xref: /linux/arch/arm64/kvm/hyp/vgic-v3-sr.c (revision 69e4b75a5b90ef74300c283c0aafe8d41daf13a8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012-2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/adjust_pc.h>
8 
9 #include <linux/compiler.h>
10 #include <linux/irqchip/arm-gic-v3.h>
11 #include <linux/kvm_host.h>
12 
13 #include <asm/kvm_emulate.h>
14 #include <asm/kvm_hyp.h>
15 #include <asm/kvm_mmu.h>
16 
17 #define vtr_to_max_lr_idx(v)		((v) & 0xf)
18 #define vtr_to_nr_pre_bits(v)		((((u32)(v) >> 26) & 7) + 1)
19 #define vtr_to_nr_apr_regs(v)		(1 << (vtr_to_nr_pre_bits(v) - 5))
20 
21 u64 __gic_v3_get_lr(unsigned int lr)
22 {
23 	switch (lr & 0xf) {
24 	case 0:
25 		return read_gicreg(ICH_LR0_EL2);
26 	case 1:
27 		return read_gicreg(ICH_LR1_EL2);
28 	case 2:
29 		return read_gicreg(ICH_LR2_EL2);
30 	case 3:
31 		return read_gicreg(ICH_LR3_EL2);
32 	case 4:
33 		return read_gicreg(ICH_LR4_EL2);
34 	case 5:
35 		return read_gicreg(ICH_LR5_EL2);
36 	case 6:
37 		return read_gicreg(ICH_LR6_EL2);
38 	case 7:
39 		return read_gicreg(ICH_LR7_EL2);
40 	case 8:
41 		return read_gicreg(ICH_LR8_EL2);
42 	case 9:
43 		return read_gicreg(ICH_LR9_EL2);
44 	case 10:
45 		return read_gicreg(ICH_LR10_EL2);
46 	case 11:
47 		return read_gicreg(ICH_LR11_EL2);
48 	case 12:
49 		return read_gicreg(ICH_LR12_EL2);
50 	case 13:
51 		return read_gicreg(ICH_LR13_EL2);
52 	case 14:
53 		return read_gicreg(ICH_LR14_EL2);
54 	case 15:
55 		return read_gicreg(ICH_LR15_EL2);
56 	}
57 
58 	unreachable();
59 }
60 
61 static void __gic_v3_set_lr(u64 val, int lr)
62 {
63 	switch (lr & 0xf) {
64 	case 0:
65 		write_gicreg(val, ICH_LR0_EL2);
66 		break;
67 	case 1:
68 		write_gicreg(val, ICH_LR1_EL2);
69 		break;
70 	case 2:
71 		write_gicreg(val, ICH_LR2_EL2);
72 		break;
73 	case 3:
74 		write_gicreg(val, ICH_LR3_EL2);
75 		break;
76 	case 4:
77 		write_gicreg(val, ICH_LR4_EL2);
78 		break;
79 	case 5:
80 		write_gicreg(val, ICH_LR5_EL2);
81 		break;
82 	case 6:
83 		write_gicreg(val, ICH_LR6_EL2);
84 		break;
85 	case 7:
86 		write_gicreg(val, ICH_LR7_EL2);
87 		break;
88 	case 8:
89 		write_gicreg(val, ICH_LR8_EL2);
90 		break;
91 	case 9:
92 		write_gicreg(val, ICH_LR9_EL2);
93 		break;
94 	case 10:
95 		write_gicreg(val, ICH_LR10_EL2);
96 		break;
97 	case 11:
98 		write_gicreg(val, ICH_LR11_EL2);
99 		break;
100 	case 12:
101 		write_gicreg(val, ICH_LR12_EL2);
102 		break;
103 	case 13:
104 		write_gicreg(val, ICH_LR13_EL2);
105 		break;
106 	case 14:
107 		write_gicreg(val, ICH_LR14_EL2);
108 		break;
109 	case 15:
110 		write_gicreg(val, ICH_LR15_EL2);
111 		break;
112 	}
113 }
114 
115 static void __vgic_v3_write_ap0rn(u32 val, int n)
116 {
117 	switch (n) {
118 	case 0:
119 		write_gicreg(val, ICH_AP0R0_EL2);
120 		break;
121 	case 1:
122 		write_gicreg(val, ICH_AP0R1_EL2);
123 		break;
124 	case 2:
125 		write_gicreg(val, ICH_AP0R2_EL2);
126 		break;
127 	case 3:
128 		write_gicreg(val, ICH_AP0R3_EL2);
129 		break;
130 	}
131 }
132 
133 static void __vgic_v3_write_ap1rn(u32 val, int n)
134 {
135 	switch (n) {
136 	case 0:
137 		write_gicreg(val, ICH_AP1R0_EL2);
138 		break;
139 	case 1:
140 		write_gicreg(val, ICH_AP1R1_EL2);
141 		break;
142 	case 2:
143 		write_gicreg(val, ICH_AP1R2_EL2);
144 		break;
145 	case 3:
146 		write_gicreg(val, ICH_AP1R3_EL2);
147 		break;
148 	}
149 }
150 
151 static u32 __vgic_v3_read_ap0rn(int n)
152 {
153 	u32 val;
154 
155 	switch (n) {
156 	case 0:
157 		val = read_gicreg(ICH_AP0R0_EL2);
158 		break;
159 	case 1:
160 		val = read_gicreg(ICH_AP0R1_EL2);
161 		break;
162 	case 2:
163 		val = read_gicreg(ICH_AP0R2_EL2);
164 		break;
165 	case 3:
166 		val = read_gicreg(ICH_AP0R3_EL2);
167 		break;
168 	default:
169 		unreachable();
170 	}
171 
172 	return val;
173 }
174 
175 static u32 __vgic_v3_read_ap1rn(int n)
176 {
177 	u32 val;
178 
179 	switch (n) {
180 	case 0:
181 		val = read_gicreg(ICH_AP1R0_EL2);
182 		break;
183 	case 1:
184 		val = read_gicreg(ICH_AP1R1_EL2);
185 		break;
186 	case 2:
187 		val = read_gicreg(ICH_AP1R2_EL2);
188 		break;
189 	case 3:
190 		val = read_gicreg(ICH_AP1R3_EL2);
191 		break;
192 	default:
193 		unreachable();
194 	}
195 
196 	return val;
197 }
198 
199 void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
200 {
201 	u64 used_lrs = cpu_if->used_lrs;
202 
203 	/*
204 	 * Make sure stores to the GIC via the memory mapped interface
205 	 * are now visible to the system register interface when reading the
206 	 * LRs, and when reading back the VMCR on non-VHE systems.
207 	 */
208 	if (used_lrs || !has_vhe()) {
209 		if (!cpu_if->vgic_sre) {
210 			dsb(sy);
211 			isb();
212 		}
213 	}
214 
215 	if (used_lrs || cpu_if->its_vpe.its_vm) {
216 		int i;
217 		u32 elrsr;
218 
219 		elrsr = read_gicreg(ICH_ELRSR_EL2);
220 
221 		write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EL2_En, ICH_HCR_EL2);
222 
223 		for (i = 0; i < used_lrs; i++) {
224 			if (elrsr & (1 << i))
225 				cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
226 			else
227 				cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
228 
229 			__gic_v3_set_lr(0, i);
230 		}
231 	}
232 }
233 
234 void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
235 {
236 	u64 used_lrs = cpu_if->used_lrs;
237 	int i;
238 
239 	if (used_lrs || cpu_if->its_vpe.its_vm) {
240 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
241 
242 		for (i = 0; i < used_lrs; i++)
243 			__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
244 	}
245 
246 	/*
247 	 * Ensure that writes to the LRs, and on non-VHE systems ensure that
248 	 * the write to the VMCR in __vgic_v3_activate_traps(), will have
249 	 * reached the (re)distributors. This ensure the guest will read the
250 	 * correct values from the memory-mapped interface.
251 	 */
252 	if (used_lrs || !has_vhe()) {
253 		if (!cpu_if->vgic_sre) {
254 			isb();
255 			dsb(sy);
256 		}
257 	}
258 }
259 
260 void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
261 {
262 	/*
263 	 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
264 	 * Group0 interrupt (as generated in GICv2 mode) to be
265 	 * delivered as a FIQ to the guest, with potentially fatal
266 	 * consequences. So we must make sure that ICC_SRE_EL1 has
267 	 * been actually programmed with the value we want before
268 	 * starting to mess with the rest of the GIC, and VMCR_EL2 in
269 	 * particular.  This logic must be called before
270 	 * __vgic_v3_restore_state().
271 	 *
272 	 * However, if the vgic is disabled (ICH_HCR_EL2.EN==0), no GIC is
273 	 * provisioned at all. In order to prevent illegal accesses to the
274 	 * system registers to trap to EL1 (duh), force ICC_SRE_EL1.SRE to 1
275 	 * so that the trap bits can take effect. Yes, we *loves* the GIC.
276 	 */
277 	if (!(cpu_if->vgic_hcr & ICH_HCR_EL2_En)) {
278 		write_gicreg(ICC_SRE_EL1_SRE, ICC_SRE_EL1);
279 		isb();
280 	} else if (!cpu_if->vgic_sre) {
281 		write_gicreg(0, ICC_SRE_EL1);
282 		isb();
283 		write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
284 
285 
286 		if (has_vhe()) {
287 			/*
288 			 * Ensure that the write to the VMCR will have reached
289 			 * the (re)distributors. This ensure the guest will
290 			 * read the correct values from the memory-mapped
291 			 * interface.
292 			 */
293 			isb();
294 			dsb(sy);
295 		}
296 	}
297 
298 	/* Only disable SRE if the host implements the GICv2 interface */
299 	if (static_branch_unlikely(&vgic_v3_has_v2_compat)) {
300 		/*
301 		 * Prevent the guest from touching the ICC_SRE_EL1 system
302 		 * register. Note that this may not have any effect, as
303 		 * ICC_SRE_EL2.Enable being RAO/WI is a valid implementation.
304 		 */
305 		write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
306 			     ICC_SRE_EL2);
307 	}
308 
309 	/*
310 	 * If we need to trap system registers, we must write
311 	 * ICH_HCR_EL2 anyway, even if no interrupts are being
312 	 * injected. Note that this also applies if we don't expect
313 	 * any system register access (no vgic at all).
314 	 */
315 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
316 	    cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
317 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
318 }
319 
320 void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
321 {
322 	u64 val;
323 
324 	if (!cpu_if->vgic_sre) {
325 		cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
326 	}
327 
328 	/* Only restore SRE if the host implements the GICv2 interface */
329 	if (static_branch_unlikely(&vgic_v3_has_v2_compat)) {
330 		val = read_gicreg(ICC_SRE_EL2);
331 		write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
332 
333 		if (!cpu_if->vgic_sre) {
334 			/* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
335 			isb();
336 			write_gicreg(1, ICC_SRE_EL1);
337 		}
338 	}
339 
340 	/*
341 	 * If we were trapping system registers, we enabled the VGIC even if
342 	 * no interrupts were being injected, and we disable it again here.
343 	 */
344 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
345 	    cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
346 		write_gicreg(0, ICH_HCR_EL2);
347 }
348 
349 static void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
350 {
351 	u64 val;
352 	u32 nr_pre_bits;
353 
354 	val = read_gicreg(ICH_VTR_EL2);
355 	nr_pre_bits = vtr_to_nr_pre_bits(val);
356 
357 	switch (nr_pre_bits) {
358 	case 7:
359 		cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
360 		cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
361 		fallthrough;
362 	case 6:
363 		cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
364 		fallthrough;
365 	default:
366 		cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
367 	}
368 
369 	switch (nr_pre_bits) {
370 	case 7:
371 		cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
372 		cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
373 		fallthrough;
374 	case 6:
375 		cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
376 		fallthrough;
377 	default:
378 		cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
379 	}
380 }
381 
382 static void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
383 {
384 	u64 val;
385 	u32 nr_pre_bits;
386 
387 	val = read_gicreg(ICH_VTR_EL2);
388 	nr_pre_bits = vtr_to_nr_pre_bits(val);
389 
390 	switch (nr_pre_bits) {
391 	case 7:
392 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
393 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
394 		fallthrough;
395 	case 6:
396 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
397 		fallthrough;
398 	default:
399 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
400 	}
401 
402 	switch (nr_pre_bits) {
403 	case 7:
404 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
405 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
406 		fallthrough;
407 	case 6:
408 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
409 		fallthrough;
410 	default:
411 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
412 	}
413 }
414 
415 void __vgic_v3_init_lrs(void)
416 {
417 	int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
418 	int i;
419 
420 	for (i = 0; i <= max_lr_idx; i++)
421 		__gic_v3_set_lr(0, i);
422 }
423 
424 /*
425  * Return the GIC CPU configuration:
426  * - [31:0]  ICH_VTR_EL2
427  * - [62:32] RES0
428  * - [63]    MMIO (GICv2) capable
429  */
430 u64 __vgic_v3_get_gic_config(void)
431 {
432 	u64 val, sre;
433 	unsigned long flags = 0;
434 
435 	/*
436 	 * In compat mode, we cannot access ICC_SRE_EL1 at any EL
437 	 * other than EL1 itself; just return the
438 	 * ICH_VTR_EL2. ICC_IDR0_EL1 is only implemented on a GICv5
439 	 * system, so we first check if we have GICv5 support.
440 	 */
441 	if (cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF))
442 		return read_gicreg(ICH_VTR_EL2);
443 
444 	sre = read_gicreg(ICC_SRE_EL1);
445 	/*
446 	 * To check whether we have a MMIO-based (GICv2 compatible)
447 	 * CPU interface, we need to disable the system register
448 	 * view.
449 	 *
450 	 * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates
451 	 * that to be able to set ICC_SRE_EL1.SRE to 0, all the
452 	 * interrupt overrides must be set. You've got to love this.
453 	 *
454 	 * As we always run VHE with HCR_xMO set, no extra xMO
455 	 * manipulation is required in that case.
456 	 *
457 	 * To safely disable SRE, we have to prevent any interrupt
458 	 * from firing (which would be deadly). This only makes sense
459 	 * on VHE, as interrupts are already masked for nVHE as part
460 	 * of the exception entry to EL2.
461 	 */
462 	if (has_vhe()) {
463 		flags = local_daif_save();
464 	} else {
465 		sysreg_clear_set_hcr(0, HCR_AMO | HCR_FMO | HCR_IMO);
466 		isb();
467 	}
468 
469 	write_gicreg(0, ICC_SRE_EL1);
470 	isb();
471 
472 	val = read_gicreg(ICC_SRE_EL1);
473 
474 	write_gicreg(sre, ICC_SRE_EL1);
475 	isb();
476 
477 	if (has_vhe()) {
478 		local_daif_restore(flags);
479 	} else {
480 		sysreg_clear_set_hcr(HCR_AMO | HCR_FMO | HCR_IMO, 0);
481 		isb();
482 	}
483 
484 	val  = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
485 	val |= read_gicreg(ICH_VTR_EL2);
486 
487 	return val;
488 }
489 
490 static void __vgic_v3_compat_mode_enable(void)
491 {
492 	if (!cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF))
493 		return;
494 
495 	sysreg_clear_set_s(SYS_ICH_VCTLR_EL2, 0, ICH_VCTLR_EL2_V3);
496 	/* Wait for V3 to become enabled */
497 	isb();
498 }
499 
500 static u64 __vgic_v3_read_vmcr(void)
501 {
502 	return read_gicreg(ICH_VMCR_EL2);
503 }
504 
505 static void __vgic_v3_write_vmcr(u32 vmcr)
506 {
507 	write_gicreg(vmcr, ICH_VMCR_EL2);
508 }
509 
510 void __vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
511 {
512 	__vgic_v3_save_aprs(cpu_if);
513 	if (cpu_if->vgic_sre)
514 		cpu_if->vgic_vmcr = __vgic_v3_read_vmcr();
515 }
516 
517 void __vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
518 {
519 	__vgic_v3_compat_mode_enable();
520 
521 	/*
522 	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
523 	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
524 	 * VMCR_EL2 save/restore in the world switch.
525 	 */
526 	if (cpu_if->vgic_sre)
527 		__vgic_v3_write_vmcr(cpu_if->vgic_vmcr);
528 	__vgic_v3_restore_aprs(cpu_if);
529 }
530 
531 static int __vgic_v3_bpr_min(void)
532 {
533 	/* See Pseudocode for VPriorityGroup */
534 	return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
535 }
536 
537 static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
538 {
539 	u64 esr = kvm_vcpu_get_esr(vcpu);
540 	u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
541 
542 	return crm != 8;
543 }
544 
545 #define GICv3_IDLE_PRIORITY	0xff
546 
547 static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
548 					 u64 *lr_val)
549 {
550 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
551 	u8 priority = GICv3_IDLE_PRIORITY;
552 	int i, lr = -1;
553 
554 	for (i = 0; i < used_lrs; i++) {
555 		u64 val = __gic_v3_get_lr(i);
556 		u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
557 
558 		/* Not pending in the state? */
559 		if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
560 			continue;
561 
562 		/* Group-0 interrupt, but Group-0 disabled? */
563 		if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
564 			continue;
565 
566 		/* Group-1 interrupt, but Group-1 disabled? */
567 		if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
568 			continue;
569 
570 		/* Not the highest priority? */
571 		if (lr_prio >= priority)
572 			continue;
573 
574 		/* This is a candidate */
575 		priority = lr_prio;
576 		*lr_val = val;
577 		lr = i;
578 	}
579 
580 	if (lr == -1)
581 		*lr_val = ICC_IAR1_EL1_SPURIOUS;
582 
583 	return lr;
584 }
585 
586 static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
587 				    u64 *lr_val)
588 {
589 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
590 	int i;
591 
592 	for (i = 0; i < used_lrs; i++) {
593 		u64 val = __gic_v3_get_lr(i);
594 
595 		if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
596 		    (val & ICH_LR_ACTIVE_BIT)) {
597 			*lr_val = val;
598 			return i;
599 		}
600 	}
601 
602 	*lr_val = ICC_IAR1_EL1_SPURIOUS;
603 	return -1;
604 }
605 
606 static int __vgic_v3_get_highest_active_priority(void)
607 {
608 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
609 	u32 hap = 0;
610 	int i;
611 
612 	for (i = 0; i < nr_apr_regs; i++) {
613 		u32 val;
614 
615 		/*
616 		 * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
617 		 * contain the active priority levels for this VCPU
618 		 * for the maximum number of supported priority
619 		 * levels, and we return the full priority level only
620 		 * if the BPR is programmed to its minimum, otherwise
621 		 * we return a combination of the priority level and
622 		 * subpriority, as determined by the setting of the
623 		 * BPR, but without the full subpriority.
624 		 */
625 		val  = __vgic_v3_read_ap0rn(i);
626 		val |= __vgic_v3_read_ap1rn(i);
627 		if (!val) {
628 			hap += 32;
629 			continue;
630 		}
631 
632 		return (hap + __ffs(val)) << __vgic_v3_bpr_min();
633 	}
634 
635 	return GICv3_IDLE_PRIORITY;
636 }
637 
638 static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
639 {
640 	return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
641 }
642 
643 static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
644 {
645 	unsigned int bpr;
646 
647 	if (vmcr & ICH_VMCR_CBPR_MASK) {
648 		bpr = __vgic_v3_get_bpr0(vmcr);
649 		if (bpr < 7)
650 			bpr++;
651 	} else {
652 		bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
653 	}
654 
655 	return bpr;
656 }
657 
658 /*
659  * Convert a priority to a preemption level, taking the relevant BPR
660  * into account by zeroing the sub-priority bits.
661  */
662 static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
663 {
664 	unsigned int bpr;
665 
666 	if (!grp)
667 		bpr = __vgic_v3_get_bpr0(vmcr) + 1;
668 	else
669 		bpr = __vgic_v3_get_bpr1(vmcr);
670 
671 	return pri & (GENMASK(7, 0) << bpr);
672 }
673 
674 /*
675  * The priority value is independent of any of the BPR values, so we
676  * normalize it using the minimal BPR value. This guarantees that no
677  * matter what the guest does with its BPR, we can always set/get the
678  * same value of a priority.
679  */
680 static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
681 {
682 	u8 pre, ap;
683 	u32 val;
684 	int apr;
685 
686 	pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
687 	ap = pre >> __vgic_v3_bpr_min();
688 	apr = ap / 32;
689 
690 	if (!grp) {
691 		val = __vgic_v3_read_ap0rn(apr);
692 		__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
693 	} else {
694 		val = __vgic_v3_read_ap1rn(apr);
695 		__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
696 	}
697 }
698 
699 static int __vgic_v3_clear_highest_active_priority(void)
700 {
701 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
702 	u32 hap = 0;
703 	int i;
704 
705 	for (i = 0; i < nr_apr_regs; i++) {
706 		u32 ap0, ap1;
707 		int c0, c1;
708 
709 		ap0 = __vgic_v3_read_ap0rn(i);
710 		ap1 = __vgic_v3_read_ap1rn(i);
711 		if (!ap0 && !ap1) {
712 			hap += 32;
713 			continue;
714 		}
715 
716 		c0 = ap0 ? __ffs(ap0) : 32;
717 		c1 = ap1 ? __ffs(ap1) : 32;
718 
719 		/* Always clear the LSB, which is the highest priority */
720 		if (c0 < c1) {
721 			ap0 &= ~BIT(c0);
722 			__vgic_v3_write_ap0rn(ap0, i);
723 			hap += c0;
724 		} else {
725 			ap1 &= ~BIT(c1);
726 			__vgic_v3_write_ap1rn(ap1, i);
727 			hap += c1;
728 		}
729 
730 		/* Rescale to 8 bits of priority */
731 		return hap << __vgic_v3_bpr_min();
732 	}
733 
734 	return GICv3_IDLE_PRIORITY;
735 }
736 
737 static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
738 {
739 	u64 lr_val;
740 	u8 lr_prio, pmr;
741 	int lr, grp;
742 
743 	grp = __vgic_v3_get_group(vcpu);
744 
745 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
746 	if (lr < 0)
747 		goto spurious;
748 
749 	if (grp != !!(lr_val & ICH_LR_GROUP))
750 		goto spurious;
751 
752 	pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
753 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
754 	if (pmr <= lr_prio)
755 		goto spurious;
756 
757 	if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
758 		goto spurious;
759 
760 	lr_val &= ~ICH_LR_STATE;
761 	lr_val |= ICH_LR_ACTIVE_BIT;
762 	__gic_v3_set_lr(lr_val, lr);
763 	__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
764 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
765 	return;
766 
767 spurious:
768 	vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
769 }
770 
771 static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
772 {
773 	lr_val &= ~ICH_LR_ACTIVE_BIT;
774 	if (lr_val & ICH_LR_HW) {
775 		u32 pid;
776 
777 		pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
778 		gic_write_dir(pid);
779 	}
780 
781 	__gic_v3_set_lr(lr_val, lr);
782 }
783 
784 static void __vgic_v3_bump_eoicount(void)
785 {
786 	u32 hcr;
787 
788 	hcr = read_gicreg(ICH_HCR_EL2);
789 	hcr += 1 << ICH_HCR_EL2_EOIcount_SHIFT;
790 	write_gicreg(hcr, ICH_HCR_EL2);
791 }
792 
793 static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
794 {
795 	u32 vid = vcpu_get_reg(vcpu, rt);
796 	u64 lr_val;
797 	int lr;
798 
799 	/* EOImode == 0, nothing to be done here */
800 	if (!(vmcr & ICH_VMCR_EOIM_MASK))
801 		return;
802 
803 	/* No deactivate to be performed on an LPI */
804 	if (vid >= VGIC_MIN_LPI)
805 		return;
806 
807 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
808 	if (lr == -1) {
809 		__vgic_v3_bump_eoicount();
810 		return;
811 	}
812 
813 	__vgic_v3_clear_active_lr(lr, lr_val);
814 }
815 
816 static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
817 {
818 	u32 vid = vcpu_get_reg(vcpu, rt);
819 	u64 lr_val;
820 	u8 lr_prio, act_prio;
821 	int lr, grp;
822 
823 	grp = __vgic_v3_get_group(vcpu);
824 
825 	/* Drop priority in any case */
826 	act_prio = __vgic_v3_clear_highest_active_priority();
827 
828 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
829 	if (lr == -1) {
830 		/* Do not bump EOIcount for LPIs that aren't in the LRs */
831 		if (!(vid >= VGIC_MIN_LPI))
832 			__vgic_v3_bump_eoicount();
833 		return;
834 	}
835 
836 	/* EOImode == 1 and not an LPI, nothing to be done here */
837 	if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI))
838 		return;
839 
840 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
841 
842 	/* If priorities or group do not match, the guest has fscked-up. */
843 	if (grp != !!(lr_val & ICH_LR_GROUP) ||
844 	    __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
845 		return;
846 
847 	/* Let's now perform the deactivation */
848 	__vgic_v3_clear_active_lr(lr, lr_val);
849 }
850 
851 static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
852 {
853 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
854 }
855 
856 static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
857 {
858 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
859 }
860 
861 static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
862 {
863 	u64 val = vcpu_get_reg(vcpu, rt);
864 
865 	if (val & 1)
866 		vmcr |= ICH_VMCR_ENG0_MASK;
867 	else
868 		vmcr &= ~ICH_VMCR_ENG0_MASK;
869 
870 	__vgic_v3_write_vmcr(vmcr);
871 }
872 
873 static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
874 {
875 	u64 val = vcpu_get_reg(vcpu, rt);
876 
877 	if (val & 1)
878 		vmcr |= ICH_VMCR_ENG1_MASK;
879 	else
880 		vmcr &= ~ICH_VMCR_ENG1_MASK;
881 
882 	__vgic_v3_write_vmcr(vmcr);
883 }
884 
885 static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
886 {
887 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
888 }
889 
890 static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
891 {
892 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
893 }
894 
895 static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
896 {
897 	u64 val = vcpu_get_reg(vcpu, rt);
898 	u8 bpr_min = __vgic_v3_bpr_min() - 1;
899 
900 	/* Enforce BPR limiting */
901 	if (val < bpr_min)
902 		val = bpr_min;
903 
904 	val <<= ICH_VMCR_BPR0_SHIFT;
905 	val &= ICH_VMCR_BPR0_MASK;
906 	vmcr &= ~ICH_VMCR_BPR0_MASK;
907 	vmcr |= val;
908 
909 	__vgic_v3_write_vmcr(vmcr);
910 }
911 
912 static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
913 {
914 	u64 val = vcpu_get_reg(vcpu, rt);
915 	u8 bpr_min = __vgic_v3_bpr_min();
916 
917 	if (vmcr & ICH_VMCR_CBPR_MASK)
918 		return;
919 
920 	/* Enforce BPR limiting */
921 	if (val < bpr_min)
922 		val = bpr_min;
923 
924 	val <<= ICH_VMCR_BPR1_SHIFT;
925 	val &= ICH_VMCR_BPR1_MASK;
926 	vmcr &= ~ICH_VMCR_BPR1_MASK;
927 	vmcr |= val;
928 
929 	__vgic_v3_write_vmcr(vmcr);
930 }
931 
932 static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
933 {
934 	u32 val;
935 
936 	if (!__vgic_v3_get_group(vcpu))
937 		val = __vgic_v3_read_ap0rn(n);
938 	else
939 		val = __vgic_v3_read_ap1rn(n);
940 
941 	vcpu_set_reg(vcpu, rt, val);
942 }
943 
944 static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
945 {
946 	u32 val = vcpu_get_reg(vcpu, rt);
947 
948 	if (!__vgic_v3_get_group(vcpu))
949 		__vgic_v3_write_ap0rn(val, n);
950 	else
951 		__vgic_v3_write_ap1rn(val, n);
952 }
953 
954 static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
955 					    u32 vmcr, int rt)
956 {
957 	__vgic_v3_read_apxrn(vcpu, rt, 0);
958 }
959 
960 static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
961 					    u32 vmcr, int rt)
962 {
963 	__vgic_v3_read_apxrn(vcpu, rt, 1);
964 }
965 
966 static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
967 {
968 	__vgic_v3_read_apxrn(vcpu, rt, 2);
969 }
970 
971 static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
972 {
973 	__vgic_v3_read_apxrn(vcpu, rt, 3);
974 }
975 
976 static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
977 {
978 	__vgic_v3_write_apxrn(vcpu, rt, 0);
979 }
980 
981 static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
982 {
983 	__vgic_v3_write_apxrn(vcpu, rt, 1);
984 }
985 
986 static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
987 {
988 	__vgic_v3_write_apxrn(vcpu, rt, 2);
989 }
990 
991 static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
992 {
993 	__vgic_v3_write_apxrn(vcpu, rt, 3);
994 }
995 
996 static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
997 {
998 	u64 lr_val;
999 	int lr, lr_grp, grp;
1000 
1001 	grp = __vgic_v3_get_group(vcpu);
1002 
1003 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
1004 	if (lr == -1)
1005 		goto spurious;
1006 
1007 	lr_grp = !!(lr_val & ICH_LR_GROUP);
1008 	if (lr_grp != grp)
1009 		lr_val = ICC_IAR1_EL1_SPURIOUS;
1010 
1011 spurious:
1012 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
1013 }
1014 
1015 static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1016 {
1017 	vmcr &= ICH_VMCR_PMR_MASK;
1018 	vmcr >>= ICH_VMCR_PMR_SHIFT;
1019 	vcpu_set_reg(vcpu, rt, vmcr);
1020 }
1021 
1022 static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1023 {
1024 	u32 val = vcpu_get_reg(vcpu, rt);
1025 
1026 	val <<= ICH_VMCR_PMR_SHIFT;
1027 	val &= ICH_VMCR_PMR_MASK;
1028 	vmcr &= ~ICH_VMCR_PMR_MASK;
1029 	vmcr |= val;
1030 
1031 	write_gicreg(vmcr, ICH_VMCR_EL2);
1032 }
1033 
1034 static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1035 {
1036 	u32 val = __vgic_v3_get_highest_active_priority();
1037 	vcpu_set_reg(vcpu, rt, val);
1038 }
1039 
1040 static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1041 {
1042 	u32 vtr, val;
1043 
1044 	vtr = read_gicreg(ICH_VTR_EL2);
1045 	/* PRIbits */
1046 	val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
1047 	/* IDbits */
1048 	val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
1049 	/* A3V */
1050 	val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
1051 	/* EOImode */
1052 	val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
1053 	/* CBPR */
1054 	val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
1055 
1056 	vcpu_set_reg(vcpu, rt, val);
1057 }
1058 
1059 static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1060 {
1061 	u32 val = vcpu_get_reg(vcpu, rt);
1062 
1063 	if (val & ICC_CTLR_EL1_CBPR_MASK)
1064 		vmcr |= ICH_VMCR_CBPR_MASK;
1065 	else
1066 		vmcr &= ~ICH_VMCR_CBPR_MASK;
1067 
1068 	if (val & ICC_CTLR_EL1_EOImode_MASK)
1069 		vmcr |= ICH_VMCR_EOIM_MASK;
1070 	else
1071 		vmcr &= ~ICH_VMCR_EOIM_MASK;
1072 
1073 	write_gicreg(vmcr, ICH_VMCR_EL2);
1074 }
1075 
1076 static bool __vgic_v3_check_trap_forwarding(struct kvm_vcpu *vcpu,
1077 					    u32 sysreg, bool is_read)
1078 {
1079 	u64 ich_hcr;
1080 
1081 	if (!is_nested_ctxt(vcpu))
1082 		return false;
1083 
1084 	ich_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
1085 
1086 	switch (sysreg) {
1087 	case SYS_ICC_IGRPEN0_EL1:
1088 		if (is_read &&
1089 		    (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
1090 			return true;
1091 
1092 		if (!is_read &&
1093 		    (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
1094 			return true;
1095 
1096 		fallthrough;
1097 
1098 	case SYS_ICC_AP0Rn_EL1(0):
1099 	case SYS_ICC_AP0Rn_EL1(1):
1100 	case SYS_ICC_AP0Rn_EL1(2):
1101 	case SYS_ICC_AP0Rn_EL1(3):
1102 	case SYS_ICC_BPR0_EL1:
1103 	case SYS_ICC_EOIR0_EL1:
1104 	case SYS_ICC_HPPIR0_EL1:
1105 	case SYS_ICC_IAR0_EL1:
1106 		return ich_hcr & ICH_HCR_EL2_TALL0;
1107 
1108 	case SYS_ICC_IGRPEN1_EL1:
1109 		if (is_read &&
1110 		    (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
1111 			return true;
1112 
1113 		if (!is_read &&
1114 		    (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
1115 			return true;
1116 
1117 		fallthrough;
1118 
1119 	case SYS_ICC_AP1Rn_EL1(0):
1120 	case SYS_ICC_AP1Rn_EL1(1):
1121 	case SYS_ICC_AP1Rn_EL1(2):
1122 	case SYS_ICC_AP1Rn_EL1(3):
1123 	case SYS_ICC_BPR1_EL1:
1124 	case SYS_ICC_EOIR1_EL1:
1125 	case SYS_ICC_HPPIR1_EL1:
1126 	case SYS_ICC_IAR1_EL1:
1127 		return ich_hcr & ICH_HCR_EL2_TALL1;
1128 
1129 	case SYS_ICC_DIR_EL1:
1130 		if (ich_hcr & ICH_HCR_EL2_TDIR)
1131 			return true;
1132 
1133 		fallthrough;
1134 
1135 	case SYS_ICC_RPR_EL1:
1136 	case SYS_ICC_CTLR_EL1:
1137 	case SYS_ICC_PMR_EL1:
1138 		return ich_hcr & ICH_HCR_EL2_TC;
1139 
1140 	default:
1141 		return false;
1142 	}
1143 }
1144 
1145 int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
1146 {
1147 	int rt;
1148 	u64 esr;
1149 	u32 vmcr;
1150 	void (*fn)(struct kvm_vcpu *, u32, int);
1151 	bool is_read;
1152 	u32 sysreg;
1153 
1154 	if (kern_hyp_va(vcpu->kvm)->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
1155 		return 0;
1156 
1157 	esr = kvm_vcpu_get_esr(vcpu);
1158 	if (vcpu_mode_is_32bit(vcpu)) {
1159 		if (!kvm_condition_valid(vcpu)) {
1160 			__kvm_skip_instr(vcpu);
1161 			return 1;
1162 		}
1163 
1164 		sysreg = esr_cp15_to_sysreg(esr);
1165 	} else {
1166 		sysreg = esr_sys64_to_sysreg(esr);
1167 	}
1168 
1169 	is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
1170 
1171 	if (__vgic_v3_check_trap_forwarding(vcpu, sysreg, is_read))
1172 		return 0;
1173 
1174 	switch (sysreg) {
1175 	case SYS_ICC_IAR0_EL1:
1176 	case SYS_ICC_IAR1_EL1:
1177 		if (unlikely(!is_read))
1178 			return 0;
1179 		fn = __vgic_v3_read_iar;
1180 		break;
1181 	case SYS_ICC_EOIR0_EL1:
1182 	case SYS_ICC_EOIR1_EL1:
1183 		if (unlikely(is_read))
1184 			return 0;
1185 		fn = __vgic_v3_write_eoir;
1186 		break;
1187 	case SYS_ICC_IGRPEN1_EL1:
1188 		if (is_read)
1189 			fn = __vgic_v3_read_igrpen1;
1190 		else
1191 			fn = __vgic_v3_write_igrpen1;
1192 		break;
1193 	case SYS_ICC_BPR1_EL1:
1194 		if (is_read)
1195 			fn = __vgic_v3_read_bpr1;
1196 		else
1197 			fn = __vgic_v3_write_bpr1;
1198 		break;
1199 	case SYS_ICC_AP0Rn_EL1(0):
1200 	case SYS_ICC_AP1Rn_EL1(0):
1201 		if (is_read)
1202 			fn = __vgic_v3_read_apxr0;
1203 		else
1204 			fn = __vgic_v3_write_apxr0;
1205 		break;
1206 	case SYS_ICC_AP0Rn_EL1(1):
1207 	case SYS_ICC_AP1Rn_EL1(1):
1208 		if (is_read)
1209 			fn = __vgic_v3_read_apxr1;
1210 		else
1211 			fn = __vgic_v3_write_apxr1;
1212 		break;
1213 	case SYS_ICC_AP0Rn_EL1(2):
1214 	case SYS_ICC_AP1Rn_EL1(2):
1215 		if (is_read)
1216 			fn = __vgic_v3_read_apxr2;
1217 		else
1218 			fn = __vgic_v3_write_apxr2;
1219 		break;
1220 	case SYS_ICC_AP0Rn_EL1(3):
1221 	case SYS_ICC_AP1Rn_EL1(3):
1222 		if (is_read)
1223 			fn = __vgic_v3_read_apxr3;
1224 		else
1225 			fn = __vgic_v3_write_apxr3;
1226 		break;
1227 	case SYS_ICC_HPPIR0_EL1:
1228 	case SYS_ICC_HPPIR1_EL1:
1229 		if (unlikely(!is_read))
1230 			return 0;
1231 		fn = __vgic_v3_read_hppir;
1232 		break;
1233 	case SYS_ICC_IGRPEN0_EL1:
1234 		if (is_read)
1235 			fn = __vgic_v3_read_igrpen0;
1236 		else
1237 			fn = __vgic_v3_write_igrpen0;
1238 		break;
1239 	case SYS_ICC_BPR0_EL1:
1240 		if (is_read)
1241 			fn = __vgic_v3_read_bpr0;
1242 		else
1243 			fn = __vgic_v3_write_bpr0;
1244 		break;
1245 	case SYS_ICC_DIR_EL1:
1246 		if (unlikely(is_read))
1247 			return 0;
1248 		fn = __vgic_v3_write_dir;
1249 		break;
1250 	case SYS_ICC_RPR_EL1:
1251 		if (unlikely(!is_read))
1252 			return 0;
1253 		fn = __vgic_v3_read_rpr;
1254 		break;
1255 	case SYS_ICC_CTLR_EL1:
1256 		if (is_read)
1257 			fn = __vgic_v3_read_ctlr;
1258 		else
1259 			fn = __vgic_v3_write_ctlr;
1260 		break;
1261 	case SYS_ICC_PMR_EL1:
1262 		if (is_read)
1263 			fn = __vgic_v3_read_pmr;
1264 		else
1265 			fn = __vgic_v3_write_pmr;
1266 		break;
1267 	default:
1268 		return 0;
1269 	}
1270 
1271 	vmcr = __vgic_v3_read_vmcr();
1272 	rt = kvm_vcpu_sys_get_rt(vcpu);
1273 	fn(vcpu, vmcr, rt);
1274 
1275 	__kvm_skip_instr(vcpu);
1276 
1277 	return 1;
1278 }
1279