_sysreg_el1(SYS_PIRE0);
59 				__vcpu_sys_reg(vcpu, PIR_EL2) = read_sysreg_el1(SYS_PIR);
60 			}
61 
62 			if (ctxt_has_s1poe(&vcpu->arch.ctxt))
63 				__vcpu_sys_reg(vcpu, POR_EL2) = read_sysreg_el1(SYS_POR);
64 		}
65 
66 		/*
67 		 * The EL1 view of CNTKCTL_EL1 has a bunch of RES0 bits where
68 		 * the interesting CNTHCTL_EL2 bits live. So preserve these
69 		 * bits when reading back the guest-visible value.
70 		 */
71 		val = read_sysreg_el1(SYS_CNTKCTL);
72 		val &= CNTKCTL_VALID_BITS;
73 		__vcpu_sys_reg(vcpu, CNTHCTL_EL2) &= ~CNTKCTL_VALID_BITS;
74 		__vcpu_sys_reg(vcpu, CNTHCTL_EL2) |= val;
75 	}
76 
77 	__vcpu_sys_reg(vcpu, SP_EL2)	= read_sysreg(sp_el1);
78 	__vcpu_sys_reg(vcpu, ELR_EL2)	= read_sysreg_el1(SYS_ELR);
79 	__vcpu_sys_reg(vcpu, SPSR_EL2)	= read_sysreg_el1(SYS_SPSR);
80 }
81 
82 static void __sysreg_restore_vel2_state(struct kvm_vcpu *vcpu)
83 {
84 	u64 val;
85 
86 	/* These registers are common with EL1 */
87 	write_sysreg(__vcpu_sys_reg(vcpu, PAR_EL1),	par_el1);
88 	write_sysreg(__vcpu_sys_reg(vcpu, TPIDR_EL1),	tpidr_el1);
89 
90 	write_sysreg(__vcpu_sys_reg(vcpu, MPIDR_EL1),		vmpidr_el2);
91 	write_sysreg_el1(__vcpu_sys_reg(vcpu, MAIR_EL2),	SYS_MAIR);
92 	write_sysreg_el1(__vcpu_sys_reg(vcpu, VBAR_EL2),	SYS_VBAR);
93 	write_sysreg_el1(__vcpu_sys_reg(vcpu, CONTEXTIDR_EL2),	SYS_CONTEXTIDR);
94 	write_sysreg_el1(__vcpu_sys_reg(vcpu, AMAIR_EL2),	SYS_AMAIR);
95 
96 	if (vcpu_el2_e2h_is_set(vcpu)) {
97 		/*
98 		 * In VHE mode those registers are compatible between
99 		 * EL1 and EL2.
100 		 */
101 		write_sysreg_el1(__vcpu_sys_reg(vcpu, SCTLR_EL2),   SYS_SCTLR);
102 		write_sysreg_el1(__vcpu_sys_reg(vcpu, CPTR_EL2),    SYS_CPACR);
103 		write_sysreg_el1(__vcpu_sys_reg(vcpu, TTBR0_EL2),   SYS_TTBR0);
104 		write_sysreg_el1(__vcpu_sys_reg(vcpu, TTBR1_EL2),   SYS_TTBR1);
105 		write_sysreg_el1(__vcpu_sys_reg(vcpu, TCR_EL2),	    SYS_TCR);
106 		write_sysreg_el1(__vcpu_sys_reg(vcpu, CNTHCTL_EL2), SYS_CNTKCTL);
107 	} else {
108 		/*
109 		 * CNTHCTL_EL2 only affects EL1 when running nVHE, so
110 		 * no need to restore it.
111 		 */
112 		val = translate_sctlr_el2_to_sctlr_el1(__vcpu_sys_reg(vcpu, SCTLR_EL2));
113 		write_sysreg_el1(val, SYS_SCTLR);
114 		val = translate_cptr_el2_to_cpacr_el1(__vcpu_sys_reg(vcpu, CPTR_EL2));
115 		write_sysreg_el1(val, SYS_CPACR);
116 		val = translate_ttbr0_el2_to_ttbr0_el1(__vcpu_sys_reg(vcpu, TTBR0_EL2));
117 		write_sysreg_el1(val, SYS_TTBR0);
118 		val = translate_tcr_el2_to_tcr_el1(__vcpu_sys_reg(vcpu, TCR_EL2));
119 		write_sysreg_el1(val, SYS_TCR);
120 	}
121 
122 	if (ctxt_has_tcrx(&vcpu->arch.ctxt)) {
123 		write_sysreg_el1(__vcpu_sys_reg(vcpu, TCR2_EL2), SYS_TCR2);
124 
125 		if (ctxt_has_s1pie(&vcpu->arch.ctxt)) {
126 			write_sysreg_el1(__vcpu_sys_reg(vcpu, PIR_EL2), SYS_PIR);
127 			write_sysreg_el1(__vcpu_sys_reg(vcpu, PIRE0_EL2), SYS_PIRE0);
128 		}
129 
130 		if (ctxt_has_s1poe(&vcpu->arch.ctxt))
131 			write_sysreg_el1(__vcpu_sys_reg(vcpu, POR_EL2), SYS_POR);
132 	}
133 
134 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ESR_EL2),		SYS_ESR);
135 	write_sysreg_el1(__vcpu_sys_reg(vcpu, AFSR0_EL2),	SYS_AFSR0);
136 	write_sysreg_el1(__vcpu_sys_reg(vcpu, AFSR1_EL2),	SYS_AFSR1);
137 	write_sysreg_el1(__vcpu_sys_reg(vcpu, FAR_EL2),		SYS_FAR);
138 	write_sysreg(__vcpu_sys_reg(vcpu, SP_EL2),		sp_el1);
139 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ELR_EL2),		SYS_ELR);
140 	write_sysreg_el1(__vcpu_sys_reg(vcpu, SPSR_EL2),	SYS_SPSR);
141 }
142 
143 /*
144  * VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and
145  * pstate, which are handled as part of the el2 return state) on every
146  * switch (sp_el0 is being dealt with in the assembly code).
147  * tpidr_el0 and tpidrro_el0 only need to be switched when going
148  * to host userspace or a different VCPU.  EL1 registers only need to be
149  * switched when potentially going to run a different VCPU.  The latter two
150  * classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
151  */
152 
153 void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
154 {
155 	__sysreg_save_common_state(ctxt);
156 }
157 NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);
158 
159 void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
160 {
161 	__sysreg_save_common_state(ctxt);
162 	__sysreg_save_el2_return_state(ctxt);
163 }
164 NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);
165 
166 void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
167 {
168 	__sysreg_restore_common_state(ctxt);
169 }
170 NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);
171 
172 void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
173 {
174 	__sysreg_restore_common_state(ctxt);
175 	__sysreg_restore_el2_return_state(ctxt);
176 }
177 NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);
178 
179 /**
180  * __vcpu_load_switch_sysregs - Load guest system registers to the physical CPU
181  *
182  * @vcpu: The VCPU pointer
183  *
184  * Load system registers that do not affect the host's execution, for
185  * example EL1 system registers on a VHE system where the host kernel
186  * runs at EL2.  This function is called from KVM's vcpu_load() function
187  * and loading system register state early avoids having to load them on
188  * every entry to the VM.
189  */
190 void __vcpu_load_switch_sysregs(struct kvm_vcpu *vcpu)
191 {
192 	struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
193 	struct kvm_cpu_context *host_ctxt;
194 	u64 mpidr;
195 
196 	host_ctxt = host_data_ptr(host_ctxt);
197 	__sysreg_save_user_state(host_ctxt);
198 
199 	/*
200 	 * When running a normal EL1 guest, we only load a new vcpu
201 	 * after a context switch, which imvolves a DSB, so all
202 	 * speculative EL1&0 walks will have already completed.
203 	 * If running NV, the vcpu may transition between vEL1 and
204 	 * vEL2 without a context switch, so make sure we complete
205 	 * those walks before loading a new context.
206 	 */
207 	if (vcpu_has_nv(vcpu))
208 		dsb(nsh);
209 
210 	/*
211 	 * Load guest EL1 and user state
212 	 *
213 	 * We must restore the 32-bit state before the sysregs, thanks
214 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
215 	 */
216 	__sysreg32_restore_state(vcpu);
217 	__sysreg_restore_user_state(guest_ctxt);
218 
219 	if (unlikely(__is_hyp_ctxt(guest_ctxt))) {
220 		__sysreg_restore_vel2_state(vcpu);
221 	} else {
222 		if (vcpu_has_nv(vcpu)) {
223 			/*
224 			 * Use the guest hypervisor's VPIDR_EL2 when in a
225 			 * nested state. The hardware value of MIDR_EL1 gets
226 			 * restored on put.
227 			 */
228 			write_sysreg(ctxt_sys_reg(guest_ctxt, VPIDR_EL2), vpidr_el2);
229 
230 			/*
231 			 * As we're restoring a nested guest, set the value
232 			 * provided by the guest hypervisor.
233 			 */
234 			mpidr = ctxt_sys_reg(guest_ctxt, VMPIDR_EL2);
235 		} else {
236 			mpidr = ctxt_sys_reg(guest_ctxt, MPIDR_EL1);
237 		}
238 
239 		__sysreg_restore_el1_state(guest_ctxt, mpidr);
240 	}
241 
242 	vcpu_set_flag(vcpu, SYSREGS_ON_CPU);
243 }
244 
245 /**
246  * __vcpu_put_switch_sysregs - Restore host system registers to the physical CPU
247  *
248  * @vcpu: The VCPU pointer
249  *
250  * Save guest system registers that do not affect the host's execution, for
251  * example EL1 system registers on a VHE system where the host kernel
252  * runs at EL2.  This function is called from KVM's vcpu_put() function
253  * and deferring saving system register state until we're no longer running the
254  * VCPU avoids having to save them on every exit from the VM.
255  */
256 void __vcpu_put_switch_sysregs(struct kvm_vcpu *vcpu)
257 {
258 	struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
259 	struct kvm_cpu_context *host_ctxt;
260 
261 	host_ctxt = host_data_ptr(host_ctxt);
262 
263 	if (unlikely(__is_hyp_ctxt(guest_ctxt)))
264 		__sysreg_save_vel2_state(vcpu);
265 	else
266 		__sysreg_save_el1_state(guest_ctxt);
267 
268 	__sysreg_save_user_state(guest_ctxt);
269 	__sysreg32_save_state(vcpu);
270 
271 	/* Restore host user state */
272 	__sysreg_restore_user_state(host_ctxt);
273 
274 	/* If leaving a nesting guest, restore MIDR_EL1 default view */
275 	if (vcpu_has_nv(vcpu))
276 		write_sysreg(read_cpuid_id(),	vpidr_el2);
277 
278 	vcpu_clear_flag(vcpu, SYSREGS_ON_CPU);
279 }
280