1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012-2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <hyp/adjust_pc.h> 8 9 #include <linux/compiler.h> 10 #include <linux/irqchip/arm-gic-v3.h> 11 #include <linux/kvm_host.h> 12 13 #include <asm/kvm_emulate.h> 14 #include <asm/kvm_hyp.h> 15 #include <asm/kvm_mmu.h> 16 17 #define vtr_to_max_lr_idx(v) ((v) & 0xf) 18 #define vtr_to_nr_pre_bits(v) ((((u32)(v) >> 26) & 7) + 1) 19 #define vtr_to_nr_apr_regs(v) (1 << (vtr_to_nr_pre_bits(v) - 5)) 20 21 static u64 __gic_v3_get_lr(unsigned int lr) 22 { 23 switch (lr & 0xf) { 24 case 0: 25 return read_gicreg(ICH_LR0_EL2); 26 case 1: 27 return read_gicreg(ICH_LR1_EL2); 28 case 2: 29 return read_gicreg(ICH_LR2_EL2); 30 case 3: 31 return read_gicreg(ICH_LR3_EL2); 32 case 4: 33 return read_gicreg(ICH_LR4_EL2); 34 case 5: 35 return read_gicreg(ICH_LR5_EL2); 36 case 6: 37 return read_gicreg(ICH_LR6_EL2); 38 case 7: 39 return read_gicreg(ICH_LR7_EL2); 40 case 8: 41 return read_gicreg(ICH_LR8_EL2); 42 case 9: 43 return read_gicreg(ICH_LR9_EL2); 44 case 10: 45 return read_gicreg(ICH_LR10_EL2); 46 case 11: 47 return read_gicreg(ICH_LR11_EL2); 48 case 12: 49 return read_gicreg(ICH_LR12_EL2); 50 case 13: 51 return read_gicreg(ICH_LR13_EL2); 52 case 14: 53 return read_gicreg(ICH_LR14_EL2); 54 case 15: 55 return read_gicreg(ICH_LR15_EL2); 56 } 57 58 unreachable(); 59 } 60 61 static void __gic_v3_set_lr(u64 val, int lr) 62 { 63 switch (lr & 0xf) { 64 case 0: 65 write_gicreg(val, ICH_LR0_EL2); 66 break; 67 case 1: 68 write_gicreg(val, ICH_LR1_EL2); 69 break; 70 case 2: 71 write_gicreg(val, ICH_LR2_EL2); 72 break; 73 case 3: 74 write_gicreg(val, ICH_LR3_EL2); 75 break; 76 case 4: 77 write_gicreg(val, ICH_LR4_EL2); 78 break; 79 case 5: 80 write_gicreg(val, ICH_LR5_EL2); 81 break; 82 case 6: 83 write_gicreg(val, ICH_LR6_EL2); 84 break; 85 case 7: 86 write_gicreg(val, ICH_LR7_EL2); 87 break; 88 case 8: 89 write_gicreg(val, ICH_LR8_EL2); 90 break; 91 case 9: 92 write_gicreg(val, ICH_LR9_EL2); 93 break; 94 case 10: 95 write_gicreg(val, ICH_LR10_EL2); 96 break; 97 case 11: 98 write_gicreg(val, ICH_LR11_EL2); 99 break; 100 case 12: 101 write_gicreg(val, ICH_LR12_EL2); 102 break; 103 case 13: 104 write_gicreg(val, ICH_LR13_EL2); 105 break; 106 case 14: 107 write_gicreg(val, ICH_LR14_EL2); 108 break; 109 case 15: 110 write_gicreg(val, ICH_LR15_EL2); 111 break; 112 } 113 } 114 115 static void __vgic_v3_write_ap0rn(u32 val, int n) 116 { 117 switch (n) { 118 case 0: 119 write_gicreg(val, ICH_AP0R0_EL2); 120 break; 121 case 1: 122 write_gicreg(val, ICH_AP0R1_EL2); 123 break; 124 case 2: 125 write_gicreg(val, ICH_AP0R2_EL2); 126 break; 127 case 3: 128 write_gicreg(val, ICH_AP0R3_EL2); 129 break; 130 } 131 } 132 133 static void __vgic_v3_write_ap1rn(u32 val, int n) 134 { 135 switch (n) { 136 case 0: 137 write_gicreg(val, ICH_AP1R0_EL2); 138 break; 139 case 1: 140 write_gicreg(val, ICH_AP1R1_EL2); 141 break; 142 case 2: 143 write_gicreg(val, ICH_AP1R2_EL2); 144 break; 145 case 3: 146 write_gicreg(val, ICH_AP1R3_EL2); 147 break; 148 } 149 } 150 151 static u32 __vgic_v3_read_ap0rn(int n) 152 { 153 u32 val; 154 155 switch (n) { 156 case 0: 157 val = read_gicreg(ICH_AP0R0_EL2); 158 break; 159 case 1: 160 val = read_gicreg(ICH_AP0R1_EL2); 161 break; 162 case 2: 163 val = read_gicreg(ICH_AP0R2_EL2); 164 break; 165 case 3: 166 val = read_gicreg(ICH_AP0R3_EL2); 167 break; 168 default: 169 unreachable(); 170 } 171 172 return val; 173 } 174 175 static u32 __vgic_v3_read_ap1rn(int n) 176 { 177 u32 val; 178 179 switch (n) { 180 case 0: 181 val = read_gicreg(ICH_AP1R0_EL2); 182 break; 183 case 1: 184 val = read_gicreg(ICH_AP1R1_EL2); 185 break; 186 case 2: 187 val = read_gicreg(ICH_AP1R2_EL2); 188 break; 189 case 3: 190 val = read_gicreg(ICH_AP1R3_EL2); 191 break; 192 default: 193 unreachable(); 194 } 195 196 return val; 197 } 198 199 void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if) 200 { 201 u64 used_lrs = cpu_if->used_lrs; 202 203 /* 204 * Make sure stores to the GIC via the memory mapped interface 205 * are now visible to the system register interface when reading the 206 * LRs, and when reading back the VMCR on non-VHE systems. 207 */ 208 if (used_lrs || !has_vhe()) { 209 if (!cpu_if->vgic_sre) { 210 dsb(sy); 211 isb(); 212 } 213 } 214 215 if (used_lrs || cpu_if->its_vpe.its_vm) { 216 int i; 217 u32 elrsr; 218 219 elrsr = read_gicreg(ICH_ELRSR_EL2); 220 221 write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EN, ICH_HCR_EL2); 222 223 for (i = 0; i < used_lrs; i++) { 224 if (elrsr & (1 << i)) 225 cpu_if->vgic_lr[i] &= ~ICH_LR_STATE; 226 else 227 cpu_if->vgic_lr[i] = __gic_v3_get_lr(i); 228 229 __gic_v3_set_lr(0, i); 230 } 231 } 232 } 233 234 void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if) 235 { 236 u64 used_lrs = cpu_if->used_lrs; 237 int i; 238 239 if (used_lrs || cpu_if->its_vpe.its_vm) { 240 write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2); 241 242 for (i = 0; i < used_lrs; i++) 243 __gic_v3_set_lr(cpu_if->vgic_lr[i], i); 244 } 245 246 /* 247 * Ensure that writes to the LRs, and on non-VHE systems ensure that 248 * the write to the VMCR in __vgic_v3_activate_traps(), will have 249 * reached the (re)distributors. This ensure the guest will read the 250 * correct values from the memory-mapped interface. 251 */ 252 if (used_lrs || !has_vhe()) { 253 if (!cpu_if->vgic_sre) { 254 isb(); 255 dsb(sy); 256 } 257 } 258 } 259 260 void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if) 261 { 262 /* 263 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a 264 * Group0 interrupt (as generated in GICv2 mode) to be 265 * delivered as a FIQ to the guest, with potentially fatal 266 * consequences. So we must make sure that ICC_SRE_EL1 has 267 * been actually programmed with the value we want before 268 * starting to mess with the rest of the GIC, and VMCR_EL2 in 269 * particular. This logic must be called before 270 * __vgic_v3_restore_state(). 271 * 272 * However, if the vgic is disabled (ICH_HCR_EL2.EN==0), no GIC is 273 * provisioned at all. In order to prevent illegal accesses to the 274 * system registers to trap to EL1 (duh), force ICC_SRE_EL1.SRE to 1 275 * so that the trap bits can take effect. Yes, we *loves* the GIC. 276 */ 277 if (!(cpu_if->vgic_hcr & ICH_HCR_EN)) { 278 write_gicreg(ICC_SRE_EL1_SRE, ICC_SRE_EL1); 279 isb(); 280 } else if (!cpu_if->vgic_sre) { 281 write_gicreg(0, ICC_SRE_EL1); 282 isb(); 283 write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2); 284 285 286 if (has_vhe()) { 287 /* 288 * Ensure that the write to the VMCR will have reached 289 * the (re)distributors. This ensure the guest will 290 * read the correct values from the memory-mapped 291 * interface. 292 */ 293 isb(); 294 dsb(sy); 295 } 296 } 297 298 /* 299 * Prevent the guest from touching the ICC_SRE_EL1 system 300 * register. Note that this may not have any effect, as 301 * ICC_SRE_EL2.Enable being RAO/WI is a valid implementation. 302 */ 303 write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE, 304 ICC_SRE_EL2); 305 306 /* 307 * If we need to trap system registers, we must write 308 * ICH_HCR_EL2 anyway, even if no interrupts are being 309 * injected. Note that this also applies if we don't expect 310 * any system register access (no vgic at all). 311 */ 312 if (static_branch_unlikely(&vgic_v3_cpuif_trap) || 313 cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre) 314 write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2); 315 } 316 317 void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if) 318 { 319 u64 val; 320 321 if (!cpu_if->vgic_sre) { 322 cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2); 323 } 324 325 val = read_gicreg(ICC_SRE_EL2); 326 write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2); 327 328 if (!cpu_if->vgic_sre) { 329 /* Make sure ENABLE is set at EL2 before setting SRE at EL1 */ 330 isb(); 331 write_gicreg(1, ICC_SRE_EL1); 332 } 333 334 /* 335 * If we were trapping system registers, we enabled the VGIC even if 336 * no interrupts were being injected, and we disable it again here. 337 */ 338 if (static_branch_unlikely(&vgic_v3_cpuif_trap) || 339 cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre) 340 write_gicreg(0, ICH_HCR_EL2); 341 } 342 343 static void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if) 344 { 345 u64 val; 346 u32 nr_pre_bits; 347 348 val = read_gicreg(ICH_VTR_EL2); 349 nr_pre_bits = vtr_to_nr_pre_bits(val); 350 351 switch (nr_pre_bits) { 352 case 7: 353 cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3); 354 cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2); 355 fallthrough; 356 case 6: 357 cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1); 358 fallthrough; 359 default: 360 cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0); 361 } 362 363 switch (nr_pre_bits) { 364 case 7: 365 cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3); 366 cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2); 367 fallthrough; 368 case 6: 369 cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1); 370 fallthrough; 371 default: 372 cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0); 373 } 374 } 375 376 static void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if) 377 { 378 u64 val; 379 u32 nr_pre_bits; 380 381 val = read_gicreg(ICH_VTR_EL2); 382 nr_pre_bits = vtr_to_nr_pre_bits(val); 383 384 switch (nr_pre_bits) { 385 case 7: 386 __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3); 387 __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2); 388 fallthrough; 389 case 6: 390 __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1); 391 fallthrough; 392 default: 393 __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0); 394 } 395 396 switch (nr_pre_bits) { 397 case 7: 398 __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3); 399 __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2); 400 fallthrough; 401 case 6: 402 __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1); 403 fallthrough; 404 default: 405 __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0); 406 } 407 } 408 409 void __vgic_v3_init_lrs(void) 410 { 411 int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2)); 412 int i; 413 414 for (i = 0; i <= max_lr_idx; i++) 415 __gic_v3_set_lr(0, i); 416 } 417 418 /* 419 * Return the GIC CPU configuration: 420 * - [31:0] ICH_VTR_EL2 421 * - [62:32] RES0 422 * - [63] MMIO (GICv2) capable 423 */ 424 u64 __vgic_v3_get_gic_config(void) 425 { 426 u64 val, sre = read_gicreg(ICC_SRE_EL1); 427 unsigned long flags = 0; 428 429 /* 430 * To check whether we have a MMIO-based (GICv2 compatible) 431 * CPU interface, we need to disable the system register 432 * view. To do that safely, we have to prevent any interrupt 433 * from firing (which would be deadly). 434 * 435 * Note that this only makes sense on VHE, as interrupts are 436 * already masked for nVHE as part of the exception entry to 437 * EL2. 438 */ 439 if (has_vhe()) 440 flags = local_daif_save(); 441 442 /* 443 * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates 444 * that to be able to set ICC_SRE_EL1.SRE to 0, all the 445 * interrupt overrides must be set. You've got to love this. 446 */ 447 sysreg_clear_set(hcr_el2, 0, HCR_AMO | HCR_FMO | HCR_IMO); 448 isb(); 449 write_gicreg(0, ICC_SRE_EL1); 450 isb(); 451 452 val = read_gicreg(ICC_SRE_EL1); 453 454 write_gicreg(sre, ICC_SRE_EL1); 455 isb(); 456 sysreg_clear_set(hcr_el2, HCR_AMO | HCR_FMO | HCR_IMO, 0); 457 isb(); 458 459 if (has_vhe()) 460 local_daif_restore(flags); 461 462 val = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63); 463 val |= read_gicreg(ICH_VTR_EL2); 464 465 return val; 466 } 467 468 static u64 __vgic_v3_read_vmcr(void) 469 { 470 return read_gicreg(ICH_VMCR_EL2); 471 } 472 473 static void __vgic_v3_write_vmcr(u32 vmcr) 474 { 475 write_gicreg(vmcr, ICH_VMCR_EL2); 476 } 477 478 void __vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if) 479 { 480 __vgic_v3_save_aprs(cpu_if); 481 if (cpu_if->vgic_sre) 482 cpu_if->vgic_vmcr = __vgic_v3_read_vmcr(); 483 } 484 485 void __vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if) 486 { 487 /* 488 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen 489 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the 490 * VMCR_EL2 save/restore in the world switch. 491 */ 492 if (cpu_if->vgic_sre) 493 __vgic_v3_write_vmcr(cpu_if->vgic_vmcr); 494 __vgic_v3_restore_aprs(cpu_if); 495 } 496 497 static int __vgic_v3_bpr_min(void) 498 { 499 /* See Pseudocode for VPriorityGroup */ 500 return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2)); 501 } 502 503 static int __vgic_v3_get_group(struct kvm_vcpu *vcpu) 504 { 505 u64 esr = kvm_vcpu_get_esr(vcpu); 506 u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT; 507 508 return crm != 8; 509 } 510 511 #define GICv3_IDLE_PRIORITY 0xff 512 513 static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr, 514 u64 *lr_val) 515 { 516 unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs; 517 u8 priority = GICv3_IDLE_PRIORITY; 518 int i, lr = -1; 519 520 for (i = 0; i < used_lrs; i++) { 521 u64 val = __gic_v3_get_lr(i); 522 u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT; 523 524 /* Not pending in the state? */ 525 if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT) 526 continue; 527 528 /* Group-0 interrupt, but Group-0 disabled? */ 529 if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK)) 530 continue; 531 532 /* Group-1 interrupt, but Group-1 disabled? */ 533 if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK)) 534 continue; 535 536 /* Not the highest priority? */ 537 if (lr_prio >= priority) 538 continue; 539 540 /* This is a candidate */ 541 priority = lr_prio; 542 *lr_val = val; 543 lr = i; 544 } 545 546 if (lr == -1) 547 *lr_val = ICC_IAR1_EL1_SPURIOUS; 548 549 return lr; 550 } 551 552 static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid, 553 u64 *lr_val) 554 { 555 unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs; 556 int i; 557 558 for (i = 0; i < used_lrs; i++) { 559 u64 val = __gic_v3_get_lr(i); 560 561 if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid && 562 (val & ICH_LR_ACTIVE_BIT)) { 563 *lr_val = val; 564 return i; 565 } 566 } 567 568 *lr_val = ICC_IAR1_EL1_SPURIOUS; 569 return -1; 570 } 571 572 static int __vgic_v3_get_highest_active_priority(void) 573 { 574 u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2)); 575 u32 hap = 0; 576 int i; 577 578 for (i = 0; i < nr_apr_regs; i++) { 579 u32 val; 580 581 /* 582 * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers 583 * contain the active priority levels for this VCPU 584 * for the maximum number of supported priority 585 * levels, and we return the full priority level only 586 * if the BPR is programmed to its minimum, otherwise 587 * we return a combination of the priority level and 588 * subpriority, as determined by the setting of the 589 * BPR, but without the full subpriority. 590 */ 591 val = __vgic_v3_read_ap0rn(i); 592 val |= __vgic_v3_read_ap1rn(i); 593 if (!val) { 594 hap += 32; 595 continue; 596 } 597 598 return (hap + __ffs(val)) << __vgic_v3_bpr_min(); 599 } 600 601 return GICv3_IDLE_PRIORITY; 602 } 603 604 static unsigned int __vgic_v3_get_bpr0(u32 vmcr) 605 { 606 return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; 607 } 608 609 static unsigned int __vgic_v3_get_bpr1(u32 vmcr) 610 { 611 unsigned int bpr; 612 613 if (vmcr & ICH_VMCR_CBPR_MASK) { 614 bpr = __vgic_v3_get_bpr0(vmcr); 615 if (bpr < 7) 616 bpr++; 617 } else { 618 bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; 619 } 620 621 return bpr; 622 } 623 624 /* 625 * Convert a priority to a preemption level, taking the relevant BPR 626 * into account by zeroing the sub-priority bits. 627 */ 628 static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp) 629 { 630 unsigned int bpr; 631 632 if (!grp) 633 bpr = __vgic_v3_get_bpr0(vmcr) + 1; 634 else 635 bpr = __vgic_v3_get_bpr1(vmcr); 636 637 return pri & (GENMASK(7, 0) << bpr); 638 } 639 640 /* 641 * The priority value is independent of any of the BPR values, so we 642 * normalize it using the minimal BPR value. This guarantees that no 643 * matter what the guest does with its BPR, we can always set/get the 644 * same value of a priority. 645 */ 646 static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp) 647 { 648 u8 pre, ap; 649 u32 val; 650 int apr; 651 652 pre = __vgic_v3_pri_to_pre(pri, vmcr, grp); 653 ap = pre >> __vgic_v3_bpr_min(); 654 apr = ap / 32; 655 656 if (!grp) { 657 val = __vgic_v3_read_ap0rn(apr); 658 __vgic_v3_write_ap0rn(val | BIT(ap % 32), apr); 659 } else { 660 val = __vgic_v3_read_ap1rn(apr); 661 __vgic_v3_write_ap1rn(val | BIT(ap % 32), apr); 662 } 663 } 664 665 static int __vgic_v3_clear_highest_active_priority(void) 666 { 667 u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2)); 668 u32 hap = 0; 669 int i; 670 671 for (i = 0; i < nr_apr_regs; i++) { 672 u32 ap0, ap1; 673 int c0, c1; 674 675 ap0 = __vgic_v3_read_ap0rn(i); 676 ap1 = __vgic_v3_read_ap1rn(i); 677 if (!ap0 && !ap1) { 678 hap += 32; 679 continue; 680 } 681 682 c0 = ap0 ? __ffs(ap0) : 32; 683 c1 = ap1 ? __ffs(ap1) : 32; 684 685 /* Always clear the LSB, which is the highest priority */ 686 if (c0 < c1) { 687 ap0 &= ~BIT(c0); 688 __vgic_v3_write_ap0rn(ap0, i); 689 hap += c0; 690 } else { 691 ap1 &= ~BIT(c1); 692 __vgic_v3_write_ap1rn(ap1, i); 693 hap += c1; 694 } 695 696 /* Rescale to 8 bits of priority */ 697 return hap << __vgic_v3_bpr_min(); 698 } 699 700 return GICv3_IDLE_PRIORITY; 701 } 702 703 static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 704 { 705 u64 lr_val; 706 u8 lr_prio, pmr; 707 int lr, grp; 708 709 grp = __vgic_v3_get_group(vcpu); 710 711 lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val); 712 if (lr < 0) 713 goto spurious; 714 715 if (grp != !!(lr_val & ICH_LR_GROUP)) 716 goto spurious; 717 718 pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; 719 lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT; 720 if (pmr <= lr_prio) 721 goto spurious; 722 723 if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp)) 724 goto spurious; 725 726 lr_val &= ~ICH_LR_STATE; 727 lr_val |= ICH_LR_ACTIVE_BIT; 728 __gic_v3_set_lr(lr_val, lr); 729 __vgic_v3_set_active_priority(lr_prio, vmcr, grp); 730 vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK); 731 return; 732 733 spurious: 734 vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS); 735 } 736 737 static void __vgic_v3_clear_active_lr(int lr, u64 lr_val) 738 { 739 lr_val &= ~ICH_LR_ACTIVE_BIT; 740 if (lr_val & ICH_LR_HW) { 741 u32 pid; 742 743 pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT; 744 gic_write_dir(pid); 745 } 746 747 __gic_v3_set_lr(lr_val, lr); 748 } 749 750 static void __vgic_v3_bump_eoicount(void) 751 { 752 u32 hcr; 753 754 hcr = read_gicreg(ICH_HCR_EL2); 755 hcr += 1 << ICH_HCR_EOIcount_SHIFT; 756 write_gicreg(hcr, ICH_HCR_EL2); 757 } 758 759 static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 760 { 761 u32 vid = vcpu_get_reg(vcpu, rt); 762 u64 lr_val; 763 int lr; 764 765 /* EOImode == 0, nothing to be done here */ 766 if (!(vmcr & ICH_VMCR_EOIM_MASK)) 767 return; 768 769 /* No deactivate to be performed on an LPI */ 770 if (vid >= VGIC_MIN_LPI) 771 return; 772 773 lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val); 774 if (lr == -1) { 775 __vgic_v3_bump_eoicount(); 776 return; 777 } 778 779 __vgic_v3_clear_active_lr(lr, lr_val); 780 } 781 782 static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 783 { 784 u32 vid = vcpu_get_reg(vcpu, rt); 785 u64 lr_val; 786 u8 lr_prio, act_prio; 787 int lr, grp; 788 789 grp = __vgic_v3_get_group(vcpu); 790 791 /* Drop priority in any case */ 792 act_prio = __vgic_v3_clear_highest_active_priority(); 793 794 lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val); 795 if (lr == -1) { 796 /* Do not bump EOIcount for LPIs that aren't in the LRs */ 797 if (!(vid >= VGIC_MIN_LPI)) 798 __vgic_v3_bump_eoicount(); 799 return; 800 } 801 802 /* EOImode == 1 and not an LPI, nothing to be done here */ 803 if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI)) 804 return; 805 806 lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT; 807 808 /* If priorities or group do not match, the guest has fscked-up. */ 809 if (grp != !!(lr_val & ICH_LR_GROUP) || 810 __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio) 811 return; 812 813 /* Let's now perform the deactivation */ 814 __vgic_v3_clear_active_lr(lr, lr_val); 815 } 816 817 static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 818 { 819 vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK)); 820 } 821 822 static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 823 { 824 vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK)); 825 } 826 827 static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 828 { 829 u64 val = vcpu_get_reg(vcpu, rt); 830 831 if (val & 1) 832 vmcr |= ICH_VMCR_ENG0_MASK; 833 else 834 vmcr &= ~ICH_VMCR_ENG0_MASK; 835 836 __vgic_v3_write_vmcr(vmcr); 837 } 838 839 static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 840 { 841 u64 val = vcpu_get_reg(vcpu, rt); 842 843 if (val & 1) 844 vmcr |= ICH_VMCR_ENG1_MASK; 845 else 846 vmcr &= ~ICH_VMCR_ENG1_MASK; 847 848 __vgic_v3_write_vmcr(vmcr); 849 } 850 851 static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 852 { 853 vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr)); 854 } 855 856 static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 857 { 858 vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr)); 859 } 860 861 static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 862 { 863 u64 val = vcpu_get_reg(vcpu, rt); 864 u8 bpr_min = __vgic_v3_bpr_min() - 1; 865 866 /* Enforce BPR limiting */ 867 if (val < bpr_min) 868 val = bpr_min; 869 870 val <<= ICH_VMCR_BPR0_SHIFT; 871 val &= ICH_VMCR_BPR0_MASK; 872 vmcr &= ~ICH_VMCR_BPR0_MASK; 873 vmcr |= val; 874 875 __vgic_v3_write_vmcr(vmcr); 876 } 877 878 static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 879 { 880 u64 val = vcpu_get_reg(vcpu, rt); 881 u8 bpr_min = __vgic_v3_bpr_min(); 882 883 if (vmcr & ICH_VMCR_CBPR_MASK) 884 return; 885 886 /* Enforce BPR limiting */ 887 if (val < bpr_min) 888 val = bpr_min; 889 890 val <<= ICH_VMCR_BPR1_SHIFT; 891 val &= ICH_VMCR_BPR1_MASK; 892 vmcr &= ~ICH_VMCR_BPR1_MASK; 893 vmcr |= val; 894 895 __vgic_v3_write_vmcr(vmcr); 896 } 897 898 static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n) 899 { 900 u32 val; 901 902 if (!__vgic_v3_get_group(vcpu)) 903 val = __vgic_v3_read_ap0rn(n); 904 else 905 val = __vgic_v3_read_ap1rn(n); 906 907 vcpu_set_reg(vcpu, rt, val); 908 } 909 910 static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n) 911 { 912 u32 val = vcpu_get_reg(vcpu, rt); 913 914 if (!__vgic_v3_get_group(vcpu)) 915 __vgic_v3_write_ap0rn(val, n); 916 else 917 __vgic_v3_write_ap1rn(val, n); 918 } 919 920 static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu, 921 u32 vmcr, int rt) 922 { 923 __vgic_v3_read_apxrn(vcpu, rt, 0); 924 } 925 926 static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu, 927 u32 vmcr, int rt) 928 { 929 __vgic_v3_read_apxrn(vcpu, rt, 1); 930 } 931 932 static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 933 { 934 __vgic_v3_read_apxrn(vcpu, rt, 2); 935 } 936 937 static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 938 { 939 __vgic_v3_read_apxrn(vcpu, rt, 3); 940 } 941 942 static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 943 { 944 __vgic_v3_write_apxrn(vcpu, rt, 0); 945 } 946 947 static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 948 { 949 __vgic_v3_write_apxrn(vcpu, rt, 1); 950 } 951 952 static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 953 { 954 __vgic_v3_write_apxrn(vcpu, rt, 2); 955 } 956 957 static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 958 { 959 __vgic_v3_write_apxrn(vcpu, rt, 3); 960 } 961 962 static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 963 { 964 u64 lr_val; 965 int lr, lr_grp, grp; 966 967 grp = __vgic_v3_get_group(vcpu); 968 969 lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val); 970 if (lr == -1) 971 goto spurious; 972 973 lr_grp = !!(lr_val & ICH_LR_GROUP); 974 if (lr_grp != grp) 975 lr_val = ICC_IAR1_EL1_SPURIOUS; 976 977 spurious: 978 vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK); 979 } 980 981 static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 982 { 983 vmcr &= ICH_VMCR_PMR_MASK; 984 vmcr >>= ICH_VMCR_PMR_SHIFT; 985 vcpu_set_reg(vcpu, rt, vmcr); 986 } 987 988 static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 989 { 990 u32 val = vcpu_get_reg(vcpu, rt); 991 992 val <<= ICH_VMCR_PMR_SHIFT; 993 val &= ICH_VMCR_PMR_MASK; 994 vmcr &= ~ICH_VMCR_PMR_MASK; 995 vmcr |= val; 996 997 write_gicreg(vmcr, ICH_VMCR_EL2); 998 } 999 1000 static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 1001 { 1002 u32 val = __vgic_v3_get_highest_active_priority(); 1003 vcpu_set_reg(vcpu, rt, val); 1004 } 1005 1006 static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 1007 { 1008 u32 vtr, val; 1009 1010 vtr = read_gicreg(ICH_VTR_EL2); 1011 /* PRIbits */ 1012 val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT; 1013 /* IDbits */ 1014 val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT; 1015 /* A3V */ 1016 val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT; 1017 /* EOImode */ 1018 val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT; 1019 /* CBPR */ 1020 val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; 1021 1022 vcpu_set_reg(vcpu, rt, val); 1023 } 1024 1025 static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) 1026 { 1027 u32 val = vcpu_get_reg(vcpu, rt); 1028 1029 if (val & ICC_CTLR_EL1_CBPR_MASK) 1030 vmcr |= ICH_VMCR_CBPR_MASK; 1031 else 1032 vmcr &= ~ICH_VMCR_CBPR_MASK; 1033 1034 if (val & ICC_CTLR_EL1_EOImode_MASK) 1035 vmcr |= ICH_VMCR_EOIM_MASK; 1036 else 1037 vmcr &= ~ICH_VMCR_EOIM_MASK; 1038 1039 write_gicreg(vmcr, ICH_VMCR_EL2); 1040 } 1041 1042 static bool __vgic_v3_check_trap_forwarding(struct kvm_vcpu *vcpu, 1043 u32 sysreg, bool is_read) 1044 { 1045 u64 ich_hcr; 1046 1047 if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu)) 1048 return false; 1049 1050 ich_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2); 1051 1052 switch (sysreg) { 1053 case SYS_ICC_IGRPEN0_EL1: 1054 if (is_read && 1055 (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1)) 1056 return true; 1057 1058 if (!is_read && 1059 (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1)) 1060 return true; 1061 1062 fallthrough; 1063 1064 case SYS_ICC_AP0Rn_EL1(0): 1065 case SYS_ICC_AP0Rn_EL1(1): 1066 case SYS_ICC_AP0Rn_EL1(2): 1067 case SYS_ICC_AP0Rn_EL1(3): 1068 case SYS_ICC_BPR0_EL1: 1069 case SYS_ICC_EOIR0_EL1: 1070 case SYS_ICC_HPPIR0_EL1: 1071 case SYS_ICC_IAR0_EL1: 1072 return ich_hcr & ICH_HCR_TALL0; 1073 1074 case SYS_ICC_IGRPEN1_EL1: 1075 if (is_read && 1076 (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1)) 1077 return true; 1078 1079 if (!is_read && 1080 (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1)) 1081 return true; 1082 1083 fallthrough; 1084 1085 case SYS_ICC_AP1Rn_EL1(0): 1086 case SYS_ICC_AP1Rn_EL1(1): 1087 case SYS_ICC_AP1Rn_EL1(2): 1088 case SYS_ICC_AP1Rn_EL1(3): 1089 case SYS_ICC_BPR1_EL1: 1090 case SYS_ICC_EOIR1_EL1: 1091 case SYS_ICC_HPPIR1_EL1: 1092 case SYS_ICC_IAR1_EL1: 1093 return ich_hcr & ICH_HCR_TALL1; 1094 1095 case SYS_ICC_DIR_EL1: 1096 if (ich_hcr & ICH_HCR_TDIR) 1097 return true; 1098 1099 fallthrough; 1100 1101 case SYS_ICC_RPR_EL1: 1102 case SYS_ICC_CTLR_EL1: 1103 case SYS_ICC_PMR_EL1: 1104 return ich_hcr & ICH_HCR_TC; 1105 1106 default: 1107 return false; 1108 } 1109 } 1110 1111 int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu) 1112 { 1113 int rt; 1114 u64 esr; 1115 u32 vmcr; 1116 void (*fn)(struct kvm_vcpu *, u32, int); 1117 bool is_read; 1118 u32 sysreg; 1119 1120 if (kern_hyp_va(vcpu->kvm)->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3) 1121 return 0; 1122 1123 esr = kvm_vcpu_get_esr(vcpu); 1124 if (vcpu_mode_is_32bit(vcpu)) { 1125 if (!kvm_condition_valid(vcpu)) { 1126 __kvm_skip_instr(vcpu); 1127 return 1; 1128 } 1129 1130 sysreg = esr_cp15_to_sysreg(esr); 1131 } else { 1132 sysreg = esr_sys64_to_sysreg(esr); 1133 } 1134 1135 is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ; 1136 1137 if (__vgic_v3_check_trap_forwarding(vcpu, sysreg, is_read)) 1138 return 0; 1139 1140 switch (sysreg) { 1141 case SYS_ICC_IAR0_EL1: 1142 case SYS_ICC_IAR1_EL1: 1143 if (unlikely(!is_read)) 1144 return 0; 1145 fn = __vgic_v3_read_iar; 1146 break; 1147 case SYS_ICC_EOIR0_EL1: 1148 case SYS_ICC_EOIR1_EL1: 1149 if (unlikely(is_read)) 1150 return 0; 1151 fn = __vgic_v3_write_eoir; 1152 break; 1153 case SYS_ICC_IGRPEN1_EL1: 1154 if (is_read) 1155 fn = __vgic_v3_read_igrpen1; 1156 else 1157 fn = __vgic_v3_write_igrpen1; 1158 break; 1159 case SYS_ICC_BPR1_EL1: 1160 if (is_read) 1161 fn = __vgic_v3_read_bpr1; 1162 else 1163 fn = __vgic_v3_write_bpr1; 1164 break; 1165 case SYS_ICC_AP0Rn_EL1(0): 1166 case SYS_ICC_AP1Rn_EL1(0): 1167 if (is_read) 1168 fn = __vgic_v3_read_apxr0; 1169 else 1170 fn = __vgic_v3_write_apxr0; 1171 break; 1172 case SYS_ICC_AP0Rn_EL1(1): 1173 case SYS_ICC_AP1Rn_EL1(1): 1174 if (is_read) 1175 fn = __vgic_v3_read_apxr1; 1176 else 1177 fn = __vgic_v3_write_apxr1; 1178 break; 1179 case SYS_ICC_AP0Rn_EL1(2): 1180 case SYS_ICC_AP1Rn_EL1(2): 1181 if (is_read) 1182 fn = __vgic_v3_read_apxr2; 1183 else 1184 fn = __vgic_v3_write_apxr2; 1185 break; 1186 case SYS_ICC_AP0Rn_EL1(3): 1187 case SYS_ICC_AP1Rn_EL1(3): 1188 if (is_read) 1189 fn = __vgic_v3_read_apxr3; 1190 else 1191 fn = __vgic_v3_write_apxr3; 1192 break; 1193 case SYS_ICC_HPPIR0_EL1: 1194 case SYS_ICC_HPPIR1_EL1: 1195 if (unlikely(!is_read)) 1196 return 0; 1197 fn = __vgic_v3_read_hppir; 1198 break; 1199 case SYS_ICC_IGRPEN0_EL1: 1200 if (is_read) 1201 fn = __vgic_v3_read_igrpen0; 1202 else 1203 fn = __vgic_v3_write_igrpen0; 1204 break; 1205 case SYS_ICC_BPR0_EL1: 1206 if (is_read) 1207 fn = __vgic_v3_read_bpr0; 1208 else 1209 fn = __vgic_v3_write_bpr0; 1210 break; 1211 case SYS_ICC_DIR_EL1: 1212 if (unlikely(is_read)) 1213 return 0; 1214 fn = __vgic_v3_write_dir; 1215 break; 1216 case SYS_ICC_RPR_EL1: 1217 if (unlikely(!is_read)) 1218 return 0; 1219 fn = __vgic_v3_read_rpr; 1220 break; 1221 case SYS_ICC_CTLR_EL1: 1222 if (is_read) 1223 fn = __vgic_v3_read_ctlr; 1224 else 1225 fn = __vgic_v3_write_ctlr; 1226 break; 1227 case SYS_ICC_PMR_EL1: 1228 if (is_read) 1229 fn = __vgic_v3_read_pmr; 1230 else 1231 fn = __vgic_v3_write_pmr; 1232 break; 1233 default: 1234 return 0; 1235 } 1236 1237 vmcr = __vgic_v3_read_vmcr(); 1238 rt = kvm_vcpu_sys_get_rt(vcpu); 1239 fn(vcpu, vmcr, rt); 1240 1241 __kvm_skip_instr(vcpu); 1242 1243 return 1; 1244 } 1245