1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <hyp/switch.h> 8 9 #include <linux/arm-smccc.h> 10 #include <linux/kvm_host.h> 11 #include <linux/types.h> 12 #include <linux/jump_label.h> 13 #include <linux/percpu.h> 14 #include <uapi/linux/psci.h> 15 16 #include <kvm/arm_psci.h> 17 18 #include <asm/barrier.h> 19 #include <asm/cpufeature.h> 20 #include <asm/kprobes.h> 21 #include <asm/kvm_asm.h> 22 #include <asm/kvm_emulate.h> 23 #include <asm/kvm_hyp.h> 24 #include <asm/kvm_mmu.h> 25 #include <asm/fpsimd.h> 26 #include <asm/debug-monitors.h> 27 #include <asm/processor.h> 28 #include <asm/thread_info.h> 29 #include <asm/vectors.h> 30 31 /* VHE specific context */ 32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); 33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); 35 36 /* 37 * HCR_EL2 bits that the NV guest can freely change (no RES0/RES1 38 * semantics, irrespective of the configuration), but that cannot be 39 * applied to the actual HW as things would otherwise break badly. 40 * 41 * - TGE: we want the guest to use EL1, which is incompatible with 42 * this bit being set 43 * 44 * - API/APK: they are already accounted for by vcpu_load(), and can 45 * only take effect across a load/put cycle (such as ERET) 46 */ 47 #define NV_HCR_GUEST_EXCLUDE (HCR_TGE | HCR_API | HCR_APK) 48 49 static u64 __compute_hcr(struct kvm_vcpu *vcpu) 50 { 51 u64 hcr = vcpu->arch.hcr_el2; 52 53 if (!vcpu_has_nv(vcpu)) 54 return hcr; 55 56 if (is_hyp_ctxt(vcpu)) { 57 hcr |= HCR_NV | HCR_NV2 | HCR_AT | HCR_TTLB; 58 59 if (!vcpu_el2_e2h_is_set(vcpu)) 60 hcr |= HCR_NV1; 61 62 write_sysreg_s(vcpu->arch.ctxt.vncr_array, SYS_VNCR_EL2); 63 } 64 65 return hcr | (__vcpu_sys_reg(vcpu, HCR_EL2) & ~NV_HCR_GUEST_EXCLUDE); 66 } 67 68 static void __activate_cptr_traps(struct kvm_vcpu *vcpu) 69 { 70 u64 cptr; 71 72 /* 73 * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to 74 * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2, 75 * except for some missing controls, such as TAM. 76 * In this case, CPTR_EL2.TAM has the same position with or without 77 * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM 78 * shift value for trapping the AMU accesses. 79 */ 80 u64 val = CPACR_EL1_TTA | CPTR_EL2_TAM; 81 82 if (guest_owns_fp_regs()) { 83 val |= CPACR_EL1_FPEN; 84 if (vcpu_has_sve(vcpu)) 85 val |= CPACR_EL1_ZEN; 86 } else { 87 __activate_traps_fpsimd32(vcpu); 88 } 89 90 if (!vcpu_has_nv(vcpu)) 91 goto write; 92 93 /* 94 * The architecture is a bit crap (what a surprise): an EL2 guest 95 * writing to CPTR_EL2 via CPACR_EL1 can't set any of TCPAC or TTA, 96 * as they are RES0 in the guest's view. To work around it, trap the 97 * sucker using the very same bit it can't set... 98 */ 99 if (vcpu_el2_e2h_is_set(vcpu) && is_hyp_ctxt(vcpu)) 100 val |= CPTR_EL2_TCPAC; 101 102 /* 103 * Layer the guest hypervisor's trap configuration on top of our own if 104 * we're in a nested context. 105 */ 106 if (is_hyp_ctxt(vcpu)) 107 goto write; 108 109 cptr = vcpu_sanitised_cptr_el2(vcpu); 110 111 /* 112 * Pay attention, there's some interesting detail here. 113 * 114 * The CPTR_EL2.xEN fields are 2 bits wide, although there are only two 115 * meaningful trap states when HCR_EL2.TGE = 0 (running a nested guest): 116 * 117 * - CPTR_EL2.xEN = x0, traps are enabled 118 * - CPTR_EL2.xEN = x1, traps are disabled 119 * 120 * In other words, bit[0] determines if guest accesses trap or not. In 121 * the interest of simplicity, clear the entire field if the guest 122 * hypervisor has traps enabled to dispel any illusion of something more 123 * complicated taking place. 124 */ 125 if (!(SYS_FIELD_GET(CPACR_EL1, FPEN, cptr) & BIT(0))) 126 val &= ~CPACR_EL1_FPEN; 127 if (!(SYS_FIELD_GET(CPACR_EL1, ZEN, cptr) & BIT(0))) 128 val &= ~CPACR_EL1_ZEN; 129 130 if (kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, S2POE, IMP)) 131 val |= cptr & CPACR_EL1_E0POE; 132 133 val |= cptr & CPTR_EL2_TCPAC; 134 135 write: 136 write_sysreg(val, cpacr_el1); 137 } 138 139 static void __activate_traps(struct kvm_vcpu *vcpu) 140 { 141 u64 val; 142 143 ___activate_traps(vcpu, __compute_hcr(vcpu)); 144 145 if (has_cntpoff()) { 146 struct timer_map map; 147 148 get_timer_map(vcpu, &map); 149 150 /* 151 * We're entrering the guest. Reload the correct 152 * values from memory now that TGE is clear. 153 */ 154 if (map.direct_ptimer == vcpu_ptimer(vcpu)) 155 val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); 156 if (map.direct_ptimer == vcpu_hptimer(vcpu)) 157 val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2); 158 159 if (map.direct_ptimer) { 160 write_sysreg_el0(val, SYS_CNTP_CVAL); 161 isb(); 162 } 163 } 164 165 __activate_cptr_traps(vcpu); 166 167 write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1); 168 } 169 NOKPROBE_SYMBOL(__activate_traps); 170 171 static void __deactivate_traps(struct kvm_vcpu *vcpu) 172 { 173 const char *host_vectors = vectors; 174 175 ___deactivate_traps(vcpu); 176 177 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); 178 179 if (has_cntpoff()) { 180 struct timer_map map; 181 u64 val, offset; 182 183 get_timer_map(vcpu, &map); 184 185 /* 186 * We're exiting the guest. Save the latest CVAL value 187 * to memory and apply the offset now that TGE is set. 188 */ 189 val = read_sysreg_el0(SYS_CNTP_CVAL); 190 if (map.direct_ptimer == vcpu_ptimer(vcpu)) 191 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = val; 192 if (map.direct_ptimer == vcpu_hptimer(vcpu)) 193 __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = val; 194 195 offset = read_sysreg_s(SYS_CNTPOFF_EL2); 196 197 if (map.direct_ptimer && offset) { 198 write_sysreg_el0(val + offset, SYS_CNTP_CVAL); 199 isb(); 200 } 201 } 202 203 /* 204 * ARM errata 1165522 and 1530923 require the actual execution of the 205 * above before we can switch to the EL2/EL0 translation regime used by 206 * the host. 207 */ 208 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); 209 210 kvm_reset_cptr_el2(vcpu); 211 212 if (!arm64_kernel_unmapped_at_el0()) 213 host_vectors = __this_cpu_read(this_cpu_vector); 214 write_sysreg(host_vectors, vbar_el1); 215 } 216 NOKPROBE_SYMBOL(__deactivate_traps); 217 218 /* 219 * Disable IRQs in __vcpu_{load,put}_{activate,deactivate}_traps() to 220 * prevent a race condition between context switching of PMUSERENR_EL0 221 * in __{activate,deactivate}_traps_common() and IPIs that attempts to 222 * update PMUSERENR_EL0. See also kvm_set_pmuserenr(). 223 */ 224 static void __vcpu_load_activate_traps(struct kvm_vcpu *vcpu) 225 { 226 unsigned long flags; 227 228 local_irq_save(flags); 229 __activate_traps_common(vcpu); 230 local_irq_restore(flags); 231 } 232 233 static void __vcpu_put_deactivate_traps(struct kvm_vcpu *vcpu) 234 { 235 unsigned long flags; 236 237 local_irq_save(flags); 238 __deactivate_traps_common(vcpu); 239 local_irq_restore(flags); 240 } 241 242 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu) 243 { 244 host_data_ptr(host_ctxt)->__hyp_running_vcpu = vcpu; 245 246 __vcpu_load_switch_sysregs(vcpu); 247 __vcpu_load_activate_traps(vcpu); 248 __load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch); 249 } 250 251 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu) 252 { 253 __vcpu_put_deactivate_traps(vcpu); 254 __vcpu_put_switch_sysregs(vcpu); 255 256 host_data_ptr(host_ctxt)->__hyp_running_vcpu = NULL; 257 } 258 259 static u64 compute_emulated_cntx_ctl_el0(struct kvm_vcpu *vcpu, 260 enum vcpu_sysreg reg) 261 { 262 unsigned long ctl; 263 u64 cval, cnt; 264 bool stat; 265 266 switch (reg) { 267 case CNTP_CTL_EL0: 268 cval = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); 269 ctl = __vcpu_sys_reg(vcpu, CNTP_CTL_EL0); 270 cnt = compute_counter_value(vcpu_ptimer(vcpu)); 271 break; 272 case CNTV_CTL_EL0: 273 cval = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0); 274 ctl = __vcpu_sys_reg(vcpu, CNTV_CTL_EL0); 275 cnt = compute_counter_value(vcpu_vtimer(vcpu)); 276 break; 277 default: 278 BUG(); 279 } 280 281 stat = cval <= cnt; 282 __assign_bit(__ffs(ARCH_TIMER_CTRL_IT_STAT), &ctl, stat); 283 284 return ctl; 285 } 286 287 static bool kvm_hyp_handle_timer(struct kvm_vcpu *vcpu, u64 *exit_code) 288 { 289 u64 esr, val; 290 291 /* 292 * Having FEAT_ECV allows for a better quality of timer emulation. 293 * However, this comes at a huge cost in terms of traps. Try and 294 * satisfy the reads from guest's hypervisor context without 295 * returning to the kernel if we can. 296 */ 297 if (!is_hyp_ctxt(vcpu)) 298 return false; 299 300 esr = kvm_vcpu_get_esr(vcpu); 301 if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) != ESR_ELx_SYS64_ISS_DIR_READ) 302 return false; 303 304 switch (esr_sys64_to_sysreg(esr)) { 305 case SYS_CNTP_CTL_EL02: 306 val = compute_emulated_cntx_ctl_el0(vcpu, CNTP_CTL_EL0); 307 break; 308 case SYS_CNTP_CTL_EL0: 309 if (vcpu_el2_e2h_is_set(vcpu)) 310 val = read_sysreg_el0(SYS_CNTP_CTL); 311 else 312 val = compute_emulated_cntx_ctl_el0(vcpu, CNTP_CTL_EL0); 313 break; 314 case SYS_CNTP_CVAL_EL02: 315 val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); 316 break; 317 case SYS_CNTP_CVAL_EL0: 318 if (vcpu_el2_e2h_is_set(vcpu)) { 319 val = read_sysreg_el0(SYS_CNTP_CVAL); 320 321 if (!has_cntpoff()) 322 val -= timer_get_offset(vcpu_hptimer(vcpu)); 323 } else { 324 val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); 325 } 326 break; 327 case SYS_CNTPCT_EL0: 328 case SYS_CNTPCTSS_EL0: 329 val = compute_counter_value(vcpu_hptimer(vcpu)); 330 break; 331 case SYS_CNTV_CTL_EL02: 332 val = compute_emulated_cntx_ctl_el0(vcpu, CNTV_CTL_EL0); 333 break; 334 case SYS_CNTV_CTL_EL0: 335 if (vcpu_el2_e2h_is_set(vcpu)) 336 val = read_sysreg_el0(SYS_CNTV_CTL); 337 else 338 val = compute_emulated_cntx_ctl_el0(vcpu, CNTV_CTL_EL0); 339 break; 340 case SYS_CNTV_CVAL_EL02: 341 val = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0); 342 break; 343 case SYS_CNTV_CVAL_EL0: 344 if (vcpu_el2_e2h_is_set(vcpu)) 345 val = read_sysreg_el0(SYS_CNTV_CVAL); 346 else 347 val = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0); 348 break; 349 case SYS_CNTVCT_EL0: 350 case SYS_CNTVCTSS_EL0: 351 val = compute_counter_value(vcpu_hvtimer(vcpu)); 352 break; 353 default: 354 return false; 355 } 356 357 vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val); 358 __kvm_skip_instr(vcpu); 359 360 return true; 361 } 362 363 static bool kvm_hyp_handle_eret(struct kvm_vcpu *vcpu, u64 *exit_code) 364 { 365 u64 esr = kvm_vcpu_get_esr(vcpu); 366 u64 spsr, elr, mode; 367 368 /* 369 * Going through the whole put/load motions is a waste of time 370 * if this is a VHE guest hypervisor returning to its own 371 * userspace, or the hypervisor performing a local exception 372 * return. No need to save/restore registers, no need to 373 * switch S2 MMU. Just do the canonical ERET. 374 * 375 * Unless the trap has to be forwarded further down the line, 376 * of course... 377 */ 378 if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) || 379 (__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_ERET)) 380 return false; 381 382 spsr = read_sysreg_el1(SYS_SPSR); 383 mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT); 384 385 switch (mode) { 386 case PSR_MODE_EL0t: 387 if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu))) 388 return false; 389 break; 390 case PSR_MODE_EL2t: 391 mode = PSR_MODE_EL1t; 392 break; 393 case PSR_MODE_EL2h: 394 mode = PSR_MODE_EL1h; 395 break; 396 default: 397 return false; 398 } 399 400 /* If ERETAx fails, take the slow path */ 401 if (esr_iss_is_eretax(esr)) { 402 if (!(vcpu_has_ptrauth(vcpu) && kvm_auth_eretax(vcpu, &elr))) 403 return false; 404 } else { 405 elr = read_sysreg_el1(SYS_ELR); 406 } 407 408 spsr = (spsr & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode; 409 410 write_sysreg_el2(spsr, SYS_SPSR); 411 write_sysreg_el2(elr, SYS_ELR); 412 413 return true; 414 } 415 416 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu) 417 { 418 __fpsimd_save_state(*host_data_ptr(fpsimd_state)); 419 420 if (kvm_has_fpmr(vcpu->kvm)) 421 **host_data_ptr(fpmr_ptr) = read_sysreg_s(SYS_FPMR); 422 } 423 424 static bool kvm_hyp_handle_tlbi_el2(struct kvm_vcpu *vcpu, u64 *exit_code) 425 { 426 int ret = -EINVAL; 427 u32 instr; 428 u64 val; 429 430 /* 431 * Ideally, we would never trap on EL2 S1 TLB invalidations using 432 * the EL1 instructions when the guest's HCR_EL2.{E2H,TGE}=={1,1}. 433 * But "thanks" to FEAT_NV2, we don't trap writes to HCR_EL2, 434 * meaning that we can't track changes to the virtual TGE bit. So we 435 * have to leave HCR_EL2.TTLB set on the host. Oopsie... 436 * 437 * Try and handle these invalidation as quickly as possible, without 438 * fully exiting. Note that we don't need to consider any forwarding 439 * here, as having E2H+TGE set is the very definition of being 440 * InHost. 441 * 442 * For the lesser hypervisors out there that have failed to get on 443 * with the VHE program, we can also handle the nVHE style of EL2 444 * invalidation. 445 */ 446 if (!(is_hyp_ctxt(vcpu))) 447 return false; 448 449 instr = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 450 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); 451 452 if ((kvm_supported_tlbi_s1e1_op(vcpu, instr) && 453 vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) || 454 kvm_supported_tlbi_s1e2_op (vcpu, instr)) 455 ret = __kvm_tlbi_s1e2(NULL, val, instr); 456 457 if (ret) 458 return false; 459 460 __kvm_skip_instr(vcpu); 461 462 return true; 463 } 464 465 static bool kvm_hyp_handle_cpacr_el1(struct kvm_vcpu *vcpu, u64 *exit_code) 466 { 467 u64 esr = kvm_vcpu_get_esr(vcpu); 468 int rt; 469 470 if (!is_hyp_ctxt(vcpu) || esr_sys64_to_sysreg(esr) != SYS_CPACR_EL1) 471 return false; 472 473 rt = kvm_vcpu_sys_get_rt(vcpu); 474 475 if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ) { 476 vcpu_set_reg(vcpu, rt, __vcpu_sys_reg(vcpu, CPTR_EL2)); 477 } else { 478 vcpu_write_sys_reg(vcpu, vcpu_get_reg(vcpu, rt), CPTR_EL2); 479 __activate_cptr_traps(vcpu); 480 } 481 482 __kvm_skip_instr(vcpu); 483 484 return true; 485 } 486 487 static bool kvm_hyp_handle_zcr_el2(struct kvm_vcpu *vcpu, u64 *exit_code) 488 { 489 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 490 491 if (!vcpu_has_nv(vcpu)) 492 return false; 493 494 if (sysreg != SYS_ZCR_EL2) 495 return false; 496 497 if (guest_owns_fp_regs()) 498 return false; 499 500 /* 501 * ZCR_EL2 traps are handled in the slow path, with the expectation 502 * that the guest's FP context has already been loaded onto the CPU. 503 * 504 * Load the guest's FP context and unconditionally forward to the 505 * slow path for handling (i.e. return false). 506 */ 507 kvm_hyp_handle_fpsimd(vcpu, exit_code); 508 return false; 509 } 510 511 static bool kvm_hyp_handle_sysreg_vhe(struct kvm_vcpu *vcpu, u64 *exit_code) 512 { 513 if (kvm_hyp_handle_tlbi_el2(vcpu, exit_code)) 514 return true; 515 516 if (kvm_hyp_handle_timer(vcpu, exit_code)) 517 return true; 518 519 if (kvm_hyp_handle_cpacr_el1(vcpu, exit_code)) 520 return true; 521 522 if (kvm_hyp_handle_zcr_el2(vcpu, exit_code)) 523 return true; 524 525 return kvm_hyp_handle_sysreg(vcpu, exit_code); 526 } 527 528 static const exit_handler_fn hyp_exit_handlers[] = { 529 [0 ... ESR_ELx_EC_MAX] = NULL, 530 [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, 531 [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg_vhe, 532 [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, 533 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, 534 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, 535 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, 536 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, 537 [ESR_ELx_EC_ERET] = kvm_hyp_handle_eret, 538 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, 539 }; 540 541 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) 542 { 543 return hyp_exit_handlers; 544 } 545 546 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code) 547 { 548 /* 549 * If we were in HYP context on entry, adjust the PSTATE view 550 * so that the usual helpers work correctly. 551 */ 552 if (vcpu_has_nv(vcpu) && (read_sysreg(hcr_el2) & HCR_NV)) { 553 u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT); 554 555 switch (mode) { 556 case PSR_MODE_EL1t: 557 mode = PSR_MODE_EL2t; 558 break; 559 case PSR_MODE_EL1h: 560 mode = PSR_MODE_EL2h; 561 break; 562 } 563 564 *vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT); 565 *vcpu_cpsr(vcpu) |= mode; 566 } 567 } 568 569 /* Switch to the guest for VHE systems running in EL2 */ 570 static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu) 571 { 572 struct kvm_cpu_context *host_ctxt; 573 struct kvm_cpu_context *guest_ctxt; 574 u64 exit_code; 575 576 host_ctxt = host_data_ptr(host_ctxt); 577 guest_ctxt = &vcpu->arch.ctxt; 578 579 sysreg_save_host_state_vhe(host_ctxt); 580 581 /* 582 * Note that ARM erratum 1165522 requires us to configure both stage 1 583 * and stage 2 translation for the guest context before we clear 584 * HCR_EL2.TGE. The stage 1 and stage 2 guest context has already been 585 * loaded on the CPU in kvm_vcpu_load_vhe(). 586 */ 587 __activate_traps(vcpu); 588 589 __kvm_adjust_pc(vcpu); 590 591 sysreg_restore_guest_state_vhe(guest_ctxt); 592 __debug_switch_to_guest(vcpu); 593 594 do { 595 /* Jump in the fire! */ 596 exit_code = __guest_enter(vcpu); 597 598 /* And we're baaack! */ 599 } while (fixup_guest_exit(vcpu, &exit_code)); 600 601 sysreg_save_guest_state_vhe(guest_ctxt); 602 603 __deactivate_traps(vcpu); 604 605 sysreg_restore_host_state_vhe(host_ctxt); 606 607 if (guest_owns_fp_regs()) 608 __fpsimd_save_fpexc32(vcpu); 609 610 __debug_switch_to_host(vcpu); 611 612 return exit_code; 613 } 614 NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe); 615 616 int __kvm_vcpu_run(struct kvm_vcpu *vcpu) 617 { 618 int ret; 619 620 local_daif_mask(); 621 622 /* 623 * Having IRQs masked via PMR when entering the guest means the GIC 624 * will not signal the CPU of interrupts of lower priority, and the 625 * only way to get out will be via guest exceptions. 626 * Naturally, we want to avoid this. 627 * 628 * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a 629 * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU. 630 */ 631 pmr_sync(); 632 633 ret = __kvm_vcpu_run_vhe(vcpu); 634 635 /* 636 * local_daif_restore() takes care to properly restore PSTATE.DAIF 637 * and the GIC PMR if the host is using IRQ priorities. 638 */ 639 local_daif_restore(DAIF_PROCCTX_NOIRQ); 640 641 /* 642 * When we exit from the guest we change a number of CPU configuration 643 * parameters, such as traps. We rely on the isb() in kvm_call_hyp*() 644 * to make sure these changes take effect before running the host or 645 * additional guests. 646 */ 647 return ret; 648 } 649 650 static void __noreturn __hyp_call_panic(u64 spsr, u64 elr, u64 par) 651 { 652 struct kvm_cpu_context *host_ctxt; 653 struct kvm_vcpu *vcpu; 654 655 host_ctxt = host_data_ptr(host_ctxt); 656 vcpu = host_ctxt->__hyp_running_vcpu; 657 658 __deactivate_traps(vcpu); 659 sysreg_restore_host_state_vhe(host_ctxt); 660 661 panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n", 662 spsr, elr, 663 read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR), 664 read_sysreg(hpfar_el2), par, vcpu); 665 } 666 NOKPROBE_SYMBOL(__hyp_call_panic); 667 668 void __noreturn hyp_panic(void) 669 { 670 u64 spsr = read_sysreg_el2(SYS_SPSR); 671 u64 elr = read_sysreg_el2(SYS_ELR); 672 u64 par = read_sysreg_par(); 673 674 __hyp_call_panic(spsr, elr, par); 675 } 676 677 asmlinkage void kvm_unexpected_el2_exception(void) 678 { 679 __kvm_unexpected_el2_exception(); 680 } 681