xref: /linux/arch/arm64/kvm/hyp/vgic-v3-sr.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012-2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/adjust_pc.h>
8 
9 #include <linux/compiler.h>
10 #include <linux/irqchip/arm-gic-v3.h>
11 #include <linux/kvm_host.h>
12 
13 #include <asm/kvm_emulate.h>
14 #include <asm/kvm_hyp.h>
15 #include <asm/kvm_mmu.h>
16 
17 #define vtr_to_max_lr_idx(v)		((v) & 0xf)
18 #define vtr_to_nr_pre_bits(v)		((((u32)(v) >> 26) & 7) + 1)
19 #define vtr_to_nr_apr_regs(v)		(1 << (vtr_to_nr_pre_bits(v) - 5))
20 
21 static u64 __gic_v3_get_lr(unsigned int lr)
22 {
23 	switch (lr & 0xf) {
24 	case 0:
25 		return read_gicreg(ICH_LR0_EL2);
26 	case 1:
27 		return read_gicreg(ICH_LR1_EL2);
28 	case 2:
29 		return read_gicreg(ICH_LR2_EL2);
30 	case 3:
31 		return read_gicreg(ICH_LR3_EL2);
32 	case 4:
33 		return read_gicreg(ICH_LR4_EL2);
34 	case 5:
35 		return read_gicreg(ICH_LR5_EL2);
36 	case 6:
37 		return read_gicreg(ICH_LR6_EL2);
38 	case 7:
39 		return read_gicreg(ICH_LR7_EL2);
40 	case 8:
41 		return read_gicreg(ICH_LR8_EL2);
42 	case 9:
43 		return read_gicreg(ICH_LR9_EL2);
44 	case 10:
45 		return read_gicreg(ICH_LR10_EL2);
46 	case 11:
47 		return read_gicreg(ICH_LR11_EL2);
48 	case 12:
49 		return read_gicreg(ICH_LR12_EL2);
50 	case 13:
51 		return read_gicreg(ICH_LR13_EL2);
52 	case 14:
53 		return read_gicreg(ICH_LR14_EL2);
54 	case 15:
55 		return read_gicreg(ICH_LR15_EL2);
56 	}
57 
58 	unreachable();
59 }
60 
61 static void __gic_v3_set_lr(u64 val, int lr)
62 {
63 	switch (lr & 0xf) {
64 	case 0:
65 		write_gicreg(val, ICH_LR0_EL2);
66 		break;
67 	case 1:
68 		write_gicreg(val, ICH_LR1_EL2);
69 		break;
70 	case 2:
71 		write_gicreg(val, ICH_LR2_EL2);
72 		break;
73 	case 3:
74 		write_gicreg(val, ICH_LR3_EL2);
75 		break;
76 	case 4:
77 		write_gicreg(val, ICH_LR4_EL2);
78 		break;
79 	case 5:
80 		write_gicreg(val, ICH_LR5_EL2);
81 		break;
82 	case 6:
83 		write_gicreg(val, ICH_LR6_EL2);
84 		break;
85 	case 7:
86 		write_gicreg(val, ICH_LR7_EL2);
87 		break;
88 	case 8:
89 		write_gicreg(val, ICH_LR8_EL2);
90 		break;
91 	case 9:
92 		write_gicreg(val, ICH_LR9_EL2);
93 		break;
94 	case 10:
95 		write_gicreg(val, ICH_LR10_EL2);
96 		break;
97 	case 11:
98 		write_gicreg(val, ICH_LR11_EL2);
99 		break;
100 	case 12:
101 		write_gicreg(val, ICH_LR12_EL2);
102 		break;
103 	case 13:
104 		write_gicreg(val, ICH_LR13_EL2);
105 		break;
106 	case 14:
107 		write_gicreg(val, ICH_LR14_EL2);
108 		break;
109 	case 15:
110 		write_gicreg(val, ICH_LR15_EL2);
111 		break;
112 	}
113 }
114 
115 static void __vgic_v3_write_ap0rn(u32 val, int n)
116 {
117 	switch (n) {
118 	case 0:
119 		write_gicreg(val, ICH_AP0R0_EL2);
120 		break;
121 	case 1:
122 		write_gicreg(val, ICH_AP0R1_EL2);
123 		break;
124 	case 2:
125 		write_gicreg(val, ICH_AP0R2_EL2);
126 		break;
127 	case 3:
128 		write_gicreg(val, ICH_AP0R3_EL2);
129 		break;
130 	}
131 }
132 
133 static void __vgic_v3_write_ap1rn(u32 val, int n)
134 {
135 	switch (n) {
136 	case 0:
137 		write_gicreg(val, ICH_AP1R0_EL2);
138 		break;
139 	case 1:
140 		write_gicreg(val, ICH_AP1R1_EL2);
141 		break;
142 	case 2:
143 		write_gicreg(val, ICH_AP1R2_EL2);
144 		break;
145 	case 3:
146 		write_gicreg(val, ICH_AP1R3_EL2);
147 		break;
148 	}
149 }
150 
151 static u32 __vgic_v3_read_ap0rn(int n)
152 {
153 	u32 val;
154 
155 	switch (n) {
156 	case 0:
157 		val = read_gicreg(ICH_AP0R0_EL2);
158 		break;
159 	case 1:
160 		val = read_gicreg(ICH_AP0R1_EL2);
161 		break;
162 	case 2:
163 		val = read_gicreg(ICH_AP0R2_EL2);
164 		break;
165 	case 3:
166 		val = read_gicreg(ICH_AP0R3_EL2);
167 		break;
168 	default:
169 		unreachable();
170 	}
171 
172 	return val;
173 }
174 
175 static u32 __vgic_v3_read_ap1rn(int n)
176 {
177 	u32 val;
178 
179 	switch (n) {
180 	case 0:
181 		val = read_gicreg(ICH_AP1R0_EL2);
182 		break;
183 	case 1:
184 		val = read_gicreg(ICH_AP1R1_EL2);
185 		break;
186 	case 2:
187 		val = read_gicreg(ICH_AP1R2_EL2);
188 		break;
189 	case 3:
190 		val = read_gicreg(ICH_AP1R3_EL2);
191 		break;
192 	default:
193 		unreachable();
194 	}
195 
196 	return val;
197 }
198 
199 void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
200 {
201 	u64 used_lrs = cpu_if->used_lrs;
202 
203 	/*
204 	 * Make sure stores to the GIC via the memory mapped interface
205 	 * are now visible to the system register interface when reading the
206 	 * LRs, and when reading back the VMCR on non-VHE systems.
207 	 */
208 	if (used_lrs || !has_vhe()) {
209 		if (!cpu_if->vgic_sre) {
210 			dsb(sy);
211 			isb();
212 		}
213 	}
214 
215 	if (used_lrs || cpu_if->its_vpe.its_vm) {
216 		int i;
217 		u32 elrsr;
218 
219 		elrsr = read_gicreg(ICH_ELRSR_EL2);
220 
221 		write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EN, ICH_HCR_EL2);
222 
223 		for (i = 0; i < used_lrs; i++) {
224 			if (elrsr & (1 << i))
225 				cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
226 			else
227 				cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
228 
229 			__gic_v3_set_lr(0, i);
230 		}
231 	}
232 }
233 
234 void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
235 {
236 	u64 used_lrs = cpu_if->used_lrs;
237 	int i;
238 
239 	if (used_lrs || cpu_if->its_vpe.its_vm) {
240 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
241 
242 		for (i = 0; i < used_lrs; i++)
243 			__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
244 	}
245 
246 	/*
247 	 * Ensure that writes to the LRs, and on non-VHE systems ensure that
248 	 * the write to the VMCR in __vgic_v3_activate_traps(), will have
249 	 * reached the (re)distributors. This ensure the guest will read the
250 	 * correct values from the memory-mapped interface.
251 	 */
252 	if (used_lrs || !has_vhe()) {
253 		if (!cpu_if->vgic_sre) {
254 			isb();
255 			dsb(sy);
256 		}
257 	}
258 }
259 
260 void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
261 {
262 	/*
263 	 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
264 	 * Group0 interrupt (as generated in GICv2 mode) to be
265 	 * delivered as a FIQ to the guest, with potentially fatal
266 	 * consequences. So we must make sure that ICC_SRE_EL1 has
267 	 * been actually programmed with the value we want before
268 	 * starting to mess with the rest of the GIC, and VMCR_EL2 in
269 	 * particular.  This logic must be called before
270 	 * __vgic_v3_restore_state().
271 	 *
272 	 * However, if the vgic is disabled (ICH_HCR_EL2.EN==0), no GIC is
273 	 * provisioned at all. In order to prevent illegal accesses to the
274 	 * system registers to trap to EL1 (duh), force ICC_SRE_EL1.SRE to 1
275 	 * so that the trap bits can take effect. Yes, we *loves* the GIC.
276 	 */
277 	if (!(cpu_if->vgic_hcr & ICH_HCR_EN)) {
278 		write_gicreg(ICC_SRE_EL1_SRE, ICC_SRE_EL1);
279 		isb();
280 	} else if (!cpu_if->vgic_sre) {
281 		write_gicreg(0, ICC_SRE_EL1);
282 		isb();
283 		write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
284 
285 
286 		if (has_vhe()) {
287 			/*
288 			 * Ensure that the write to the VMCR will have reached
289 			 * the (re)distributors. This ensure the guest will
290 			 * read the correct values from the memory-mapped
291 			 * interface.
292 			 */
293 			isb();
294 			dsb(sy);
295 		}
296 	}
297 
298 	/*
299 	 * Prevent the guest from touching the ICC_SRE_EL1 system
300 	 * register. Note that this may not have any effect, as
301 	 * ICC_SRE_EL2.Enable being RAO/WI is a valid implementation.
302 	 */
303 	write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
304 		     ICC_SRE_EL2);
305 
306 	/*
307 	 * If we need to trap system registers, we must write
308 	 * ICH_HCR_EL2 anyway, even if no interrupts are being
309 	 * injected. Note that this also applies if we don't expect
310 	 * any system register access (no vgic at all).
311 	 */
312 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
313 	    cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
314 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
315 }
316 
317 void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
318 {
319 	u64 val;
320 
321 	if (!cpu_if->vgic_sre) {
322 		cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
323 	}
324 
325 	val = read_gicreg(ICC_SRE_EL2);
326 	write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
327 
328 	if (!cpu_if->vgic_sre) {
329 		/* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
330 		isb();
331 		write_gicreg(1, ICC_SRE_EL1);
332 	}
333 
334 	/*
335 	 * If we were trapping system registers, we enabled the VGIC even if
336 	 * no interrupts were being injected, and we disable it again here.
337 	 */
338 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
339 	    cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
340 		write_gicreg(0, ICH_HCR_EL2);
341 }
342 
343 static void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
344 {
345 	u64 val;
346 	u32 nr_pre_bits;
347 
348 	val = read_gicreg(ICH_VTR_EL2);
349 	nr_pre_bits = vtr_to_nr_pre_bits(val);
350 
351 	switch (nr_pre_bits) {
352 	case 7:
353 		cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
354 		cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
355 		fallthrough;
356 	case 6:
357 		cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
358 		fallthrough;
359 	default:
360 		cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
361 	}
362 
363 	switch (nr_pre_bits) {
364 	case 7:
365 		cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
366 		cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
367 		fallthrough;
368 	case 6:
369 		cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
370 		fallthrough;
371 	default:
372 		cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
373 	}
374 }
375 
376 static void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
377 {
378 	u64 val;
379 	u32 nr_pre_bits;
380 
381 	val = read_gicreg(ICH_VTR_EL2);
382 	nr_pre_bits = vtr_to_nr_pre_bits(val);
383 
384 	switch (nr_pre_bits) {
385 	case 7:
386 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
387 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
388 		fallthrough;
389 	case 6:
390 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
391 		fallthrough;
392 	default:
393 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
394 	}
395 
396 	switch (nr_pre_bits) {
397 	case 7:
398 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
399 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
400 		fallthrough;
401 	case 6:
402 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
403 		fallthrough;
404 	default:
405 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
406 	}
407 }
408 
409 void __vgic_v3_init_lrs(void)
410 {
411 	int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
412 	int i;
413 
414 	for (i = 0; i <= max_lr_idx; i++)
415 		__gic_v3_set_lr(0, i);
416 }
417 
418 /*
419  * Return the GIC CPU configuration:
420  * - [31:0]  ICH_VTR_EL2
421  * - [62:32] RES0
422  * - [63]    MMIO (GICv2) capable
423  */
424 u64 __vgic_v3_get_gic_config(void)
425 {
426 	u64 val, sre = read_gicreg(ICC_SRE_EL1);
427 	unsigned long flags = 0;
428 
429 	/*
430 	 * To check whether we have a MMIO-based (GICv2 compatible)
431 	 * CPU interface, we need to disable the system register
432 	 * view. To do that safely, we have to prevent any interrupt
433 	 * from firing (which would be deadly).
434 	 *
435 	 * Note that this only makes sense on VHE, as interrupts are
436 	 * already masked for nVHE as part of the exception entry to
437 	 * EL2.
438 	 */
439 	if (has_vhe())
440 		flags = local_daif_save();
441 
442 	/*
443 	 * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates
444 	 * that to be able to set ICC_SRE_EL1.SRE to 0, all the
445 	 * interrupt overrides must be set. You've got to love this.
446 	 */
447 	sysreg_clear_set(hcr_el2, 0, HCR_AMO | HCR_FMO | HCR_IMO);
448 	isb();
449 	write_gicreg(0, ICC_SRE_EL1);
450 	isb();
451 
452 	val = read_gicreg(ICC_SRE_EL1);
453 
454 	write_gicreg(sre, ICC_SRE_EL1);
455 	isb();
456 	sysreg_clear_set(hcr_el2, HCR_AMO | HCR_FMO | HCR_IMO, 0);
457 	isb();
458 
459 	if (has_vhe())
460 		local_daif_restore(flags);
461 
462 	val  = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
463 	val |= read_gicreg(ICH_VTR_EL2);
464 
465 	return val;
466 }
467 
468 static u64 __vgic_v3_read_vmcr(void)
469 {
470 	return read_gicreg(ICH_VMCR_EL2);
471 }
472 
473 static void __vgic_v3_write_vmcr(u32 vmcr)
474 {
475 	write_gicreg(vmcr, ICH_VMCR_EL2);
476 }
477 
478 void __vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
479 {
480 	__vgic_v3_save_aprs(cpu_if);
481 	if (cpu_if->vgic_sre)
482 		cpu_if->vgic_vmcr = __vgic_v3_read_vmcr();
483 }
484 
485 void __vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
486 {
487 	/*
488 	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
489 	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
490 	 * VMCR_EL2 save/restore in the world switch.
491 	 */
492 	if (cpu_if->vgic_sre)
493 		__vgic_v3_write_vmcr(cpu_if->vgic_vmcr);
494 	__vgic_v3_restore_aprs(cpu_if);
495 }
496 
497 static int __vgic_v3_bpr_min(void)
498 {
499 	/* See Pseudocode for VPriorityGroup */
500 	return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
501 }
502 
503 static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
504 {
505 	u64 esr = kvm_vcpu_get_esr(vcpu);
506 	u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
507 
508 	return crm != 8;
509 }
510 
511 #define GICv3_IDLE_PRIORITY	0xff
512 
513 static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
514 					 u64 *lr_val)
515 {
516 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
517 	u8 priority = GICv3_IDLE_PRIORITY;
518 	int i, lr = -1;
519 
520 	for (i = 0; i < used_lrs; i++) {
521 		u64 val = __gic_v3_get_lr(i);
522 		u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
523 
524 		/* Not pending in the state? */
525 		if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
526 			continue;
527 
528 		/* Group-0 interrupt, but Group-0 disabled? */
529 		if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
530 			continue;
531 
532 		/* Group-1 interrupt, but Group-1 disabled? */
533 		if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
534 			continue;
535 
536 		/* Not the highest priority? */
537 		if (lr_prio >= priority)
538 			continue;
539 
540 		/* This is a candidate */
541 		priority = lr_prio;
542 		*lr_val = val;
543 		lr = i;
544 	}
545 
546 	if (lr == -1)
547 		*lr_val = ICC_IAR1_EL1_SPURIOUS;
548 
549 	return lr;
550 }
551 
552 static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
553 				    u64 *lr_val)
554 {
555 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
556 	int i;
557 
558 	for (i = 0; i < used_lrs; i++) {
559 		u64 val = __gic_v3_get_lr(i);
560 
561 		if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
562 		    (val & ICH_LR_ACTIVE_BIT)) {
563 			*lr_val = val;
564 			return i;
565 		}
566 	}
567 
568 	*lr_val = ICC_IAR1_EL1_SPURIOUS;
569 	return -1;
570 }
571 
572 static int __vgic_v3_get_highest_active_priority(void)
573 {
574 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
575 	u32 hap = 0;
576 	int i;
577 
578 	for (i = 0; i < nr_apr_regs; i++) {
579 		u32 val;
580 
581 		/*
582 		 * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
583 		 * contain the active priority levels for this VCPU
584 		 * for the maximum number of supported priority
585 		 * levels, and we return the full priority level only
586 		 * if the BPR is programmed to its minimum, otherwise
587 		 * we return a combination of the priority level and
588 		 * subpriority, as determined by the setting of the
589 		 * BPR, but without the full subpriority.
590 		 */
591 		val  = __vgic_v3_read_ap0rn(i);
592 		val |= __vgic_v3_read_ap1rn(i);
593 		if (!val) {
594 			hap += 32;
595 			continue;
596 		}
597 
598 		return (hap + __ffs(val)) << __vgic_v3_bpr_min();
599 	}
600 
601 	return GICv3_IDLE_PRIORITY;
602 }
603 
604 static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
605 {
606 	return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
607 }
608 
609 static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
610 {
611 	unsigned int bpr;
612 
613 	if (vmcr & ICH_VMCR_CBPR_MASK) {
614 		bpr = __vgic_v3_get_bpr0(vmcr);
615 		if (bpr < 7)
616 			bpr++;
617 	} else {
618 		bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
619 	}
620 
621 	return bpr;
622 }
623 
624 /*
625  * Convert a priority to a preemption level, taking the relevant BPR
626  * into account by zeroing the sub-priority bits.
627  */
628 static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
629 {
630 	unsigned int bpr;
631 
632 	if (!grp)
633 		bpr = __vgic_v3_get_bpr0(vmcr) + 1;
634 	else
635 		bpr = __vgic_v3_get_bpr1(vmcr);
636 
637 	return pri & (GENMASK(7, 0) << bpr);
638 }
639 
640 /*
641  * The priority value is independent of any of the BPR values, so we
642  * normalize it using the minimal BPR value. This guarantees that no
643  * matter what the guest does with its BPR, we can always set/get the
644  * same value of a priority.
645  */
646 static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
647 {
648 	u8 pre, ap;
649 	u32 val;
650 	int apr;
651 
652 	pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
653 	ap = pre >> __vgic_v3_bpr_min();
654 	apr = ap / 32;
655 
656 	if (!grp) {
657 		val = __vgic_v3_read_ap0rn(apr);
658 		__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
659 	} else {
660 		val = __vgic_v3_read_ap1rn(apr);
661 		__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
662 	}
663 }
664 
665 static int __vgic_v3_clear_highest_active_priority(void)
666 {
667 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
668 	u32 hap = 0;
669 	int i;
670 
671 	for (i = 0; i < nr_apr_regs; i++) {
672 		u32 ap0, ap1;
673 		int c0, c1;
674 
675 		ap0 = __vgic_v3_read_ap0rn(i);
676 		ap1 = __vgic_v3_read_ap1rn(i);
677 		if (!ap0 && !ap1) {
678 			hap += 32;
679 			continue;
680 		}
681 
682 		c0 = ap0 ? __ffs(ap0) : 32;
683 		c1 = ap1 ? __ffs(ap1) : 32;
684 
685 		/* Always clear the LSB, which is the highest priority */
686 		if (c0 < c1) {
687 			ap0 &= ~BIT(c0);
688 			__vgic_v3_write_ap0rn(ap0, i);
689 			hap += c0;
690 		} else {
691 			ap1 &= ~BIT(c1);
692 			__vgic_v3_write_ap1rn(ap1, i);
693 			hap += c1;
694 		}
695 
696 		/* Rescale to 8 bits of priority */
697 		return hap << __vgic_v3_bpr_min();
698 	}
699 
700 	return GICv3_IDLE_PRIORITY;
701 }
702 
703 static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
704 {
705 	u64 lr_val;
706 	u8 lr_prio, pmr;
707 	int lr, grp;
708 
709 	grp = __vgic_v3_get_group(vcpu);
710 
711 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
712 	if (lr < 0)
713 		goto spurious;
714 
715 	if (grp != !!(lr_val & ICH_LR_GROUP))
716 		goto spurious;
717 
718 	pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
719 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
720 	if (pmr <= lr_prio)
721 		goto spurious;
722 
723 	if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
724 		goto spurious;
725 
726 	lr_val &= ~ICH_LR_STATE;
727 	lr_val |= ICH_LR_ACTIVE_BIT;
728 	__gic_v3_set_lr(lr_val, lr);
729 	__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
730 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
731 	return;
732 
733 spurious:
734 	vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
735 }
736 
737 static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
738 {
739 	lr_val &= ~ICH_LR_ACTIVE_BIT;
740 	if (lr_val & ICH_LR_HW) {
741 		u32 pid;
742 
743 		pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
744 		gic_write_dir(pid);
745 	}
746 
747 	__gic_v3_set_lr(lr_val, lr);
748 }
749 
750 static void __vgic_v3_bump_eoicount(void)
751 {
752 	u32 hcr;
753 
754 	hcr = read_gicreg(ICH_HCR_EL2);
755 	hcr += 1 << ICH_HCR_EOIcount_SHIFT;
756 	write_gicreg(hcr, ICH_HCR_EL2);
757 }
758 
759 static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
760 {
761 	u32 vid = vcpu_get_reg(vcpu, rt);
762 	u64 lr_val;
763 	int lr;
764 
765 	/* EOImode == 0, nothing to be done here */
766 	if (!(vmcr & ICH_VMCR_EOIM_MASK))
767 		return;
768 
769 	/* No deactivate to be performed on an LPI */
770 	if (vid >= VGIC_MIN_LPI)
771 		return;
772 
773 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
774 	if (lr == -1) {
775 		__vgic_v3_bump_eoicount();
776 		return;
777 	}
778 
779 	__vgic_v3_clear_active_lr(lr, lr_val);
780 }
781 
782 static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
783 {
784 	u32 vid = vcpu_get_reg(vcpu, rt);
785 	u64 lr_val;
786 	u8 lr_prio, act_prio;
787 	int lr, grp;
788 
789 	grp = __vgic_v3_get_group(vcpu);
790 
791 	/* Drop priority in any case */
792 	act_prio = __vgic_v3_clear_highest_active_priority();
793 
794 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
795 	if (lr == -1) {
796 		/* Do not bump EOIcount for LPIs that aren't in the LRs */
797 		if (!(vid >= VGIC_MIN_LPI))
798 			__vgic_v3_bump_eoicount();
799 		return;
800 	}
801 
802 	/* EOImode == 1 and not an LPI, nothing to be done here */
803 	if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI))
804 		return;
805 
806 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
807 
808 	/* If priorities or group do not match, the guest has fscked-up. */
809 	if (grp != !!(lr_val & ICH_LR_GROUP) ||
810 	    __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
811 		return;
812 
813 	/* Let's now perform the deactivation */
814 	__vgic_v3_clear_active_lr(lr, lr_val);
815 }
816 
817 static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
818 {
819 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
820 }
821 
822 static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
823 {
824 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
825 }
826 
827 static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
828 {
829 	u64 val = vcpu_get_reg(vcpu, rt);
830 
831 	if (val & 1)
832 		vmcr |= ICH_VMCR_ENG0_MASK;
833 	else
834 		vmcr &= ~ICH_VMCR_ENG0_MASK;
835 
836 	__vgic_v3_write_vmcr(vmcr);
837 }
838 
839 static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
840 {
841 	u64 val = vcpu_get_reg(vcpu, rt);
842 
843 	if (val & 1)
844 		vmcr |= ICH_VMCR_ENG1_MASK;
845 	else
846 		vmcr &= ~ICH_VMCR_ENG1_MASK;
847 
848 	__vgic_v3_write_vmcr(vmcr);
849 }
850 
851 static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
852 {
853 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
854 }
855 
856 static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
857 {
858 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
859 }
860 
861 static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
862 {
863 	u64 val = vcpu_get_reg(vcpu, rt);
864 	u8 bpr_min = __vgic_v3_bpr_min() - 1;
865 
866 	/* Enforce BPR limiting */
867 	if (val < bpr_min)
868 		val = bpr_min;
869 
870 	val <<= ICH_VMCR_BPR0_SHIFT;
871 	val &= ICH_VMCR_BPR0_MASK;
872 	vmcr &= ~ICH_VMCR_BPR0_MASK;
873 	vmcr |= val;
874 
875 	__vgic_v3_write_vmcr(vmcr);
876 }
877 
878 static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
879 {
880 	u64 val = vcpu_get_reg(vcpu, rt);
881 	u8 bpr_min = __vgic_v3_bpr_min();
882 
883 	if (vmcr & ICH_VMCR_CBPR_MASK)
884 		return;
885 
886 	/* Enforce BPR limiting */
887 	if (val < bpr_min)
888 		val = bpr_min;
889 
890 	val <<= ICH_VMCR_BPR1_SHIFT;
891 	val &= ICH_VMCR_BPR1_MASK;
892 	vmcr &= ~ICH_VMCR_BPR1_MASK;
893 	vmcr |= val;
894 
895 	__vgic_v3_write_vmcr(vmcr);
896 }
897 
898 static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
899 {
900 	u32 val;
901 
902 	if (!__vgic_v3_get_group(vcpu))
903 		val = __vgic_v3_read_ap0rn(n);
904 	else
905 		val = __vgic_v3_read_ap1rn(n);
906 
907 	vcpu_set_reg(vcpu, rt, val);
908 }
909 
910 static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
911 {
912 	u32 val = vcpu_get_reg(vcpu, rt);
913 
914 	if (!__vgic_v3_get_group(vcpu))
915 		__vgic_v3_write_ap0rn(val, n);
916 	else
917 		__vgic_v3_write_ap1rn(val, n);
918 }
919 
920 static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
921 					    u32 vmcr, int rt)
922 {
923 	__vgic_v3_read_apxrn(vcpu, rt, 0);
924 }
925 
926 static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
927 					    u32 vmcr, int rt)
928 {
929 	__vgic_v3_read_apxrn(vcpu, rt, 1);
930 }
931 
932 static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
933 {
934 	__vgic_v3_read_apxrn(vcpu, rt, 2);
935 }
936 
937 static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
938 {
939 	__vgic_v3_read_apxrn(vcpu, rt, 3);
940 }
941 
942 static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
943 {
944 	__vgic_v3_write_apxrn(vcpu, rt, 0);
945 }
946 
947 static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
948 {
949 	__vgic_v3_write_apxrn(vcpu, rt, 1);
950 }
951 
952 static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
953 {
954 	__vgic_v3_write_apxrn(vcpu, rt, 2);
955 }
956 
957 static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
958 {
959 	__vgic_v3_write_apxrn(vcpu, rt, 3);
960 }
961 
962 static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
963 {
964 	u64 lr_val;
965 	int lr, lr_grp, grp;
966 
967 	grp = __vgic_v3_get_group(vcpu);
968 
969 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
970 	if (lr == -1)
971 		goto spurious;
972 
973 	lr_grp = !!(lr_val & ICH_LR_GROUP);
974 	if (lr_grp != grp)
975 		lr_val = ICC_IAR1_EL1_SPURIOUS;
976 
977 spurious:
978 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
979 }
980 
981 static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
982 {
983 	vmcr &= ICH_VMCR_PMR_MASK;
984 	vmcr >>= ICH_VMCR_PMR_SHIFT;
985 	vcpu_set_reg(vcpu, rt, vmcr);
986 }
987 
988 static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
989 {
990 	u32 val = vcpu_get_reg(vcpu, rt);
991 
992 	val <<= ICH_VMCR_PMR_SHIFT;
993 	val &= ICH_VMCR_PMR_MASK;
994 	vmcr &= ~ICH_VMCR_PMR_MASK;
995 	vmcr |= val;
996 
997 	write_gicreg(vmcr, ICH_VMCR_EL2);
998 }
999 
1000 static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1001 {
1002 	u32 val = __vgic_v3_get_highest_active_priority();
1003 	vcpu_set_reg(vcpu, rt, val);
1004 }
1005 
1006 static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1007 {
1008 	u32 vtr, val;
1009 
1010 	vtr = read_gicreg(ICH_VTR_EL2);
1011 	/* PRIbits */
1012 	val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
1013 	/* IDbits */
1014 	val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
1015 	/* A3V */
1016 	val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
1017 	/* EOImode */
1018 	val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
1019 	/* CBPR */
1020 	val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
1021 
1022 	vcpu_set_reg(vcpu, rt, val);
1023 }
1024 
1025 static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1026 {
1027 	u32 val = vcpu_get_reg(vcpu, rt);
1028 
1029 	if (val & ICC_CTLR_EL1_CBPR_MASK)
1030 		vmcr |= ICH_VMCR_CBPR_MASK;
1031 	else
1032 		vmcr &= ~ICH_VMCR_CBPR_MASK;
1033 
1034 	if (val & ICC_CTLR_EL1_EOImode_MASK)
1035 		vmcr |= ICH_VMCR_EOIM_MASK;
1036 	else
1037 		vmcr &= ~ICH_VMCR_EOIM_MASK;
1038 
1039 	write_gicreg(vmcr, ICH_VMCR_EL2);
1040 }
1041 
1042 static bool __vgic_v3_check_trap_forwarding(struct kvm_vcpu *vcpu,
1043 					    u32 sysreg, bool is_read)
1044 {
1045 	u64 ich_hcr;
1046 
1047 	if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
1048 		return false;
1049 
1050 	ich_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
1051 
1052 	switch (sysreg) {
1053 	case SYS_ICC_IGRPEN0_EL1:
1054 		if (is_read &&
1055 		    (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1))
1056 			return true;
1057 
1058 		if (!is_read &&
1059 		    (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1))
1060 			return true;
1061 
1062 		fallthrough;
1063 
1064 	case SYS_ICC_AP0Rn_EL1(0):
1065 	case SYS_ICC_AP0Rn_EL1(1):
1066 	case SYS_ICC_AP0Rn_EL1(2):
1067 	case SYS_ICC_AP0Rn_EL1(3):
1068 	case SYS_ICC_BPR0_EL1:
1069 	case SYS_ICC_EOIR0_EL1:
1070 	case SYS_ICC_HPPIR0_EL1:
1071 	case SYS_ICC_IAR0_EL1:
1072 		return ich_hcr & ICH_HCR_TALL0;
1073 
1074 	case SYS_ICC_IGRPEN1_EL1:
1075 		if (is_read &&
1076 		    (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1))
1077 			return true;
1078 
1079 		if (!is_read &&
1080 		    (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1))
1081 			return true;
1082 
1083 		fallthrough;
1084 
1085 	case SYS_ICC_AP1Rn_EL1(0):
1086 	case SYS_ICC_AP1Rn_EL1(1):
1087 	case SYS_ICC_AP1Rn_EL1(2):
1088 	case SYS_ICC_AP1Rn_EL1(3):
1089 	case SYS_ICC_BPR1_EL1:
1090 	case SYS_ICC_EOIR1_EL1:
1091 	case SYS_ICC_HPPIR1_EL1:
1092 	case SYS_ICC_IAR1_EL1:
1093 		return ich_hcr & ICH_HCR_TALL1;
1094 
1095 	case SYS_ICC_DIR_EL1:
1096 		if (ich_hcr & ICH_HCR_TDIR)
1097 			return true;
1098 
1099 		fallthrough;
1100 
1101 	case SYS_ICC_RPR_EL1:
1102 	case SYS_ICC_CTLR_EL1:
1103 	case SYS_ICC_PMR_EL1:
1104 		return ich_hcr & ICH_HCR_TC;
1105 
1106 	default:
1107 		return false;
1108 	}
1109 }
1110 
1111 int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
1112 {
1113 	int rt;
1114 	u64 esr;
1115 	u32 vmcr;
1116 	void (*fn)(struct kvm_vcpu *, u32, int);
1117 	bool is_read;
1118 	u32 sysreg;
1119 
1120 	if (kern_hyp_va(vcpu->kvm)->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
1121 		return 0;
1122 
1123 	esr = kvm_vcpu_get_esr(vcpu);
1124 	if (vcpu_mode_is_32bit(vcpu)) {
1125 		if (!kvm_condition_valid(vcpu)) {
1126 			__kvm_skip_instr(vcpu);
1127 			return 1;
1128 		}
1129 
1130 		sysreg = esr_cp15_to_sysreg(esr);
1131 	} else {
1132 		sysreg = esr_sys64_to_sysreg(esr);
1133 	}
1134 
1135 	is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
1136 
1137 	if (__vgic_v3_check_trap_forwarding(vcpu, sysreg, is_read))
1138 		return 0;
1139 
1140 	switch (sysreg) {
1141 	case SYS_ICC_IAR0_EL1:
1142 	case SYS_ICC_IAR1_EL1:
1143 		if (unlikely(!is_read))
1144 			return 0;
1145 		fn = __vgic_v3_read_iar;
1146 		break;
1147 	case SYS_ICC_EOIR0_EL1:
1148 	case SYS_ICC_EOIR1_EL1:
1149 		if (unlikely(is_read))
1150 			return 0;
1151 		fn = __vgic_v3_write_eoir;
1152 		break;
1153 	case SYS_ICC_IGRPEN1_EL1:
1154 		if (is_read)
1155 			fn = __vgic_v3_read_igrpen1;
1156 		else
1157 			fn = __vgic_v3_write_igrpen1;
1158 		break;
1159 	case SYS_ICC_BPR1_EL1:
1160 		if (is_read)
1161 			fn = __vgic_v3_read_bpr1;
1162 		else
1163 			fn = __vgic_v3_write_bpr1;
1164 		break;
1165 	case SYS_ICC_AP0Rn_EL1(0):
1166 	case SYS_ICC_AP1Rn_EL1(0):
1167 		if (is_read)
1168 			fn = __vgic_v3_read_apxr0;
1169 		else
1170 			fn = __vgic_v3_write_apxr0;
1171 		break;
1172 	case SYS_ICC_AP0Rn_EL1(1):
1173 	case SYS_ICC_AP1Rn_EL1(1):
1174 		if (is_read)
1175 			fn = __vgic_v3_read_apxr1;
1176 		else
1177 			fn = __vgic_v3_write_apxr1;
1178 		break;
1179 	case SYS_ICC_AP0Rn_EL1(2):
1180 	case SYS_ICC_AP1Rn_EL1(2):
1181 		if (is_read)
1182 			fn = __vgic_v3_read_apxr2;
1183 		else
1184 			fn = __vgic_v3_write_apxr2;
1185 		break;
1186 	case SYS_ICC_AP0Rn_EL1(3):
1187 	case SYS_ICC_AP1Rn_EL1(3):
1188 		if (is_read)
1189 			fn = __vgic_v3_read_apxr3;
1190 		else
1191 			fn = __vgic_v3_write_apxr3;
1192 		break;
1193 	case SYS_ICC_HPPIR0_EL1:
1194 	case SYS_ICC_HPPIR1_EL1:
1195 		if (unlikely(!is_read))
1196 			return 0;
1197 		fn = __vgic_v3_read_hppir;
1198 		break;
1199 	case SYS_ICC_IGRPEN0_EL1:
1200 		if (is_read)
1201 			fn = __vgic_v3_read_igrpen0;
1202 		else
1203 			fn = __vgic_v3_write_igrpen0;
1204 		break;
1205 	case SYS_ICC_BPR0_EL1:
1206 		if (is_read)
1207 			fn = __vgic_v3_read_bpr0;
1208 		else
1209 			fn = __vgic_v3_write_bpr0;
1210 		break;
1211 	case SYS_ICC_DIR_EL1:
1212 		if (unlikely(is_read))
1213 			return 0;
1214 		fn = __vgic_v3_write_dir;
1215 		break;
1216 	case SYS_ICC_RPR_EL1:
1217 		if (unlikely(!is_read))
1218 			return 0;
1219 		fn = __vgic_v3_read_rpr;
1220 		break;
1221 	case SYS_ICC_CTLR_EL1:
1222 		if (is_read)
1223 			fn = __vgic_v3_read_ctlr;
1224 		else
1225 			fn = __vgic_v3_write_ctlr;
1226 		break;
1227 	case SYS_ICC_PMR_EL1:
1228 		if (is_read)
1229 			fn = __vgic_v3_read_pmr;
1230 		else
1231 			fn = __vgic_v3_write_pmr;
1232 		break;
1233 	default:
1234 		return 0;
1235 	}
1236 
1237 	vmcr = __vgic_v3_read_vmcr();
1238 	rt = kvm_vcpu_sys_get_rt(vcpu);
1239 	fn(vcpu, vmcr, rt);
1240 
1241 	__kvm_skip_instr(vcpu);
1242 
1243 	return 1;
1244 }
1245