1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2. 4 * No bombay mix was harmed in the writing of this file. 5 * 6 * Copyright (C) 2020 Google LLC 7 * Author: Will Deacon <will@kernel.org> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <asm/kvm_pgtable.h> 12 #include <asm/stage2_pgtable.h> 13 14 struct kvm_pgtable_walk_data { 15 struct kvm_pgtable_walker *walker; 16 17 const u64 start; 18 u64 addr; 19 const u64 end; 20 }; 21 22 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx) 23 { 24 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI); 25 } 26 27 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx) 28 { 29 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO); 30 } 31 32 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys) 33 { 34 u64 granule = kvm_granule_size(ctx->level); 35 36 if (!kvm_level_supports_block_mapping(ctx->level)) 37 return false; 38 39 if (granule > (ctx->end - ctx->addr)) 40 return false; 41 42 if (!IS_ALIGNED(phys, granule)) 43 return false; 44 45 return IS_ALIGNED(ctx->addr, granule); 46 } 47 48 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level) 49 { 50 u64 shift = kvm_granule_shift(level); 51 u64 mask = BIT(PAGE_SHIFT - 3) - 1; 52 53 return (data->addr >> shift) & mask; 54 } 55 56 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr) 57 { 58 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */ 59 u64 mask = BIT(pgt->ia_bits) - 1; 60 61 return (addr & mask) >> shift; 62 } 63 64 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level) 65 { 66 struct kvm_pgtable pgt = { 67 .ia_bits = ia_bits, 68 .start_level = start_level, 69 }; 70 71 return kvm_pgd_page_idx(&pgt, -1ULL) + 1; 72 } 73 74 static bool kvm_pte_table(kvm_pte_t pte, s8 level) 75 { 76 if (level == KVM_PGTABLE_LAST_LEVEL) 77 return false; 78 79 if (!kvm_pte_valid(pte)) 80 return false; 81 82 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE; 83 } 84 85 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops) 86 { 87 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte)); 88 } 89 90 static void kvm_clear_pte(kvm_pte_t *ptep) 91 { 92 WRITE_ONCE(*ptep, 0); 93 } 94 95 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops) 96 { 97 kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp)); 98 99 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE); 100 pte |= KVM_PTE_VALID; 101 return pte; 102 } 103 104 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level) 105 { 106 kvm_pte_t pte = kvm_phys_to_pte(pa); 107 u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE : 108 KVM_PTE_TYPE_BLOCK; 109 110 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI); 111 pte |= FIELD_PREP(KVM_PTE_TYPE, type); 112 pte |= KVM_PTE_VALID; 113 114 return pte; 115 } 116 117 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id) 118 { 119 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id); 120 } 121 122 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, 123 const struct kvm_pgtable_visit_ctx *ctx, 124 enum kvm_pgtable_walk_flags visit) 125 { 126 struct kvm_pgtable_walker *walker = data->walker; 127 128 /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */ 129 WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held()); 130 return walker->cb(ctx, visit); 131 } 132 133 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker, 134 int r) 135 { 136 /* 137 * Visitor callbacks return EAGAIN when the conditions that led to a 138 * fault are no longer reflected in the page tables due to a race to 139 * update a PTE. In the context of a fault handler this is interpreted 140 * as a signal to retry guest execution. 141 * 142 * Ignore the return code altogether for walkers outside a fault handler 143 * (e.g. write protecting a range of memory) and chug along with the 144 * page table walk. 145 */ 146 if (r == -EAGAIN) 147 return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT); 148 149 return !r; 150 } 151 152 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, 153 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level); 154 155 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, 156 struct kvm_pgtable_mm_ops *mm_ops, 157 kvm_pteref_t pteref, s8 level) 158 { 159 enum kvm_pgtable_walk_flags flags = data->walker->flags; 160 kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref); 161 struct kvm_pgtable_visit_ctx ctx = { 162 .ptep = ptep, 163 .old = READ_ONCE(*ptep), 164 .arg = data->walker->arg, 165 .mm_ops = mm_ops, 166 .start = data->start, 167 .addr = data->addr, 168 .end = data->end, 169 .level = level, 170 .flags = flags, 171 }; 172 int ret = 0; 173 bool reload = false; 174 kvm_pteref_t childp; 175 bool table = kvm_pte_table(ctx.old, level); 176 177 if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) { 178 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE); 179 reload = true; 180 } 181 182 if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) { 183 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF); 184 reload = true; 185 } 186 187 /* 188 * Reload the page table after invoking the walker callback for leaf 189 * entries or after pre-order traversal, to allow the walker to descend 190 * into a newly installed or replaced table. 191 */ 192 if (reload) { 193 ctx.old = READ_ONCE(*ptep); 194 table = kvm_pte_table(ctx.old, level); 195 } 196 197 if (!kvm_pgtable_walk_continue(data->walker, ret)) 198 goto out; 199 200 if (!table) { 201 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level)); 202 data->addr += kvm_granule_size(level); 203 goto out; 204 } 205 206 childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops); 207 ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1); 208 if (!kvm_pgtable_walk_continue(data->walker, ret)) 209 goto out; 210 211 if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST) 212 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST); 213 214 out: 215 if (kvm_pgtable_walk_continue(data->walker, ret)) 216 return 0; 217 218 return ret; 219 } 220 221 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, 222 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level) 223 { 224 u32 idx; 225 int ret = 0; 226 227 if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL || 228 level > KVM_PGTABLE_LAST_LEVEL)) 229 return -EINVAL; 230 231 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) { 232 kvm_pteref_t pteref = &pgtable[idx]; 233 234 if (data->addr >= data->end) 235 break; 236 237 ret = __kvm_pgtable_visit(data, mm_ops, pteref, level); 238 if (ret) 239 break; 240 } 241 242 return ret; 243 } 244 245 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data) 246 { 247 u32 idx; 248 int ret = 0; 249 u64 limit = BIT(pgt->ia_bits); 250 251 if (data->addr > limit || data->end > limit) 252 return -ERANGE; 253 254 if (!pgt->pgd) 255 return -EINVAL; 256 257 for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) { 258 kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE]; 259 260 ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level); 261 if (ret) 262 break; 263 } 264 265 return ret; 266 } 267 268 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, 269 struct kvm_pgtable_walker *walker) 270 { 271 struct kvm_pgtable_walk_data walk_data = { 272 .start = ALIGN_DOWN(addr, PAGE_SIZE), 273 .addr = ALIGN_DOWN(addr, PAGE_SIZE), 274 .end = PAGE_ALIGN(walk_data.addr + size), 275 .walker = walker, 276 }; 277 int r; 278 279 r = kvm_pgtable_walk_begin(walker); 280 if (r) 281 return r; 282 283 r = _kvm_pgtable_walk(pgt, &walk_data); 284 kvm_pgtable_walk_end(walker); 285 286 return r; 287 } 288 289 struct leaf_walk_data { 290 kvm_pte_t pte; 291 s8 level; 292 }; 293 294 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx, 295 enum kvm_pgtable_walk_flags visit) 296 { 297 struct leaf_walk_data *data = ctx->arg; 298 299 data->pte = ctx->old; 300 data->level = ctx->level; 301 302 return 0; 303 } 304 305 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr, 306 kvm_pte_t *ptep, s8 *level) 307 { 308 struct leaf_walk_data data; 309 struct kvm_pgtable_walker walker = { 310 .cb = leaf_walker, 311 .flags = KVM_PGTABLE_WALK_LEAF, 312 .arg = &data, 313 }; 314 int ret; 315 316 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE), 317 PAGE_SIZE, &walker); 318 if (!ret) { 319 if (ptep) 320 *ptep = data.pte; 321 if (level) 322 *level = data.level; 323 } 324 325 return ret; 326 } 327 328 struct hyp_map_data { 329 const u64 phys; 330 kvm_pte_t attr; 331 }; 332 333 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep) 334 { 335 bool device = prot & KVM_PGTABLE_PROT_DEVICE; 336 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL; 337 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype); 338 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS; 339 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW : 340 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO; 341 342 if (!(prot & KVM_PGTABLE_PROT_R)) 343 return -EINVAL; 344 345 if (prot & KVM_PGTABLE_PROT_X) { 346 if (prot & KVM_PGTABLE_PROT_W) 347 return -EINVAL; 348 349 if (device) 350 return -EINVAL; 351 352 if (system_supports_bti_kernel()) 353 attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP; 354 } else { 355 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; 356 } 357 358 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap); 359 if (!kvm_lpa2_is_enabled()) 360 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh); 361 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF; 362 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; 363 *ptep = attr; 364 365 return 0; 366 } 367 368 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte) 369 { 370 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; 371 u32 ap; 372 373 if (!kvm_pte_valid(pte)) 374 return prot; 375 376 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN)) 377 prot |= KVM_PGTABLE_PROT_X; 378 379 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte); 380 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO) 381 prot |= KVM_PGTABLE_PROT_R; 382 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW) 383 prot |= KVM_PGTABLE_PROT_RW; 384 385 return prot; 386 } 387 388 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, 389 struct hyp_map_data *data) 390 { 391 u64 phys = data->phys + (ctx->addr - ctx->start); 392 kvm_pte_t new; 393 394 if (!kvm_block_mapping_supported(ctx, phys)) 395 return false; 396 397 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level); 398 if (ctx->old == new) 399 return true; 400 if (!kvm_pte_valid(ctx->old)) 401 ctx->mm_ops->get_page(ctx->ptep); 402 else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) 403 return false; 404 405 smp_store_release(ctx->ptep, new); 406 return true; 407 } 408 409 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx, 410 enum kvm_pgtable_walk_flags visit) 411 { 412 kvm_pte_t *childp, new; 413 struct hyp_map_data *data = ctx->arg; 414 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 415 416 if (hyp_map_walker_try_leaf(ctx, data)) 417 return 0; 418 419 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL)) 420 return -EINVAL; 421 422 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL); 423 if (!childp) 424 return -ENOMEM; 425 426 new = kvm_init_table_pte(childp, mm_ops); 427 mm_ops->get_page(ctx->ptep); 428 smp_store_release(ctx->ptep, new); 429 430 return 0; 431 } 432 433 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, 434 enum kvm_pgtable_prot prot) 435 { 436 int ret; 437 struct hyp_map_data map_data = { 438 .phys = ALIGN_DOWN(phys, PAGE_SIZE), 439 }; 440 struct kvm_pgtable_walker walker = { 441 .cb = hyp_map_walker, 442 .flags = KVM_PGTABLE_WALK_LEAF, 443 .arg = &map_data, 444 }; 445 446 ret = hyp_set_prot_attr(prot, &map_data.attr); 447 if (ret) 448 return ret; 449 450 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 451 dsb(ishst); 452 isb(); 453 return ret; 454 } 455 456 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx, 457 enum kvm_pgtable_walk_flags visit) 458 { 459 kvm_pte_t *childp = NULL; 460 u64 granule = kvm_granule_size(ctx->level); 461 u64 *unmapped = ctx->arg; 462 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 463 464 if (!kvm_pte_valid(ctx->old)) 465 return -EINVAL; 466 467 if (kvm_pte_table(ctx->old, ctx->level)) { 468 childp = kvm_pte_follow(ctx->old, mm_ops); 469 470 if (mm_ops->page_count(childp) != 1) 471 return 0; 472 473 kvm_clear_pte(ctx->ptep); 474 dsb(ishst); 475 __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN); 476 } else { 477 if (ctx->end - ctx->addr < granule) 478 return -EINVAL; 479 480 kvm_clear_pte(ctx->ptep); 481 dsb(ishst); 482 __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level); 483 *unmapped += granule; 484 } 485 486 dsb(ish); 487 isb(); 488 mm_ops->put_page(ctx->ptep); 489 490 if (childp) 491 mm_ops->put_page(childp); 492 493 return 0; 494 } 495 496 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) 497 { 498 u64 unmapped = 0; 499 struct kvm_pgtable_walker walker = { 500 .cb = hyp_unmap_walker, 501 .arg = &unmapped, 502 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 503 }; 504 505 if (!pgt->mm_ops->page_count) 506 return 0; 507 508 kvm_pgtable_walk(pgt, addr, size, &walker); 509 return unmapped; 510 } 511 512 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits, 513 struct kvm_pgtable_mm_ops *mm_ops) 514 { 515 s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 - 516 ARM64_HW_PGTABLE_LEVELS(va_bits); 517 518 if (start_level < KVM_PGTABLE_FIRST_LEVEL || 519 start_level > KVM_PGTABLE_LAST_LEVEL) 520 return -EINVAL; 521 522 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL); 523 if (!pgt->pgd) 524 return -ENOMEM; 525 526 pgt->ia_bits = va_bits; 527 pgt->start_level = start_level; 528 pgt->mm_ops = mm_ops; 529 pgt->mmu = NULL; 530 pgt->force_pte_cb = NULL; 531 532 return 0; 533 } 534 535 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx, 536 enum kvm_pgtable_walk_flags visit) 537 { 538 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 539 540 if (!kvm_pte_valid(ctx->old)) 541 return 0; 542 543 mm_ops->put_page(ctx->ptep); 544 545 if (kvm_pte_table(ctx->old, ctx->level)) 546 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops)); 547 548 return 0; 549 } 550 551 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) 552 { 553 struct kvm_pgtable_walker walker = { 554 .cb = hyp_free_walker, 555 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 556 }; 557 558 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); 559 pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd)); 560 pgt->pgd = NULL; 561 } 562 563 struct stage2_map_data { 564 const u64 phys; 565 kvm_pte_t attr; 566 u8 owner_id; 567 568 kvm_pte_t *anchor; 569 kvm_pte_t *childp; 570 571 struct kvm_s2_mmu *mmu; 572 void *memcache; 573 574 /* Force mappings to page granularity */ 575 bool force_pte; 576 577 /* Walk should update owner_id only */ 578 bool annotation; 579 }; 580 581 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift) 582 { 583 u64 vtcr = VTCR_EL2_FLAGS; 584 s8 lvls; 585 586 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT; 587 vtcr |= VTCR_EL2_T0SZ(phys_shift); 588 /* 589 * Use a minimum 2 level page table to prevent splitting 590 * host PMD huge pages at stage2. 591 */ 592 lvls = stage2_pgtable_levels(phys_shift); 593 if (lvls < 2) 594 lvls = 2; 595 596 /* 597 * When LPA2 is enabled, the HW supports an extra level of translation 598 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2 599 * to as an addition to SL0 to enable encoding this extra start level. 600 * However, since we always use concatenated pages for the first level 601 * lookup, we will never need this extra level and therefore do not need 602 * to touch SL2. 603 */ 604 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls); 605 606 #ifdef CONFIG_ARM64_HW_AFDBM 607 /* 608 * Enable the Hardware Access Flag management, unconditionally 609 * on all CPUs. In systems that have asymmetric support for the feature 610 * this allows KVM to leverage hardware support on the subset of cores 611 * that implement the feature. 612 * 613 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by 614 * hardware) on implementations that do not advertise support for the 615 * feature. As such, setting HA unconditionally is safe, unless you 616 * happen to be running on a design that has unadvertised support for 617 * HAFDBS. Here be dragons. 618 */ 619 if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) 620 vtcr |= VTCR_EL2_HA; 621 #endif /* CONFIG_ARM64_HW_AFDBM */ 622 623 if (kvm_lpa2_is_enabled()) 624 vtcr |= VTCR_EL2_DS; 625 626 /* Set the vmid bits */ 627 vtcr |= (get_vmid_bits(mmfr1) == 16) ? 628 VTCR_EL2_VS_16BIT : 629 VTCR_EL2_VS_8BIT; 630 631 return vtcr; 632 } 633 634 static bool stage2_has_fwb(struct kvm_pgtable *pgt) 635 { 636 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 637 return false; 638 639 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB); 640 } 641 642 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu, 643 phys_addr_t addr, size_t size) 644 { 645 unsigned long pages, inval_pages; 646 647 if (!system_supports_tlb_range()) { 648 kvm_call_hyp(__kvm_tlb_flush_vmid, mmu); 649 return; 650 } 651 652 pages = size >> PAGE_SHIFT; 653 while (pages > 0) { 654 inval_pages = min(pages, MAX_TLBI_RANGE_PAGES); 655 kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages); 656 657 addr += inval_pages << PAGE_SHIFT; 658 pages -= inval_pages; 659 } 660 } 661 662 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt)) 663 664 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot, 665 kvm_pte_t *ptep) 666 { 667 kvm_pte_t attr; 668 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; 669 670 switch (prot & (KVM_PGTABLE_PROT_DEVICE | 671 KVM_PGTABLE_PROT_NORMAL_NC)) { 672 case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC: 673 return -EINVAL; 674 case KVM_PGTABLE_PROT_DEVICE: 675 if (prot & KVM_PGTABLE_PROT_X) 676 return -EINVAL; 677 attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE); 678 break; 679 case KVM_PGTABLE_PROT_NORMAL_NC: 680 if (prot & KVM_PGTABLE_PROT_X) 681 return -EINVAL; 682 attr = KVM_S2_MEMATTR(pgt, NORMAL_NC); 683 break; 684 default: 685 attr = KVM_S2_MEMATTR(pgt, NORMAL); 686 } 687 688 if (!(prot & KVM_PGTABLE_PROT_X)) 689 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; 690 691 if (prot & KVM_PGTABLE_PROT_R) 692 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; 693 694 if (prot & KVM_PGTABLE_PROT_W) 695 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; 696 697 if (!kvm_lpa2_is_enabled()) 698 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); 699 700 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; 701 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; 702 *ptep = attr; 703 704 return 0; 705 } 706 707 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte) 708 { 709 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; 710 711 if (!kvm_pte_valid(pte)) 712 return prot; 713 714 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R) 715 prot |= KVM_PGTABLE_PROT_R; 716 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W) 717 prot |= KVM_PGTABLE_PROT_W; 718 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN)) 719 prot |= KVM_PGTABLE_PROT_X; 720 721 return prot; 722 } 723 724 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new) 725 { 726 if (!kvm_pte_valid(old) || !kvm_pte_valid(new)) 727 return true; 728 729 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS)); 730 } 731 732 static bool stage2_pte_is_counted(kvm_pte_t pte) 733 { 734 /* 735 * The refcount tracks valid entries as well as invalid entries if they 736 * encode ownership of a page to another entity than the page-table 737 * owner, whose id is 0. 738 */ 739 return !!pte; 740 } 741 742 static bool stage2_pte_is_locked(kvm_pte_t pte) 743 { 744 return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED); 745 } 746 747 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new) 748 { 749 if (!kvm_pgtable_walk_shared(ctx)) { 750 WRITE_ONCE(*ctx->ptep, new); 751 return true; 752 } 753 754 return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old; 755 } 756 757 /** 758 * stage2_try_break_pte() - Invalidates a pte according to the 759 * 'break-before-make' requirements of the 760 * architecture. 761 * 762 * @ctx: context of the visited pte. 763 * @mmu: stage-2 mmu 764 * 765 * Returns: true if the pte was successfully broken. 766 * 767 * If the removed pte was valid, performs the necessary serialization and TLB 768 * invalidation for the old value. For counted ptes, drops the reference count 769 * on the containing table page. 770 */ 771 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx, 772 struct kvm_s2_mmu *mmu) 773 { 774 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 775 776 if (stage2_pte_is_locked(ctx->old)) { 777 /* 778 * Should never occur if this walker has exclusive access to the 779 * page tables. 780 */ 781 WARN_ON(!kvm_pgtable_walk_shared(ctx)); 782 return false; 783 } 784 785 if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED)) 786 return false; 787 788 if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) { 789 /* 790 * Perform the appropriate TLB invalidation based on the 791 * evicted pte value (if any). 792 */ 793 if (kvm_pte_table(ctx->old, ctx->level)) { 794 u64 size = kvm_granule_size(ctx->level); 795 u64 addr = ALIGN_DOWN(ctx->addr, size); 796 797 kvm_tlb_flush_vmid_range(mmu, addr, size); 798 } else if (kvm_pte_valid(ctx->old)) { 799 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, 800 ctx->addr, ctx->level); 801 } 802 } 803 804 if (stage2_pte_is_counted(ctx->old)) 805 mm_ops->put_page(ctx->ptep); 806 807 return true; 808 } 809 810 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new) 811 { 812 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 813 814 WARN_ON(!stage2_pte_is_locked(*ctx->ptep)); 815 816 if (stage2_pte_is_counted(new)) 817 mm_ops->get_page(ctx->ptep); 818 819 smp_store_release(ctx->ptep, new); 820 } 821 822 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt) 823 { 824 /* 825 * If FEAT_TLBIRANGE is implemented, defer the individual 826 * TLB invalidations until the entire walk is finished, and 827 * then use the range-based TLBI instructions to do the 828 * invalidations. Condition deferred TLB invalidation on the 829 * system supporting FWB as the optimization is entirely 830 * pointless when the unmap walker needs to perform CMOs. 831 */ 832 return system_supports_tlb_range() && stage2_has_fwb(pgt); 833 } 834 835 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx, 836 struct kvm_s2_mmu *mmu, 837 struct kvm_pgtable_mm_ops *mm_ops) 838 { 839 struct kvm_pgtable *pgt = ctx->arg; 840 841 /* 842 * Clear the existing PTE, and perform break-before-make if it was 843 * valid. Depending on the system support, defer the TLB maintenance 844 * for the same until the entire unmap walk is completed. 845 */ 846 if (kvm_pte_valid(ctx->old)) { 847 kvm_clear_pte(ctx->ptep); 848 849 if (kvm_pte_table(ctx->old, ctx->level)) { 850 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, 851 TLBI_TTL_UNKNOWN); 852 } else if (!stage2_unmap_defer_tlb_flush(pgt)) { 853 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, 854 ctx->level); 855 } 856 } 857 858 mm_ops->put_page(ctx->ptep); 859 } 860 861 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte) 862 { 863 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR; 864 return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL); 865 } 866 867 static bool stage2_pte_executable(kvm_pte_t pte) 868 { 869 return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN); 870 } 871 872 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx, 873 const struct stage2_map_data *data) 874 { 875 u64 phys = data->phys; 876 877 /* Work out the correct PA based on how far the walk has gotten */ 878 return phys + (ctx->addr - ctx->start); 879 } 880 881 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx, 882 struct stage2_map_data *data) 883 { 884 u64 phys = stage2_map_walker_phys_addr(ctx, data); 885 886 if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL) 887 return false; 888 889 if (data->annotation) 890 return true; 891 892 return kvm_block_mapping_supported(ctx, phys); 893 } 894 895 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, 896 struct stage2_map_data *data) 897 { 898 kvm_pte_t new; 899 u64 phys = stage2_map_walker_phys_addr(ctx, data); 900 u64 granule = kvm_granule_size(ctx->level); 901 struct kvm_pgtable *pgt = data->mmu->pgt; 902 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 903 904 if (!stage2_leaf_mapping_allowed(ctx, data)) 905 return -E2BIG; 906 907 if (!data->annotation) 908 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level); 909 else 910 new = kvm_init_invalid_leaf_owner(data->owner_id); 911 912 /* 913 * Skip updating the PTE if we are trying to recreate the exact 914 * same mapping or only change the access permissions. Instead, 915 * the vCPU will exit one more time from guest if still needed 916 * and then go through the path of relaxing permissions. 917 */ 918 if (!stage2_pte_needs_update(ctx->old, new)) 919 return -EAGAIN; 920 921 /* If we're only changing software bits, then store them and go! */ 922 if (!kvm_pgtable_walk_shared(ctx) && 923 !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) { 924 bool old_is_counted = stage2_pte_is_counted(ctx->old); 925 926 if (old_is_counted != stage2_pte_is_counted(new)) { 927 if (old_is_counted) 928 mm_ops->put_page(ctx->ptep); 929 else 930 mm_ops->get_page(ctx->ptep); 931 } 932 WARN_ON_ONCE(!stage2_try_set_pte(ctx, new)); 933 return 0; 934 } 935 936 if (!stage2_try_break_pte(ctx, data->mmu)) 937 return -EAGAIN; 938 939 /* Perform CMOs before installation of the guest stage-2 PTE */ 940 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc && 941 stage2_pte_cacheable(pgt, new)) 942 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops), 943 granule); 944 945 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou && 946 stage2_pte_executable(new)) 947 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule); 948 949 stage2_make_pte(ctx, new); 950 951 return 0; 952 } 953 954 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx, 955 struct stage2_map_data *data) 956 { 957 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 958 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops); 959 int ret; 960 961 if (!stage2_leaf_mapping_allowed(ctx, data)) 962 return 0; 963 964 ret = stage2_map_walker_try_leaf(ctx, data); 965 if (ret) 966 return ret; 967 968 mm_ops->free_unlinked_table(childp, ctx->level); 969 return 0; 970 } 971 972 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx, 973 struct stage2_map_data *data) 974 { 975 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 976 kvm_pte_t *childp, new; 977 int ret; 978 979 ret = stage2_map_walker_try_leaf(ctx, data); 980 if (ret != -E2BIG) 981 return ret; 982 983 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL)) 984 return -EINVAL; 985 986 if (!data->memcache) 987 return -ENOMEM; 988 989 childp = mm_ops->zalloc_page(data->memcache); 990 if (!childp) 991 return -ENOMEM; 992 993 if (!stage2_try_break_pte(ctx, data->mmu)) { 994 mm_ops->put_page(childp); 995 return -EAGAIN; 996 } 997 998 /* 999 * If we've run into an existing block mapping then replace it with 1000 * a table. Accesses beyond 'end' that fall within the new table 1001 * will be mapped lazily. 1002 */ 1003 new = kvm_init_table_pte(childp, mm_ops); 1004 stage2_make_pte(ctx, new); 1005 1006 return 0; 1007 } 1008 1009 /* 1010 * The TABLE_PRE callback runs for table entries on the way down, looking 1011 * for table entries which we could conceivably replace with a block entry 1012 * for this mapping. If it finds one it replaces the entry and calls 1013 * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table. 1014 * 1015 * Otherwise, the LEAF callback performs the mapping at the existing leaves 1016 * instead. 1017 */ 1018 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx, 1019 enum kvm_pgtable_walk_flags visit) 1020 { 1021 struct stage2_map_data *data = ctx->arg; 1022 1023 switch (visit) { 1024 case KVM_PGTABLE_WALK_TABLE_PRE: 1025 return stage2_map_walk_table_pre(ctx, data); 1026 case KVM_PGTABLE_WALK_LEAF: 1027 return stage2_map_walk_leaf(ctx, data); 1028 default: 1029 return -EINVAL; 1030 } 1031 } 1032 1033 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, 1034 u64 phys, enum kvm_pgtable_prot prot, 1035 void *mc, enum kvm_pgtable_walk_flags flags) 1036 { 1037 int ret; 1038 struct stage2_map_data map_data = { 1039 .phys = ALIGN_DOWN(phys, PAGE_SIZE), 1040 .mmu = pgt->mmu, 1041 .memcache = mc, 1042 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot), 1043 }; 1044 struct kvm_pgtable_walker walker = { 1045 .cb = stage2_map_walker, 1046 .flags = flags | 1047 KVM_PGTABLE_WALK_TABLE_PRE | 1048 KVM_PGTABLE_WALK_LEAF, 1049 .arg = &map_data, 1050 }; 1051 1052 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys))) 1053 return -EINVAL; 1054 1055 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); 1056 if (ret) 1057 return ret; 1058 1059 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1060 dsb(ishst); 1061 return ret; 1062 } 1063 1064 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size, 1065 void *mc, u8 owner_id) 1066 { 1067 int ret; 1068 struct stage2_map_data map_data = { 1069 .mmu = pgt->mmu, 1070 .memcache = mc, 1071 .owner_id = owner_id, 1072 .force_pte = true, 1073 .annotation = true, 1074 }; 1075 struct kvm_pgtable_walker walker = { 1076 .cb = stage2_map_walker, 1077 .flags = KVM_PGTABLE_WALK_TABLE_PRE | 1078 KVM_PGTABLE_WALK_LEAF, 1079 .arg = &map_data, 1080 }; 1081 1082 if (owner_id > KVM_MAX_OWNER_ID) 1083 return -EINVAL; 1084 1085 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1086 return ret; 1087 } 1088 1089 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx, 1090 enum kvm_pgtable_walk_flags visit) 1091 { 1092 struct kvm_pgtable *pgt = ctx->arg; 1093 struct kvm_s2_mmu *mmu = pgt->mmu; 1094 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1095 kvm_pte_t *childp = NULL; 1096 bool need_flush = false; 1097 1098 if (!kvm_pte_valid(ctx->old)) { 1099 if (stage2_pte_is_counted(ctx->old)) { 1100 kvm_clear_pte(ctx->ptep); 1101 mm_ops->put_page(ctx->ptep); 1102 } 1103 return 0; 1104 } 1105 1106 if (kvm_pte_table(ctx->old, ctx->level)) { 1107 childp = kvm_pte_follow(ctx->old, mm_ops); 1108 1109 if (mm_ops->page_count(childp) != 1) 1110 return 0; 1111 } else if (stage2_pte_cacheable(pgt, ctx->old)) { 1112 need_flush = !stage2_has_fwb(pgt); 1113 } 1114 1115 /* 1116 * This is similar to the map() path in that we unmap the entire 1117 * block entry and rely on the remaining portions being faulted 1118 * back lazily. 1119 */ 1120 stage2_unmap_put_pte(ctx, mmu, mm_ops); 1121 1122 if (need_flush && mm_ops->dcache_clean_inval_poc) 1123 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops), 1124 kvm_granule_size(ctx->level)); 1125 1126 if (childp) 1127 mm_ops->put_page(childp); 1128 1129 return 0; 1130 } 1131 1132 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) 1133 { 1134 int ret; 1135 struct kvm_pgtable_walker walker = { 1136 .cb = stage2_unmap_walker, 1137 .arg = pgt, 1138 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 1139 }; 1140 1141 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1142 if (stage2_unmap_defer_tlb_flush(pgt)) 1143 /* Perform the deferred TLB invalidations */ 1144 kvm_tlb_flush_vmid_range(pgt->mmu, addr, size); 1145 1146 return ret; 1147 } 1148 1149 struct stage2_attr_data { 1150 kvm_pte_t attr_set; 1151 kvm_pte_t attr_clr; 1152 kvm_pte_t pte; 1153 s8 level; 1154 }; 1155 1156 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx, 1157 enum kvm_pgtable_walk_flags visit) 1158 { 1159 kvm_pte_t pte = ctx->old; 1160 struct stage2_attr_data *data = ctx->arg; 1161 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1162 1163 if (!kvm_pte_valid(ctx->old)) 1164 return -EAGAIN; 1165 1166 data->level = ctx->level; 1167 data->pte = pte; 1168 pte &= ~data->attr_clr; 1169 pte |= data->attr_set; 1170 1171 /* 1172 * We may race with the CPU trying to set the access flag here, 1173 * but worst-case the access flag update gets lost and will be 1174 * set on the next access instead. 1175 */ 1176 if (data->pte != pte) { 1177 /* 1178 * Invalidate instruction cache before updating the guest 1179 * stage-2 PTE if we are going to add executable permission. 1180 */ 1181 if (mm_ops->icache_inval_pou && 1182 stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old)) 1183 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops), 1184 kvm_granule_size(ctx->level)); 1185 1186 if (!stage2_try_set_pte(ctx, pte)) 1187 return -EAGAIN; 1188 } 1189 1190 return 0; 1191 } 1192 1193 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr, 1194 u64 size, kvm_pte_t attr_set, 1195 kvm_pte_t attr_clr, kvm_pte_t *orig_pte, 1196 s8 *level, enum kvm_pgtable_walk_flags flags) 1197 { 1198 int ret; 1199 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI; 1200 struct stage2_attr_data data = { 1201 .attr_set = attr_set & attr_mask, 1202 .attr_clr = attr_clr & attr_mask, 1203 }; 1204 struct kvm_pgtable_walker walker = { 1205 .cb = stage2_attr_walker, 1206 .arg = &data, 1207 .flags = flags | KVM_PGTABLE_WALK_LEAF, 1208 }; 1209 1210 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1211 if (ret) 1212 return ret; 1213 1214 if (orig_pte) 1215 *orig_pte = data.pte; 1216 1217 if (level) 1218 *level = data.level; 1219 return 0; 1220 } 1221 1222 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size) 1223 { 1224 return stage2_update_leaf_attrs(pgt, addr, size, 0, 1225 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W, 1226 NULL, NULL, 0); 1227 } 1228 1229 void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr, 1230 enum kvm_pgtable_walk_flags flags) 1231 { 1232 int ret; 1233 1234 ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0, 1235 NULL, NULL, flags); 1236 if (!ret) 1237 dsb(ishst); 1238 } 1239 1240 struct stage2_age_data { 1241 bool mkold; 1242 bool young; 1243 }; 1244 1245 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx, 1246 enum kvm_pgtable_walk_flags visit) 1247 { 1248 kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF; 1249 struct stage2_age_data *data = ctx->arg; 1250 1251 if (!kvm_pte_valid(ctx->old) || new == ctx->old) 1252 return 0; 1253 1254 data->young = true; 1255 1256 /* 1257 * stage2_age_walker() is always called while holding the MMU lock for 1258 * write, so this will always succeed. Nonetheless, this deliberately 1259 * follows the race detection pattern of the other stage-2 walkers in 1260 * case the locking mechanics of the MMU notifiers is ever changed. 1261 */ 1262 if (data->mkold && !stage2_try_set_pte(ctx, new)) 1263 return -EAGAIN; 1264 1265 /* 1266 * "But where's the TLBI?!", you scream. 1267 * "Over in the core code", I sigh. 1268 * 1269 * See the '->clear_flush_young()' callback on the KVM mmu notifier. 1270 */ 1271 return 0; 1272 } 1273 1274 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr, 1275 u64 size, bool mkold) 1276 { 1277 struct stage2_age_data data = { 1278 .mkold = mkold, 1279 }; 1280 struct kvm_pgtable_walker walker = { 1281 .cb = stage2_age_walker, 1282 .arg = &data, 1283 .flags = KVM_PGTABLE_WALK_LEAF, 1284 }; 1285 1286 WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker)); 1287 return data.young; 1288 } 1289 1290 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, 1291 enum kvm_pgtable_prot prot, enum kvm_pgtable_walk_flags flags) 1292 { 1293 int ret; 1294 s8 level; 1295 kvm_pte_t set = 0, clr = 0; 1296 1297 if (prot & KVM_PTE_LEAF_ATTR_HI_SW) 1298 return -EINVAL; 1299 1300 if (prot & KVM_PGTABLE_PROT_R) 1301 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; 1302 1303 if (prot & KVM_PGTABLE_PROT_W) 1304 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; 1305 1306 if (prot & KVM_PGTABLE_PROT_X) 1307 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; 1308 1309 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level, flags); 1310 if (!ret || ret == -EAGAIN) 1311 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level); 1312 return ret; 1313 } 1314 1315 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx, 1316 enum kvm_pgtable_walk_flags visit) 1317 { 1318 struct kvm_pgtable *pgt = ctx->arg; 1319 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; 1320 1321 if (!stage2_pte_cacheable(pgt, ctx->old)) 1322 return 0; 1323 1324 if (mm_ops->dcache_clean_inval_poc) 1325 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops), 1326 kvm_granule_size(ctx->level)); 1327 return 0; 1328 } 1329 1330 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) 1331 { 1332 struct kvm_pgtable_walker walker = { 1333 .cb = stage2_flush_walker, 1334 .flags = KVM_PGTABLE_WALK_LEAF, 1335 .arg = pgt, 1336 }; 1337 1338 if (stage2_has_fwb(pgt)) 1339 return 0; 1340 1341 return kvm_pgtable_walk(pgt, addr, size, &walker); 1342 } 1343 1344 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt, 1345 u64 phys, s8 level, 1346 enum kvm_pgtable_prot prot, 1347 void *mc, bool force_pte) 1348 { 1349 struct stage2_map_data map_data = { 1350 .phys = phys, 1351 .mmu = pgt->mmu, 1352 .memcache = mc, 1353 .force_pte = force_pte, 1354 }; 1355 struct kvm_pgtable_walker walker = { 1356 .cb = stage2_map_walker, 1357 .flags = KVM_PGTABLE_WALK_LEAF | 1358 KVM_PGTABLE_WALK_SKIP_BBM_TLBI | 1359 KVM_PGTABLE_WALK_SKIP_CMO, 1360 .arg = &map_data, 1361 }; 1362 /* 1363 * The input address (.addr) is irrelevant for walking an 1364 * unlinked table. Construct an ambiguous IA range to map 1365 * kvm_granule_size(level) worth of memory. 1366 */ 1367 struct kvm_pgtable_walk_data data = { 1368 .walker = &walker, 1369 .addr = 0, 1370 .end = kvm_granule_size(level), 1371 }; 1372 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; 1373 kvm_pte_t *pgtable; 1374 int ret; 1375 1376 if (!IS_ALIGNED(phys, kvm_granule_size(level))) 1377 return ERR_PTR(-EINVAL); 1378 1379 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); 1380 if (ret) 1381 return ERR_PTR(ret); 1382 1383 pgtable = mm_ops->zalloc_page(mc); 1384 if (!pgtable) 1385 return ERR_PTR(-ENOMEM); 1386 1387 ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable, 1388 level + 1); 1389 if (ret) { 1390 kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level); 1391 return ERR_PTR(ret); 1392 } 1393 1394 return pgtable; 1395 } 1396 1397 /* 1398 * Get the number of page-tables needed to replace a block with a 1399 * fully populated tree up to the PTE entries. Note that @level is 1400 * interpreted as in "level @level entry". 1401 */ 1402 static int stage2_block_get_nr_page_tables(s8 level) 1403 { 1404 switch (level) { 1405 case 1: 1406 return PTRS_PER_PTE + 1; 1407 case 2: 1408 return 1; 1409 case 3: 1410 return 0; 1411 default: 1412 WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL || 1413 level > KVM_PGTABLE_LAST_LEVEL); 1414 return -EINVAL; 1415 }; 1416 } 1417 1418 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx, 1419 enum kvm_pgtable_walk_flags visit) 1420 { 1421 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1422 struct kvm_mmu_memory_cache *mc = ctx->arg; 1423 struct kvm_s2_mmu *mmu; 1424 kvm_pte_t pte = ctx->old, new, *childp; 1425 enum kvm_pgtable_prot prot; 1426 s8 level = ctx->level; 1427 bool force_pte; 1428 int nr_pages; 1429 u64 phys; 1430 1431 /* No huge-pages exist at the last level */ 1432 if (level == KVM_PGTABLE_LAST_LEVEL) 1433 return 0; 1434 1435 /* We only split valid block mappings */ 1436 if (!kvm_pte_valid(pte)) 1437 return 0; 1438 1439 nr_pages = stage2_block_get_nr_page_tables(level); 1440 if (nr_pages < 0) 1441 return nr_pages; 1442 1443 if (mc->nobjs >= nr_pages) { 1444 /* Build a tree mapped down to the PTE granularity. */ 1445 force_pte = true; 1446 } else { 1447 /* 1448 * Don't force PTEs, so create_unlinked() below does 1449 * not populate the tree up to the PTE level. The 1450 * consequence is that the call will require a single 1451 * page of level 2 entries at level 1, or a single 1452 * page of PTEs at level 2. If we are at level 1, the 1453 * PTEs will be created recursively. 1454 */ 1455 force_pte = false; 1456 nr_pages = 1; 1457 } 1458 1459 if (mc->nobjs < nr_pages) 1460 return -ENOMEM; 1461 1462 mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache); 1463 phys = kvm_pte_to_phys(pte); 1464 prot = kvm_pgtable_stage2_pte_prot(pte); 1465 1466 childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys, 1467 level, prot, mc, force_pte); 1468 if (IS_ERR(childp)) 1469 return PTR_ERR(childp); 1470 1471 if (!stage2_try_break_pte(ctx, mmu)) { 1472 kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level); 1473 return -EAGAIN; 1474 } 1475 1476 /* 1477 * Note, the contents of the page table are guaranteed to be made 1478 * visible before the new PTE is assigned because stage2_make_pte() 1479 * writes the PTE using smp_store_release(). 1480 */ 1481 new = kvm_init_table_pte(childp, mm_ops); 1482 stage2_make_pte(ctx, new); 1483 return 0; 1484 } 1485 1486 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size, 1487 struct kvm_mmu_memory_cache *mc) 1488 { 1489 struct kvm_pgtable_walker walker = { 1490 .cb = stage2_split_walker, 1491 .flags = KVM_PGTABLE_WALK_LEAF, 1492 .arg = mc, 1493 }; 1494 int ret; 1495 1496 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1497 dsb(ishst); 1498 return ret; 1499 } 1500 1501 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu, 1502 struct kvm_pgtable_mm_ops *mm_ops, 1503 enum kvm_pgtable_stage2_flags flags, 1504 kvm_pgtable_force_pte_cb_t force_pte_cb) 1505 { 1506 size_t pgd_sz; 1507 u64 vtcr = mmu->vtcr; 1508 u32 ia_bits = VTCR_EL2_IPA(vtcr); 1509 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); 1510 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; 1511 1512 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; 1513 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz); 1514 if (!pgt->pgd) 1515 return -ENOMEM; 1516 1517 pgt->ia_bits = ia_bits; 1518 pgt->start_level = start_level; 1519 pgt->mm_ops = mm_ops; 1520 pgt->mmu = mmu; 1521 pgt->flags = flags; 1522 pgt->force_pte_cb = force_pte_cb; 1523 1524 /* Ensure zeroed PGD pages are visible to the hardware walker */ 1525 dsb(ishst); 1526 return 0; 1527 } 1528 1529 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr) 1530 { 1531 u32 ia_bits = VTCR_EL2_IPA(vtcr); 1532 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); 1533 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; 1534 1535 return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; 1536 } 1537 1538 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx, 1539 enum kvm_pgtable_walk_flags visit) 1540 { 1541 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1542 1543 if (!stage2_pte_is_counted(ctx->old)) 1544 return 0; 1545 1546 mm_ops->put_page(ctx->ptep); 1547 1548 if (kvm_pte_table(ctx->old, ctx->level)) 1549 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops)); 1550 1551 return 0; 1552 } 1553 1554 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) 1555 { 1556 size_t pgd_sz; 1557 struct kvm_pgtable_walker walker = { 1558 .cb = stage2_free_walker, 1559 .flags = KVM_PGTABLE_WALK_LEAF | 1560 KVM_PGTABLE_WALK_TABLE_POST, 1561 }; 1562 1563 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); 1564 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE; 1565 pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz); 1566 pgt->pgd = NULL; 1567 } 1568 1569 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level) 1570 { 1571 kvm_pteref_t ptep = (kvm_pteref_t)pgtable; 1572 struct kvm_pgtable_walker walker = { 1573 .cb = stage2_free_walker, 1574 .flags = KVM_PGTABLE_WALK_LEAF | 1575 KVM_PGTABLE_WALK_TABLE_POST, 1576 }; 1577 struct kvm_pgtable_walk_data data = { 1578 .walker = &walker, 1579 1580 /* 1581 * At this point the IPA really doesn't matter, as the page 1582 * table being traversed has already been removed from the stage 1583 * 2. Set an appropriate range to cover the entire page table. 1584 */ 1585 .addr = 0, 1586 .end = kvm_granule_size(level), 1587 }; 1588 1589 WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1)); 1590 1591 WARN_ON(mm_ops->page_count(pgtable) != 1); 1592 mm_ops->put_page(pgtable); 1593 } 1594