xref: /linux/arch/arm64/kvm/hyp/vhe/switch.c (revision 1270dad3109770fc12c1f09f7bab4bceaf2fb829)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 
9 #include <linux/arm-smccc.h>
10 #include <linux/kvm_host.h>
11 #include <linux/types.h>
12 #include <linux/jump_label.h>
13 #include <linux/percpu.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 #include <asm/thread_info.h>
29 #include <asm/vectors.h>
30 
31 /* VHE specific context */
32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
35 
36 /*
37  * HCR_EL2 bits that the NV guest can freely change (no RES0/RES1
38  * semantics, irrespective of the configuration), but that cannot be
39  * applied to the actual HW as things would otherwise break badly.
40  *
41  * - TGE: we want the guest to use EL1, which is incompatible with
42  *   this bit being set
43  *
44  * - API/APK: they are already accounted for by vcpu_load(), and can
45  *   only take effect across a load/put cycle (such as ERET)
46  */
47 #define NV_HCR_GUEST_EXCLUDE	(HCR_TGE | HCR_API | HCR_APK)
48 
49 static u64 __compute_hcr(struct kvm_vcpu *vcpu)
50 {
51 	u64 hcr = vcpu->arch.hcr_el2;
52 
53 	if (!vcpu_has_nv(vcpu))
54 		return hcr;
55 
56 	if (is_hyp_ctxt(vcpu)) {
57 		hcr |= HCR_NV | HCR_NV2 | HCR_AT | HCR_TTLB;
58 
59 		if (!vcpu_el2_e2h_is_set(vcpu))
60 			hcr |= HCR_NV1;
61 
62 		write_sysreg_s(vcpu->arch.ctxt.vncr_array, SYS_VNCR_EL2);
63 	}
64 
65 	return hcr | (__vcpu_sys_reg(vcpu, HCR_EL2) & ~NV_HCR_GUEST_EXCLUDE);
66 }
67 
68 static void __activate_traps(struct kvm_vcpu *vcpu)
69 {
70 	u64 val;
71 
72 	___activate_traps(vcpu, __compute_hcr(vcpu));
73 
74 	if (has_cntpoff()) {
75 		struct timer_map map;
76 
77 		get_timer_map(vcpu, &map);
78 
79 		/*
80 		 * We're entrering the guest. Reload the correct
81 		 * values from memory now that TGE is clear.
82 		 */
83 		if (map.direct_ptimer == vcpu_ptimer(vcpu))
84 			val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
85 		if (map.direct_ptimer == vcpu_hptimer(vcpu))
86 			val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
87 
88 		if (map.direct_ptimer) {
89 			write_sysreg_el0(val, SYS_CNTP_CVAL);
90 			isb();
91 		}
92 	}
93 
94 	val = read_sysreg(cpacr_el1);
95 	val |= CPACR_ELx_TTA;
96 	val &= ~(CPACR_ELx_ZEN | CPACR_ELx_SMEN);
97 
98 	/*
99 	 * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
100 	 * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2,
101 	 * except for some missing controls, such as TAM.
102 	 * In this case, CPTR_EL2.TAM has the same position with or without
103 	 * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM
104 	 * shift value for trapping the AMU accesses.
105 	 */
106 
107 	val |= CPTR_EL2_TAM;
108 
109 	if (guest_owns_fp_regs()) {
110 		if (vcpu_has_sve(vcpu))
111 			val |= CPACR_ELx_ZEN;
112 	} else {
113 		val &= ~CPACR_ELx_FPEN;
114 		__activate_traps_fpsimd32(vcpu);
115 	}
116 
117 	write_sysreg(val, cpacr_el1);
118 
119 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1);
120 }
121 NOKPROBE_SYMBOL(__activate_traps);
122 
123 static void __deactivate_traps(struct kvm_vcpu *vcpu)
124 {
125 	const char *host_vectors = vectors;
126 
127 	___deactivate_traps(vcpu);
128 
129 	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
130 
131 	if (has_cntpoff()) {
132 		struct timer_map map;
133 		u64 val, offset;
134 
135 		get_timer_map(vcpu, &map);
136 
137 		/*
138 		 * We're exiting the guest. Save the latest CVAL value
139 		 * to memory and apply the offset now that TGE is set.
140 		 */
141 		val = read_sysreg_el0(SYS_CNTP_CVAL);
142 		if (map.direct_ptimer == vcpu_ptimer(vcpu))
143 			__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = val;
144 		if (map.direct_ptimer == vcpu_hptimer(vcpu))
145 			__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = val;
146 
147 		offset = read_sysreg_s(SYS_CNTPOFF_EL2);
148 
149 		if (map.direct_ptimer && offset) {
150 			write_sysreg_el0(val + offset, SYS_CNTP_CVAL);
151 			isb();
152 		}
153 	}
154 
155 	/*
156 	 * ARM errata 1165522 and 1530923 require the actual execution of the
157 	 * above before we can switch to the EL2/EL0 translation regime used by
158 	 * the host.
159 	 */
160 	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
161 
162 	kvm_reset_cptr_el2(vcpu);
163 
164 	if (!arm64_kernel_unmapped_at_el0())
165 		host_vectors = __this_cpu_read(this_cpu_vector);
166 	write_sysreg(host_vectors, vbar_el1);
167 }
168 NOKPROBE_SYMBOL(__deactivate_traps);
169 
170 /*
171  * Disable IRQs in __vcpu_{load,put}_{activate,deactivate}_traps() to
172  * prevent a race condition between context switching of PMUSERENR_EL0
173  * in __{activate,deactivate}_traps_common() and IPIs that attempts to
174  * update PMUSERENR_EL0. See also kvm_set_pmuserenr().
175  */
176 static void __vcpu_load_activate_traps(struct kvm_vcpu *vcpu)
177 {
178 	unsigned long flags;
179 
180 	local_irq_save(flags);
181 	__activate_traps_common(vcpu);
182 	local_irq_restore(flags);
183 }
184 
185 static void __vcpu_put_deactivate_traps(struct kvm_vcpu *vcpu)
186 {
187 	unsigned long flags;
188 
189 	local_irq_save(flags);
190 	__deactivate_traps_common(vcpu);
191 	local_irq_restore(flags);
192 }
193 
194 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu)
195 {
196 	host_data_ptr(host_ctxt)->__hyp_running_vcpu = vcpu;
197 
198 	__vcpu_load_switch_sysregs(vcpu);
199 	__vcpu_load_activate_traps(vcpu);
200 	__load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch);
201 }
202 
203 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu)
204 {
205 	__vcpu_put_deactivate_traps(vcpu);
206 	__vcpu_put_switch_sysregs(vcpu);
207 
208 	host_data_ptr(host_ctxt)->__hyp_running_vcpu = NULL;
209 }
210 
211 static bool kvm_hyp_handle_eret(struct kvm_vcpu *vcpu, u64 *exit_code)
212 {
213 	u64 esr = kvm_vcpu_get_esr(vcpu);
214 	u64 spsr, elr, mode;
215 
216 	/*
217 	 * Going through the whole put/load motions is a waste of time
218 	 * if this is a VHE guest hypervisor returning to its own
219 	 * userspace, or the hypervisor performing a local exception
220 	 * return. No need to save/restore registers, no need to
221 	 * switch S2 MMU. Just do the canonical ERET.
222 	 *
223 	 * Unless the trap has to be forwarded further down the line,
224 	 * of course...
225 	 */
226 	if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) ||
227 	    (__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_ERET))
228 		return false;
229 
230 	spsr = read_sysreg_el1(SYS_SPSR);
231 	mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT);
232 
233 	switch (mode) {
234 	case PSR_MODE_EL0t:
235 		if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)))
236 			return false;
237 		break;
238 	case PSR_MODE_EL2t:
239 		mode = PSR_MODE_EL1t;
240 		break;
241 	case PSR_MODE_EL2h:
242 		mode = PSR_MODE_EL1h;
243 		break;
244 	default:
245 		return false;
246 	}
247 
248 	/* If ERETAx fails, take the slow path */
249 	if (esr_iss_is_eretax(esr)) {
250 		if (!(vcpu_has_ptrauth(vcpu) && kvm_auth_eretax(vcpu, &elr)))
251 			return false;
252 	} else {
253 		elr = read_sysreg_el1(SYS_ELR);
254 	}
255 
256 	spsr = (spsr & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode;
257 
258 	write_sysreg_el2(spsr, SYS_SPSR);
259 	write_sysreg_el2(elr, SYS_ELR);
260 
261 	return true;
262 }
263 
264 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu)
265 {
266 	__fpsimd_save_state(*host_data_ptr(fpsimd_state));
267 }
268 
269 static bool kvm_hyp_handle_tlbi_el2(struct kvm_vcpu *vcpu, u64 *exit_code)
270 {
271 	int ret = -EINVAL;
272 	u32 instr;
273 	u64 val;
274 
275 	/*
276 	 * Ideally, we would never trap on EL2 S1 TLB invalidations using
277 	 * the EL1 instructions when the guest's HCR_EL2.{E2H,TGE}=={1,1}.
278 	 * But "thanks" to FEAT_NV2, we don't trap writes to HCR_EL2,
279 	 * meaning that we can't track changes to the virtual TGE bit. So we
280 	 * have to leave HCR_EL2.TTLB set on the host. Oopsie...
281 	 *
282 	 * Try and handle these invalidation as quickly as possible, without
283 	 * fully exiting. Note that we don't need to consider any forwarding
284 	 * here, as having E2H+TGE set is the very definition of being
285 	 * InHost.
286 	 *
287 	 * For the lesser hypervisors out there that have failed to get on
288 	 * with the VHE program, we can also handle the nVHE style of EL2
289 	 * invalidation.
290 	 */
291 	if (!(is_hyp_ctxt(vcpu)))
292 		return false;
293 
294 	instr = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
295 	val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
296 
297 	if ((kvm_supported_tlbi_s1e1_op(vcpu, instr) &&
298 	     vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) ||
299 	    kvm_supported_tlbi_s1e2_op (vcpu, instr))
300 		ret = __kvm_tlbi_s1e2(NULL, val, instr);
301 
302 	if (ret)
303 		return false;
304 
305 	__kvm_skip_instr(vcpu);
306 
307 	return true;
308 }
309 
310 static bool kvm_hyp_handle_sysreg_vhe(struct kvm_vcpu *vcpu, u64 *exit_code)
311 {
312 	if (kvm_hyp_handle_tlbi_el2(vcpu, exit_code))
313 		return true;
314 
315 	return kvm_hyp_handle_sysreg(vcpu, exit_code);
316 }
317 
318 static const exit_handler_fn hyp_exit_handlers[] = {
319 	[0 ... ESR_ELx_EC_MAX]		= NULL,
320 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
321 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg_vhe,
322 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
323 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
324 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
325 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
326 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
327 	[ESR_ELx_EC_ERET]		= kvm_hyp_handle_eret,
328 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
329 };
330 
331 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
332 {
333 	return hyp_exit_handlers;
334 }
335 
336 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
337 {
338 	/*
339 	 * If we were in HYP context on entry, adjust the PSTATE view
340 	 * so that the usual helpers work correctly.
341 	 */
342 	if (vcpu_has_nv(vcpu) && (read_sysreg(hcr_el2) & HCR_NV)) {
343 		u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
344 
345 		switch (mode) {
346 		case PSR_MODE_EL1t:
347 			mode = PSR_MODE_EL2t;
348 			break;
349 		case PSR_MODE_EL1h:
350 			mode = PSR_MODE_EL2h;
351 			break;
352 		}
353 
354 		*vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT);
355 		*vcpu_cpsr(vcpu) |= mode;
356 	}
357 }
358 
359 /* Switch to the guest for VHE systems running in EL2 */
360 static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
361 {
362 	struct kvm_cpu_context *host_ctxt;
363 	struct kvm_cpu_context *guest_ctxt;
364 	u64 exit_code;
365 
366 	host_ctxt = host_data_ptr(host_ctxt);
367 	guest_ctxt = &vcpu->arch.ctxt;
368 
369 	sysreg_save_host_state_vhe(host_ctxt);
370 
371 	/*
372 	 * Note that ARM erratum 1165522 requires us to configure both stage 1
373 	 * and stage 2 translation for the guest context before we clear
374 	 * HCR_EL2.TGE. The stage 1 and stage 2 guest context has already been
375 	 * loaded on the CPU in kvm_vcpu_load_vhe().
376 	 */
377 	__activate_traps(vcpu);
378 
379 	__kvm_adjust_pc(vcpu);
380 
381 	sysreg_restore_guest_state_vhe(guest_ctxt);
382 	__debug_switch_to_guest(vcpu);
383 
384 	do {
385 		/* Jump in the fire! */
386 		exit_code = __guest_enter(vcpu);
387 
388 		/* And we're baaack! */
389 	} while (fixup_guest_exit(vcpu, &exit_code));
390 
391 	sysreg_save_guest_state_vhe(guest_ctxt);
392 
393 	__deactivate_traps(vcpu);
394 
395 	sysreg_restore_host_state_vhe(host_ctxt);
396 
397 	if (guest_owns_fp_regs())
398 		__fpsimd_save_fpexc32(vcpu);
399 
400 	__debug_switch_to_host(vcpu);
401 
402 	return exit_code;
403 }
404 NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe);
405 
406 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
407 {
408 	int ret;
409 
410 	local_daif_mask();
411 
412 	/*
413 	 * Having IRQs masked via PMR when entering the guest means the GIC
414 	 * will not signal the CPU of interrupts of lower priority, and the
415 	 * only way to get out will be via guest exceptions.
416 	 * Naturally, we want to avoid this.
417 	 *
418 	 * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
419 	 * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
420 	 */
421 	pmr_sync();
422 
423 	ret = __kvm_vcpu_run_vhe(vcpu);
424 
425 	/*
426 	 * local_daif_restore() takes care to properly restore PSTATE.DAIF
427 	 * and the GIC PMR if the host is using IRQ priorities.
428 	 */
429 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
430 
431 	/*
432 	 * When we exit from the guest we change a number of CPU configuration
433 	 * parameters, such as traps.  We rely on the isb() in kvm_call_hyp*()
434 	 * to make sure these changes take effect before running the host or
435 	 * additional guests.
436 	 */
437 	return ret;
438 }
439 
440 static void __noreturn __hyp_call_panic(u64 spsr, u64 elr, u64 par)
441 {
442 	struct kvm_cpu_context *host_ctxt;
443 	struct kvm_vcpu *vcpu;
444 
445 	host_ctxt = host_data_ptr(host_ctxt);
446 	vcpu = host_ctxt->__hyp_running_vcpu;
447 
448 	__deactivate_traps(vcpu);
449 	sysreg_restore_host_state_vhe(host_ctxt);
450 
451 	panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n",
452 	      spsr, elr,
453 	      read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
454 	      read_sysreg(hpfar_el2), par, vcpu);
455 }
456 NOKPROBE_SYMBOL(__hyp_call_panic);
457 
458 void __noreturn hyp_panic(void)
459 {
460 	u64 spsr = read_sysreg_el2(SYS_SPSR);
461 	u64 elr = read_sysreg_el2(SYS_ELR);
462 	u64 par = read_sysreg_par();
463 
464 	__hyp_call_panic(spsr, elr, par);
465 }
466 
467 asmlinkage void kvm_unexpected_el2_exception(void)
468 {
469 	__kvm_unexpected_el2_exception();
470 }
471