xref: /linux/arch/arm64/kvm/hyp/vhe/switch.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 
9 #include <linux/arm-smccc.h>
10 #include <linux/kvm_host.h>
11 #include <linux/types.h>
12 #include <linux/jump_label.h>
13 #include <linux/percpu.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 #include <asm/thread_info.h>
29 #include <asm/vectors.h>
30 
31 /* VHE specific context */
32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
35 
36 /*
37  * HCR_EL2 bits that the NV guest can freely change (no RES0/RES1
38  * semantics, irrespective of the configuration), but that cannot be
39  * applied to the actual HW as things would otherwise break badly.
40  *
41  * - TGE: we want the guest to use EL1, which is incompatible with
42  *   this bit being set
43  *
44  * - API/APK: they are already accounted for by vcpu_load(), and can
45  *   only take effect across a load/put cycle (such as ERET)
46  */
47 #define NV_HCR_GUEST_EXCLUDE	(HCR_TGE | HCR_API | HCR_APK)
48 
49 static u64 __compute_hcr(struct kvm_vcpu *vcpu)
50 {
51 	u64 hcr = vcpu->arch.hcr_el2;
52 
53 	if (!vcpu_has_nv(vcpu))
54 		return hcr;
55 
56 	if (is_hyp_ctxt(vcpu)) {
57 		hcr |= HCR_NV | HCR_NV2 | HCR_AT | HCR_TTLB;
58 
59 		if (!vcpu_el2_e2h_is_set(vcpu))
60 			hcr |= HCR_NV1;
61 
62 		write_sysreg_s(vcpu->arch.ctxt.vncr_array, SYS_VNCR_EL2);
63 	}
64 
65 	return hcr | (__vcpu_sys_reg(vcpu, HCR_EL2) & ~NV_HCR_GUEST_EXCLUDE);
66 }
67 
68 static void __activate_cptr_traps(struct kvm_vcpu *vcpu)
69 {
70 	u64 cptr;
71 
72 	/*
73 	 * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
74 	 * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2,
75 	 * except for some missing controls, such as TAM.
76 	 * In this case, CPTR_EL2.TAM has the same position with or without
77 	 * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM
78 	 * shift value for trapping the AMU accesses.
79 	 */
80 	u64 val = CPACR_ELx_TTA | CPTR_EL2_TAM;
81 
82 	if (guest_owns_fp_regs()) {
83 		val |= CPACR_ELx_FPEN;
84 		if (vcpu_has_sve(vcpu))
85 			val |= CPACR_ELx_ZEN;
86 	} else {
87 		__activate_traps_fpsimd32(vcpu);
88 	}
89 
90 	if (!vcpu_has_nv(vcpu))
91 		goto write;
92 
93 	/*
94 	 * The architecture is a bit crap (what a surprise): an EL2 guest
95 	 * writing to CPTR_EL2 via CPACR_EL1 can't set any of TCPAC or TTA,
96 	 * as they are RES0 in the guest's view. To work around it, trap the
97 	 * sucker using the very same bit it can't set...
98 	 */
99 	if (vcpu_el2_e2h_is_set(vcpu) && is_hyp_ctxt(vcpu))
100 		val |= CPTR_EL2_TCPAC;
101 
102 	/*
103 	 * Layer the guest hypervisor's trap configuration on top of our own if
104 	 * we're in a nested context.
105 	 */
106 	if (is_hyp_ctxt(vcpu))
107 		goto write;
108 
109 	cptr = vcpu_sanitised_cptr_el2(vcpu);
110 
111 	/*
112 	 * Pay attention, there's some interesting detail here.
113 	 *
114 	 * The CPTR_EL2.xEN fields are 2 bits wide, although there are only two
115 	 * meaningful trap states when HCR_EL2.TGE = 0 (running a nested guest):
116 	 *
117 	 *  - CPTR_EL2.xEN = x0, traps are enabled
118 	 *  - CPTR_EL2.xEN = x1, traps are disabled
119 	 *
120 	 * In other words, bit[0] determines if guest accesses trap or not. In
121 	 * the interest of simplicity, clear the entire field if the guest
122 	 * hypervisor has traps enabled to dispel any illusion of something more
123 	 * complicated taking place.
124 	 */
125 	if (!(SYS_FIELD_GET(CPACR_ELx, FPEN, cptr) & BIT(0)))
126 		val &= ~CPACR_ELx_FPEN;
127 	if (!(SYS_FIELD_GET(CPACR_ELx, ZEN, cptr) & BIT(0)))
128 		val &= ~CPACR_ELx_ZEN;
129 
130 	if (kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
131 		val |= cptr & CPACR_ELx_E0POE;
132 
133 	val |= cptr & CPTR_EL2_TCPAC;
134 
135 write:
136 	write_sysreg(val, cpacr_el1);
137 }
138 
139 static void __activate_traps(struct kvm_vcpu *vcpu)
140 {
141 	u64 val;
142 
143 	___activate_traps(vcpu, __compute_hcr(vcpu));
144 
145 	if (has_cntpoff()) {
146 		struct timer_map map;
147 
148 		get_timer_map(vcpu, &map);
149 
150 		/*
151 		 * We're entrering the guest. Reload the correct
152 		 * values from memory now that TGE is clear.
153 		 */
154 		if (map.direct_ptimer == vcpu_ptimer(vcpu))
155 			val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
156 		if (map.direct_ptimer == vcpu_hptimer(vcpu))
157 			val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
158 
159 		if (map.direct_ptimer) {
160 			write_sysreg_el0(val, SYS_CNTP_CVAL);
161 			isb();
162 		}
163 	}
164 
165 	__activate_cptr_traps(vcpu);
166 
167 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1);
168 }
169 NOKPROBE_SYMBOL(__activate_traps);
170 
171 static void __deactivate_traps(struct kvm_vcpu *vcpu)
172 {
173 	const char *host_vectors = vectors;
174 
175 	___deactivate_traps(vcpu);
176 
177 	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
178 
179 	if (has_cntpoff()) {
180 		struct timer_map map;
181 		u64 val, offset;
182 
183 		get_timer_map(vcpu, &map);
184 
185 		/*
186 		 * We're exiting the guest. Save the latest CVAL value
187 		 * to memory and apply the offset now that TGE is set.
188 		 */
189 		val = read_sysreg_el0(SYS_CNTP_CVAL);
190 		if (map.direct_ptimer == vcpu_ptimer(vcpu))
191 			__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = val;
192 		if (map.direct_ptimer == vcpu_hptimer(vcpu))
193 			__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = val;
194 
195 		offset = read_sysreg_s(SYS_CNTPOFF_EL2);
196 
197 		if (map.direct_ptimer && offset) {
198 			write_sysreg_el0(val + offset, SYS_CNTP_CVAL);
199 			isb();
200 		}
201 	}
202 
203 	/*
204 	 * ARM errata 1165522 and 1530923 require the actual execution of the
205 	 * above before we can switch to the EL2/EL0 translation regime used by
206 	 * the host.
207 	 */
208 	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
209 
210 	kvm_reset_cptr_el2(vcpu);
211 
212 	if (!arm64_kernel_unmapped_at_el0())
213 		host_vectors = __this_cpu_read(this_cpu_vector);
214 	write_sysreg(host_vectors, vbar_el1);
215 }
216 NOKPROBE_SYMBOL(__deactivate_traps);
217 
218 /*
219  * Disable IRQs in __vcpu_{load,put}_{activate,deactivate}_traps() to
220  * prevent a race condition between context switching of PMUSERENR_EL0
221  * in __{activate,deactivate}_traps_common() and IPIs that attempts to
222  * update PMUSERENR_EL0. See also kvm_set_pmuserenr().
223  */
224 static void __vcpu_load_activate_traps(struct kvm_vcpu *vcpu)
225 {
226 	unsigned long flags;
227 
228 	local_irq_save(flags);
229 	__activate_traps_common(vcpu);
230 	local_irq_restore(flags);
231 }
232 
233 static void __vcpu_put_deactivate_traps(struct kvm_vcpu *vcpu)
234 {
235 	unsigned long flags;
236 
237 	local_irq_save(flags);
238 	__deactivate_traps_common(vcpu);
239 	local_irq_restore(flags);
240 }
241 
242 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu)
243 {
244 	host_data_ptr(host_ctxt)->__hyp_running_vcpu = vcpu;
245 
246 	__vcpu_load_switch_sysregs(vcpu);
247 	__vcpu_load_activate_traps(vcpu);
248 	__load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch);
249 }
250 
251 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu)
252 {
253 	__vcpu_put_deactivate_traps(vcpu);
254 	__vcpu_put_switch_sysregs(vcpu);
255 
256 	host_data_ptr(host_ctxt)->__hyp_running_vcpu = NULL;
257 }
258 
259 static bool kvm_hyp_handle_eret(struct kvm_vcpu *vcpu, u64 *exit_code)
260 {
261 	u64 esr = kvm_vcpu_get_esr(vcpu);
262 	u64 spsr, elr, mode;
263 
264 	/*
265 	 * Going through the whole put/load motions is a waste of time
266 	 * if this is a VHE guest hypervisor returning to its own
267 	 * userspace, or the hypervisor performing a local exception
268 	 * return. No need to save/restore registers, no need to
269 	 * switch S2 MMU. Just do the canonical ERET.
270 	 *
271 	 * Unless the trap has to be forwarded further down the line,
272 	 * of course...
273 	 */
274 	if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) ||
275 	    (__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_ERET))
276 		return false;
277 
278 	spsr = read_sysreg_el1(SYS_SPSR);
279 	mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT);
280 
281 	switch (mode) {
282 	case PSR_MODE_EL0t:
283 		if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)))
284 			return false;
285 		break;
286 	case PSR_MODE_EL2t:
287 		mode = PSR_MODE_EL1t;
288 		break;
289 	case PSR_MODE_EL2h:
290 		mode = PSR_MODE_EL1h;
291 		break;
292 	default:
293 		return false;
294 	}
295 
296 	/* If ERETAx fails, take the slow path */
297 	if (esr_iss_is_eretax(esr)) {
298 		if (!(vcpu_has_ptrauth(vcpu) && kvm_auth_eretax(vcpu, &elr)))
299 			return false;
300 	} else {
301 		elr = read_sysreg_el1(SYS_ELR);
302 	}
303 
304 	spsr = (spsr & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode;
305 
306 	write_sysreg_el2(spsr, SYS_SPSR);
307 	write_sysreg_el2(elr, SYS_ELR);
308 
309 	return true;
310 }
311 
312 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu)
313 {
314 	__fpsimd_save_state(*host_data_ptr(fpsimd_state));
315 
316 	if (kvm_has_fpmr(vcpu->kvm))
317 		**host_data_ptr(fpmr_ptr) = read_sysreg_s(SYS_FPMR);
318 }
319 
320 static bool kvm_hyp_handle_tlbi_el2(struct kvm_vcpu *vcpu, u64 *exit_code)
321 {
322 	int ret = -EINVAL;
323 	u32 instr;
324 	u64 val;
325 
326 	/*
327 	 * Ideally, we would never trap on EL2 S1 TLB invalidations using
328 	 * the EL1 instructions when the guest's HCR_EL2.{E2H,TGE}=={1,1}.
329 	 * But "thanks" to FEAT_NV2, we don't trap writes to HCR_EL2,
330 	 * meaning that we can't track changes to the virtual TGE bit. So we
331 	 * have to leave HCR_EL2.TTLB set on the host. Oopsie...
332 	 *
333 	 * Try and handle these invalidation as quickly as possible, without
334 	 * fully exiting. Note that we don't need to consider any forwarding
335 	 * here, as having E2H+TGE set is the very definition of being
336 	 * InHost.
337 	 *
338 	 * For the lesser hypervisors out there that have failed to get on
339 	 * with the VHE program, we can also handle the nVHE style of EL2
340 	 * invalidation.
341 	 */
342 	if (!(is_hyp_ctxt(vcpu)))
343 		return false;
344 
345 	instr = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
346 	val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
347 
348 	if ((kvm_supported_tlbi_s1e1_op(vcpu, instr) &&
349 	     vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) ||
350 	    kvm_supported_tlbi_s1e2_op (vcpu, instr))
351 		ret = __kvm_tlbi_s1e2(NULL, val, instr);
352 
353 	if (ret)
354 		return false;
355 
356 	__kvm_skip_instr(vcpu);
357 
358 	return true;
359 }
360 
361 static bool kvm_hyp_handle_cpacr_el1(struct kvm_vcpu *vcpu, u64 *exit_code)
362 {
363 	u64 esr = kvm_vcpu_get_esr(vcpu);
364 	int rt;
365 
366 	if (!is_hyp_ctxt(vcpu) || esr_sys64_to_sysreg(esr) != SYS_CPACR_EL1)
367 		return false;
368 
369 	rt = kvm_vcpu_sys_get_rt(vcpu);
370 
371 	if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ) {
372 		vcpu_set_reg(vcpu, rt, __vcpu_sys_reg(vcpu, CPTR_EL2));
373 	} else {
374 		vcpu_write_sys_reg(vcpu, vcpu_get_reg(vcpu, rt), CPTR_EL2);
375 		__activate_cptr_traps(vcpu);
376 	}
377 
378 	__kvm_skip_instr(vcpu);
379 
380 	return true;
381 }
382 
383 static bool kvm_hyp_handle_zcr_el2(struct kvm_vcpu *vcpu, u64 *exit_code)
384 {
385 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
386 
387 	if (!vcpu_has_nv(vcpu))
388 		return false;
389 
390 	if (sysreg != SYS_ZCR_EL2)
391 		return false;
392 
393 	if (guest_owns_fp_regs())
394 		return false;
395 
396 	/*
397 	 * ZCR_EL2 traps are handled in the slow path, with the expectation
398 	 * that the guest's FP context has already been loaded onto the CPU.
399 	 *
400 	 * Load the guest's FP context and unconditionally forward to the
401 	 * slow path for handling (i.e. return false).
402 	 */
403 	kvm_hyp_handle_fpsimd(vcpu, exit_code);
404 	return false;
405 }
406 
407 static bool kvm_hyp_handle_sysreg_vhe(struct kvm_vcpu *vcpu, u64 *exit_code)
408 {
409 	if (kvm_hyp_handle_tlbi_el2(vcpu, exit_code))
410 		return true;
411 
412 	if (kvm_hyp_handle_cpacr_el1(vcpu, exit_code))
413 		return true;
414 
415 	if (kvm_hyp_handle_zcr_el2(vcpu, exit_code))
416 		return true;
417 
418 	return kvm_hyp_handle_sysreg(vcpu, exit_code);
419 }
420 
421 static const exit_handler_fn hyp_exit_handlers[] = {
422 	[0 ... ESR_ELx_EC_MAX]		= NULL,
423 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
424 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg_vhe,
425 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
426 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
427 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
428 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
429 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
430 	[ESR_ELx_EC_ERET]		= kvm_hyp_handle_eret,
431 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
432 };
433 
434 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
435 {
436 	return hyp_exit_handlers;
437 }
438 
439 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
440 {
441 	/*
442 	 * If we were in HYP context on entry, adjust the PSTATE view
443 	 * so that the usual helpers work correctly.
444 	 */
445 	if (vcpu_has_nv(vcpu) && (read_sysreg(hcr_el2) & HCR_NV)) {
446 		u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
447 
448 		switch (mode) {
449 		case PSR_MODE_EL1t:
450 			mode = PSR_MODE_EL2t;
451 			break;
452 		case PSR_MODE_EL1h:
453 			mode = PSR_MODE_EL2h;
454 			break;
455 		}
456 
457 		*vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT);
458 		*vcpu_cpsr(vcpu) |= mode;
459 	}
460 }
461 
462 /* Switch to the guest for VHE systems running in EL2 */
463 static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
464 {
465 	struct kvm_cpu_context *host_ctxt;
466 	struct kvm_cpu_context *guest_ctxt;
467 	u64 exit_code;
468 
469 	host_ctxt = host_data_ptr(host_ctxt);
470 	guest_ctxt = &vcpu->arch.ctxt;
471 
472 	sysreg_save_host_state_vhe(host_ctxt);
473 
474 	/*
475 	 * Note that ARM erratum 1165522 requires us to configure both stage 1
476 	 * and stage 2 translation for the guest context before we clear
477 	 * HCR_EL2.TGE. The stage 1 and stage 2 guest context has already been
478 	 * loaded on the CPU in kvm_vcpu_load_vhe().
479 	 */
480 	__activate_traps(vcpu);
481 
482 	__kvm_adjust_pc(vcpu);
483 
484 	sysreg_restore_guest_state_vhe(guest_ctxt);
485 	__debug_switch_to_guest(vcpu);
486 
487 	do {
488 		/* Jump in the fire! */
489 		exit_code = __guest_enter(vcpu);
490 
491 		/* And we're baaack! */
492 	} while (fixup_guest_exit(vcpu, &exit_code));
493 
494 	sysreg_save_guest_state_vhe(guest_ctxt);
495 
496 	__deactivate_traps(vcpu);
497 
498 	sysreg_restore_host_state_vhe(host_ctxt);
499 
500 	if (guest_owns_fp_regs())
501 		__fpsimd_save_fpexc32(vcpu);
502 
503 	__debug_switch_to_host(vcpu);
504 
505 	return exit_code;
506 }
507 NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe);
508 
509 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
510 {
511 	int ret;
512 
513 	local_daif_mask();
514 
515 	/*
516 	 * Having IRQs masked via PMR when entering the guest means the GIC
517 	 * will not signal the CPU of interrupts of lower priority, and the
518 	 * only way to get out will be via guest exceptions.
519 	 * Naturally, we want to avoid this.
520 	 *
521 	 * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
522 	 * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
523 	 */
524 	pmr_sync();
525 
526 	ret = __kvm_vcpu_run_vhe(vcpu);
527 
528 	/*
529 	 * local_daif_restore() takes care to properly restore PSTATE.DAIF
530 	 * and the GIC PMR if the host is using IRQ priorities.
531 	 */
532 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
533 
534 	/*
535 	 * When we exit from the guest we change a number of CPU configuration
536 	 * parameters, such as traps.  We rely on the isb() in kvm_call_hyp*()
537 	 * to make sure these changes take effect before running the host or
538 	 * additional guests.
539 	 */
540 	return ret;
541 }
542 
543 static void __noreturn __hyp_call_panic(u64 spsr, u64 elr, u64 par)
544 {
545 	struct kvm_cpu_context *host_ctxt;
546 	struct kvm_vcpu *vcpu;
547 
548 	host_ctxt = host_data_ptr(host_ctxt);
549 	vcpu = host_ctxt->__hyp_running_vcpu;
550 
551 	__deactivate_traps(vcpu);
552 	sysreg_restore_host_state_vhe(host_ctxt);
553 
554 	panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n",
555 	      spsr, elr,
556 	      read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
557 	      read_sysreg(hpfar_el2), par, vcpu);
558 }
559 NOKPROBE_SYMBOL(__hyp_call_panic);
560 
561 void __noreturn hyp_panic(void)
562 {
563 	u64 spsr = read_sysreg_el2(SYS_SPSR);
564 	u64 elr = read_sysreg_el2(SYS_ELR);
565 	u64 par = read_sysreg_par();
566 
567 	__hyp_call_panic(spsr, elr, par);
568 }
569 
570 asmlinkage void kvm_unexpected_el2_exception(void)
571 {
572 	__kvm_unexpected_el2_exception();
573 }
574