1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <hyp/switch.h> 8 9 #include <linux/arm-smccc.h> 10 #include <linux/kvm_host.h> 11 #include <linux/types.h> 12 #include <linux/jump_label.h> 13 #include <linux/percpu.h> 14 #include <uapi/linux/psci.h> 15 16 #include <kvm/arm_psci.h> 17 18 #include <asm/barrier.h> 19 #include <asm/cpufeature.h> 20 #include <asm/kprobes.h> 21 #include <asm/kvm_asm.h> 22 #include <asm/kvm_emulate.h> 23 #include <asm/kvm_hyp.h> 24 #include <asm/kvm_mmu.h> 25 #include <asm/fpsimd.h> 26 #include <asm/debug-monitors.h> 27 #include <asm/processor.h> 28 #include <asm/thread_info.h> 29 #include <asm/vectors.h> 30 31 /* VHE specific context */ 32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); 33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); 35 36 /* 37 * HCR_EL2 bits that the NV guest can freely change (no RES0/RES1 38 * semantics, irrespective of the configuration), but that cannot be 39 * applied to the actual HW as things would otherwise break badly. 40 * 41 * - TGE: we want the guest to use EL1, which is incompatible with 42 * this bit being set 43 * 44 * - API/APK: they are already accounted for by vcpu_load(), and can 45 * only take effect across a load/put cycle (such as ERET) 46 */ 47 #define NV_HCR_GUEST_EXCLUDE (HCR_TGE | HCR_API | HCR_APK) 48 49 static u64 __compute_hcr(struct kvm_vcpu *vcpu) 50 { 51 u64 hcr = vcpu->arch.hcr_el2; 52 53 if (!vcpu_has_nv(vcpu)) 54 return hcr; 55 56 if (is_hyp_ctxt(vcpu)) { 57 hcr |= HCR_NV | HCR_NV2 | HCR_AT | HCR_TTLB; 58 59 if (!vcpu_el2_e2h_is_set(vcpu)) 60 hcr |= HCR_NV1; 61 62 write_sysreg_s(vcpu->arch.ctxt.vncr_array, SYS_VNCR_EL2); 63 } 64 65 return hcr | (__vcpu_sys_reg(vcpu, HCR_EL2) & ~NV_HCR_GUEST_EXCLUDE); 66 } 67 68 static void __activate_cptr_traps(struct kvm_vcpu *vcpu) 69 { 70 u64 cptr; 71 72 /* 73 * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to 74 * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2, 75 * except for some missing controls, such as TAM. 76 * In this case, CPTR_EL2.TAM has the same position with or without 77 * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM 78 * shift value for trapping the AMU accesses. 79 */ 80 u64 val = CPACR_ELx_TTA | CPTR_EL2_TAM; 81 82 if (guest_owns_fp_regs()) { 83 val |= CPACR_ELx_FPEN; 84 if (vcpu_has_sve(vcpu)) 85 val |= CPACR_ELx_ZEN; 86 } else { 87 __activate_traps_fpsimd32(vcpu); 88 } 89 90 if (!vcpu_has_nv(vcpu)) 91 goto write; 92 93 /* 94 * The architecture is a bit crap (what a surprise): an EL2 guest 95 * writing to CPTR_EL2 via CPACR_EL1 can't set any of TCPAC or TTA, 96 * as they are RES0 in the guest's view. To work around it, trap the 97 * sucker using the very same bit it can't set... 98 */ 99 if (vcpu_el2_e2h_is_set(vcpu) && is_hyp_ctxt(vcpu)) 100 val |= CPTR_EL2_TCPAC; 101 102 /* 103 * Layer the guest hypervisor's trap configuration on top of our own if 104 * we're in a nested context. 105 */ 106 if (is_hyp_ctxt(vcpu)) 107 goto write; 108 109 cptr = vcpu_sanitised_cptr_el2(vcpu); 110 111 /* 112 * Pay attention, there's some interesting detail here. 113 * 114 * The CPTR_EL2.xEN fields are 2 bits wide, although there are only two 115 * meaningful trap states when HCR_EL2.TGE = 0 (running a nested guest): 116 * 117 * - CPTR_EL2.xEN = x0, traps are enabled 118 * - CPTR_EL2.xEN = x1, traps are disabled 119 * 120 * In other words, bit[0] determines if guest accesses trap or not. In 121 * the interest of simplicity, clear the entire field if the guest 122 * hypervisor has traps enabled to dispel any illusion of something more 123 * complicated taking place. 124 */ 125 if (!(SYS_FIELD_GET(CPACR_ELx, FPEN, cptr) & BIT(0))) 126 val &= ~CPACR_ELx_FPEN; 127 if (!(SYS_FIELD_GET(CPACR_ELx, ZEN, cptr) & BIT(0))) 128 val &= ~CPACR_ELx_ZEN; 129 130 if (kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, S2POE, IMP)) 131 val |= cptr & CPACR_ELx_E0POE; 132 133 val |= cptr & CPTR_EL2_TCPAC; 134 135 write: 136 write_sysreg(val, cpacr_el1); 137 } 138 139 static void __activate_traps(struct kvm_vcpu *vcpu) 140 { 141 u64 val; 142 143 ___activate_traps(vcpu, __compute_hcr(vcpu)); 144 145 if (has_cntpoff()) { 146 struct timer_map map; 147 148 get_timer_map(vcpu, &map); 149 150 /* 151 * We're entrering the guest. Reload the correct 152 * values from memory now that TGE is clear. 153 */ 154 if (map.direct_ptimer == vcpu_ptimer(vcpu)) 155 val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); 156 if (map.direct_ptimer == vcpu_hptimer(vcpu)) 157 val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2); 158 159 if (map.direct_ptimer) { 160 write_sysreg_el0(val, SYS_CNTP_CVAL); 161 isb(); 162 } 163 } 164 165 __activate_cptr_traps(vcpu); 166 167 write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1); 168 } 169 NOKPROBE_SYMBOL(__activate_traps); 170 171 static void __deactivate_traps(struct kvm_vcpu *vcpu) 172 { 173 const char *host_vectors = vectors; 174 175 ___deactivate_traps(vcpu); 176 177 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); 178 179 if (has_cntpoff()) { 180 struct timer_map map; 181 u64 val, offset; 182 183 get_timer_map(vcpu, &map); 184 185 /* 186 * We're exiting the guest. Save the latest CVAL value 187 * to memory and apply the offset now that TGE is set. 188 */ 189 val = read_sysreg_el0(SYS_CNTP_CVAL); 190 if (map.direct_ptimer == vcpu_ptimer(vcpu)) 191 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = val; 192 if (map.direct_ptimer == vcpu_hptimer(vcpu)) 193 __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = val; 194 195 offset = read_sysreg_s(SYS_CNTPOFF_EL2); 196 197 if (map.direct_ptimer && offset) { 198 write_sysreg_el0(val + offset, SYS_CNTP_CVAL); 199 isb(); 200 } 201 } 202 203 /* 204 * ARM errata 1165522 and 1530923 require the actual execution of the 205 * above before we can switch to the EL2/EL0 translation regime used by 206 * the host. 207 */ 208 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); 209 210 kvm_reset_cptr_el2(vcpu); 211 212 if (!arm64_kernel_unmapped_at_el0()) 213 host_vectors = __this_cpu_read(this_cpu_vector); 214 write_sysreg(host_vectors, vbar_el1); 215 } 216 NOKPROBE_SYMBOL(__deactivate_traps); 217 218 /* 219 * Disable IRQs in __vcpu_{load,put}_{activate,deactivate}_traps() to 220 * prevent a race condition between context switching of PMUSERENR_EL0 221 * in __{activate,deactivate}_traps_common() and IPIs that attempts to 222 * update PMUSERENR_EL0. See also kvm_set_pmuserenr(). 223 */ 224 static void __vcpu_load_activate_traps(struct kvm_vcpu *vcpu) 225 { 226 unsigned long flags; 227 228 local_irq_save(flags); 229 __activate_traps_common(vcpu); 230 local_irq_restore(flags); 231 } 232 233 static void __vcpu_put_deactivate_traps(struct kvm_vcpu *vcpu) 234 { 235 unsigned long flags; 236 237 local_irq_save(flags); 238 __deactivate_traps_common(vcpu); 239 local_irq_restore(flags); 240 } 241 242 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu) 243 { 244 host_data_ptr(host_ctxt)->__hyp_running_vcpu = vcpu; 245 246 __vcpu_load_switch_sysregs(vcpu); 247 __vcpu_load_activate_traps(vcpu); 248 __load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch); 249 } 250 251 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu) 252 { 253 __vcpu_put_deactivate_traps(vcpu); 254 __vcpu_put_switch_sysregs(vcpu); 255 256 host_data_ptr(host_ctxt)->__hyp_running_vcpu = NULL; 257 } 258 259 static bool kvm_hyp_handle_eret(struct kvm_vcpu *vcpu, u64 *exit_code) 260 { 261 u64 esr = kvm_vcpu_get_esr(vcpu); 262 u64 spsr, elr, mode; 263 264 /* 265 * Going through the whole put/load motions is a waste of time 266 * if this is a VHE guest hypervisor returning to its own 267 * userspace, or the hypervisor performing a local exception 268 * return. No need to save/restore registers, no need to 269 * switch S2 MMU. Just do the canonical ERET. 270 * 271 * Unless the trap has to be forwarded further down the line, 272 * of course... 273 */ 274 if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) || 275 (__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_ERET)) 276 return false; 277 278 spsr = read_sysreg_el1(SYS_SPSR); 279 mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT); 280 281 switch (mode) { 282 case PSR_MODE_EL0t: 283 if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu))) 284 return false; 285 break; 286 case PSR_MODE_EL2t: 287 mode = PSR_MODE_EL1t; 288 break; 289 case PSR_MODE_EL2h: 290 mode = PSR_MODE_EL1h; 291 break; 292 default: 293 return false; 294 } 295 296 /* If ERETAx fails, take the slow path */ 297 if (esr_iss_is_eretax(esr)) { 298 if (!(vcpu_has_ptrauth(vcpu) && kvm_auth_eretax(vcpu, &elr))) 299 return false; 300 } else { 301 elr = read_sysreg_el1(SYS_ELR); 302 } 303 304 spsr = (spsr & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode; 305 306 write_sysreg_el2(spsr, SYS_SPSR); 307 write_sysreg_el2(elr, SYS_ELR); 308 309 return true; 310 } 311 312 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu) 313 { 314 __fpsimd_save_state(*host_data_ptr(fpsimd_state)); 315 316 if (kvm_has_fpmr(vcpu->kvm)) 317 **host_data_ptr(fpmr_ptr) = read_sysreg_s(SYS_FPMR); 318 } 319 320 static bool kvm_hyp_handle_tlbi_el2(struct kvm_vcpu *vcpu, u64 *exit_code) 321 { 322 int ret = -EINVAL; 323 u32 instr; 324 u64 val; 325 326 /* 327 * Ideally, we would never trap on EL2 S1 TLB invalidations using 328 * the EL1 instructions when the guest's HCR_EL2.{E2H,TGE}=={1,1}. 329 * But "thanks" to FEAT_NV2, we don't trap writes to HCR_EL2, 330 * meaning that we can't track changes to the virtual TGE bit. So we 331 * have to leave HCR_EL2.TTLB set on the host. Oopsie... 332 * 333 * Try and handle these invalidation as quickly as possible, without 334 * fully exiting. Note that we don't need to consider any forwarding 335 * here, as having E2H+TGE set is the very definition of being 336 * InHost. 337 * 338 * For the lesser hypervisors out there that have failed to get on 339 * with the VHE program, we can also handle the nVHE style of EL2 340 * invalidation. 341 */ 342 if (!(is_hyp_ctxt(vcpu))) 343 return false; 344 345 instr = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 346 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); 347 348 if ((kvm_supported_tlbi_s1e1_op(vcpu, instr) && 349 vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) || 350 kvm_supported_tlbi_s1e2_op (vcpu, instr)) 351 ret = __kvm_tlbi_s1e2(NULL, val, instr); 352 353 if (ret) 354 return false; 355 356 __kvm_skip_instr(vcpu); 357 358 return true; 359 } 360 361 static bool kvm_hyp_handle_cpacr_el1(struct kvm_vcpu *vcpu, u64 *exit_code) 362 { 363 u64 esr = kvm_vcpu_get_esr(vcpu); 364 int rt; 365 366 if (!is_hyp_ctxt(vcpu) || esr_sys64_to_sysreg(esr) != SYS_CPACR_EL1) 367 return false; 368 369 rt = kvm_vcpu_sys_get_rt(vcpu); 370 371 if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ) { 372 vcpu_set_reg(vcpu, rt, __vcpu_sys_reg(vcpu, CPTR_EL2)); 373 } else { 374 vcpu_write_sys_reg(vcpu, vcpu_get_reg(vcpu, rt), CPTR_EL2); 375 __activate_cptr_traps(vcpu); 376 } 377 378 __kvm_skip_instr(vcpu); 379 380 return true; 381 } 382 383 static bool kvm_hyp_handle_zcr_el2(struct kvm_vcpu *vcpu, u64 *exit_code) 384 { 385 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 386 387 if (!vcpu_has_nv(vcpu)) 388 return false; 389 390 if (sysreg != SYS_ZCR_EL2) 391 return false; 392 393 if (guest_owns_fp_regs()) 394 return false; 395 396 /* 397 * ZCR_EL2 traps are handled in the slow path, with the expectation 398 * that the guest's FP context has already been loaded onto the CPU. 399 * 400 * Load the guest's FP context and unconditionally forward to the 401 * slow path for handling (i.e. return false). 402 */ 403 kvm_hyp_handle_fpsimd(vcpu, exit_code); 404 return false; 405 } 406 407 static bool kvm_hyp_handle_sysreg_vhe(struct kvm_vcpu *vcpu, u64 *exit_code) 408 { 409 if (kvm_hyp_handle_tlbi_el2(vcpu, exit_code)) 410 return true; 411 412 if (kvm_hyp_handle_cpacr_el1(vcpu, exit_code)) 413 return true; 414 415 if (kvm_hyp_handle_zcr_el2(vcpu, exit_code)) 416 return true; 417 418 return kvm_hyp_handle_sysreg(vcpu, exit_code); 419 } 420 421 static const exit_handler_fn hyp_exit_handlers[] = { 422 [0 ... ESR_ELx_EC_MAX] = NULL, 423 [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, 424 [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg_vhe, 425 [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, 426 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, 427 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, 428 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, 429 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, 430 [ESR_ELx_EC_ERET] = kvm_hyp_handle_eret, 431 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, 432 }; 433 434 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) 435 { 436 return hyp_exit_handlers; 437 } 438 439 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code) 440 { 441 /* 442 * If we were in HYP context on entry, adjust the PSTATE view 443 * so that the usual helpers work correctly. 444 */ 445 if (vcpu_has_nv(vcpu) && (read_sysreg(hcr_el2) & HCR_NV)) { 446 u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT); 447 448 switch (mode) { 449 case PSR_MODE_EL1t: 450 mode = PSR_MODE_EL2t; 451 break; 452 case PSR_MODE_EL1h: 453 mode = PSR_MODE_EL2h; 454 break; 455 } 456 457 *vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT); 458 *vcpu_cpsr(vcpu) |= mode; 459 } 460 } 461 462 /* Switch to the guest for VHE systems running in EL2 */ 463 static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu) 464 { 465 struct kvm_cpu_context *host_ctxt; 466 struct kvm_cpu_context *guest_ctxt; 467 u64 exit_code; 468 469 host_ctxt = host_data_ptr(host_ctxt); 470 guest_ctxt = &vcpu->arch.ctxt; 471 472 sysreg_save_host_state_vhe(host_ctxt); 473 474 /* 475 * Note that ARM erratum 1165522 requires us to configure both stage 1 476 * and stage 2 translation for the guest context before we clear 477 * HCR_EL2.TGE. The stage 1 and stage 2 guest context has already been 478 * loaded on the CPU in kvm_vcpu_load_vhe(). 479 */ 480 __activate_traps(vcpu); 481 482 __kvm_adjust_pc(vcpu); 483 484 sysreg_restore_guest_state_vhe(guest_ctxt); 485 __debug_switch_to_guest(vcpu); 486 487 do { 488 /* Jump in the fire! */ 489 exit_code = __guest_enter(vcpu); 490 491 /* And we're baaack! */ 492 } while (fixup_guest_exit(vcpu, &exit_code)); 493 494 sysreg_save_guest_state_vhe(guest_ctxt); 495 496 __deactivate_traps(vcpu); 497 498 sysreg_restore_host_state_vhe(host_ctxt); 499 500 if (guest_owns_fp_regs()) 501 __fpsimd_save_fpexc32(vcpu); 502 503 __debug_switch_to_host(vcpu); 504 505 return exit_code; 506 } 507 NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe); 508 509 int __kvm_vcpu_run(struct kvm_vcpu *vcpu) 510 { 511 int ret; 512 513 local_daif_mask(); 514 515 /* 516 * Having IRQs masked via PMR when entering the guest means the GIC 517 * will not signal the CPU of interrupts of lower priority, and the 518 * only way to get out will be via guest exceptions. 519 * Naturally, we want to avoid this. 520 * 521 * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a 522 * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU. 523 */ 524 pmr_sync(); 525 526 ret = __kvm_vcpu_run_vhe(vcpu); 527 528 /* 529 * local_daif_restore() takes care to properly restore PSTATE.DAIF 530 * and the GIC PMR if the host is using IRQ priorities. 531 */ 532 local_daif_restore(DAIF_PROCCTX_NOIRQ); 533 534 /* 535 * When we exit from the guest we change a number of CPU configuration 536 * parameters, such as traps. We rely on the isb() in kvm_call_hyp*() 537 * to make sure these changes take effect before running the host or 538 * additional guests. 539 */ 540 return ret; 541 } 542 543 static void __noreturn __hyp_call_panic(u64 spsr, u64 elr, u64 par) 544 { 545 struct kvm_cpu_context *host_ctxt; 546 struct kvm_vcpu *vcpu; 547 548 host_ctxt = host_data_ptr(host_ctxt); 549 vcpu = host_ctxt->__hyp_running_vcpu; 550 551 __deactivate_traps(vcpu); 552 sysreg_restore_host_state_vhe(host_ctxt); 553 554 panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n", 555 spsr, elr, 556 read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR), 557 read_sysreg(hpfar_el2), par, vcpu); 558 } 559 NOKPROBE_SYMBOL(__hyp_call_panic); 560 561 void __noreturn hyp_panic(void) 562 { 563 u64 spsr = read_sysreg_el2(SYS_SPSR); 564 u64 elr = read_sysreg_el2(SYS_ELR); 565 u64 par = read_sysreg_par(); 566 567 __hyp_call_panic(spsr, elr, par); 568 } 569 570 asmlinkage void kvm_unexpected_el2_exception(void) 571 { 572 __kvm_unexpected_el2_exception(); 573 } 574