xref: /linux/arch/arm64/kvm/hyp/pgtable.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 
15 #define KVM_PTE_TYPE			BIT(1)
16 #define KVM_PTE_TYPE_BLOCK		0
17 #define KVM_PTE_TYPE_PAGE		1
18 #define KVM_PTE_TYPE_TABLE		1
19 
20 #define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)
21 
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO		\
25 	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
26 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW		\
27 	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
28 #define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
29 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
30 #define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)
31 
32 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
35 #define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
36 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
37 #define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)
38 
39 #define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 50)
40 
41 #define KVM_PTE_LEAF_ATTR_HI_SW		GENMASK(58, 55)
42 
43 #define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)
44 
45 #define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)
46 
47 #define KVM_PTE_LEAF_ATTR_HI_S1_GP	BIT(50)
48 
49 #define KVM_PTE_LEAF_ATTR_S2_PERMS	(KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
50 					 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
51 					 KVM_PTE_LEAF_ATTR_HI_S2_XN)
52 
53 #define KVM_INVALID_PTE_OWNER_MASK	GENMASK(9, 2)
54 #define KVM_MAX_OWNER_ID		1
55 
56 /*
57  * Used to indicate a pte for which a 'break-before-make' sequence is in
58  * progress.
59  */
60 #define KVM_INVALID_PTE_LOCKED		BIT(10)
61 
62 struct kvm_pgtable_walk_data {
63 	struct kvm_pgtable_walker	*walker;
64 
65 	const u64			start;
66 	u64				addr;
67 	const u64			end;
68 };
69 
70 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
71 {
72 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
73 }
74 
75 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
76 {
77 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
78 }
79 
80 static bool kvm_phys_is_valid(u64 phys)
81 {
82 	u64 parange_max = kvm_get_parange_max();
83 	u8 shift = id_aa64mmfr0_parange_to_phys_shift(parange_max);
84 
85 	return phys < BIT(shift);
86 }
87 
88 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
89 {
90 	u64 granule = kvm_granule_size(ctx->level);
91 
92 	if (!kvm_level_supports_block_mapping(ctx->level))
93 		return false;
94 
95 	if (granule > (ctx->end - ctx->addr))
96 		return false;
97 
98 	if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
99 		return false;
100 
101 	return IS_ALIGNED(ctx->addr, granule);
102 }
103 
104 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
105 {
106 	u64 shift = kvm_granule_shift(level);
107 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
108 
109 	return (data->addr >> shift) & mask;
110 }
111 
112 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
113 {
114 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
115 	u64 mask = BIT(pgt->ia_bits) - 1;
116 
117 	return (addr & mask) >> shift;
118 }
119 
120 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
121 {
122 	struct kvm_pgtable pgt = {
123 		.ia_bits	= ia_bits,
124 		.start_level	= start_level,
125 	};
126 
127 	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
128 }
129 
130 static bool kvm_pte_table(kvm_pte_t pte, s8 level)
131 {
132 	if (level == KVM_PGTABLE_LAST_LEVEL)
133 		return false;
134 
135 	if (!kvm_pte_valid(pte))
136 		return false;
137 
138 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
139 }
140 
141 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
142 {
143 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
144 }
145 
146 static void kvm_clear_pte(kvm_pte_t *ptep)
147 {
148 	WRITE_ONCE(*ptep, 0);
149 }
150 
151 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
152 {
153 	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
154 
155 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
156 	pte |= KVM_PTE_VALID;
157 	return pte;
158 }
159 
160 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
161 {
162 	kvm_pte_t pte = kvm_phys_to_pte(pa);
163 	u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
164 						       KVM_PTE_TYPE_BLOCK;
165 
166 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
167 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
168 	pte |= KVM_PTE_VALID;
169 
170 	return pte;
171 }
172 
173 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
174 {
175 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
176 }
177 
178 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
179 				  const struct kvm_pgtable_visit_ctx *ctx,
180 				  enum kvm_pgtable_walk_flags visit)
181 {
182 	struct kvm_pgtable_walker *walker = data->walker;
183 
184 	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
185 	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
186 	return walker->cb(ctx, visit);
187 }
188 
189 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
190 				      int r)
191 {
192 	/*
193 	 * Visitor callbacks return EAGAIN when the conditions that led to a
194 	 * fault are no longer reflected in the page tables due to a race to
195 	 * update a PTE. In the context of a fault handler this is interpreted
196 	 * as a signal to retry guest execution.
197 	 *
198 	 * Ignore the return code altogether for walkers outside a fault handler
199 	 * (e.g. write protecting a range of memory) and chug along with the
200 	 * page table walk.
201 	 */
202 	if (r == -EAGAIN)
203 		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
204 
205 	return !r;
206 }
207 
208 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
209 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
210 
211 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
212 				      struct kvm_pgtable_mm_ops *mm_ops,
213 				      kvm_pteref_t pteref, s8 level)
214 {
215 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
216 	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
217 	struct kvm_pgtable_visit_ctx ctx = {
218 		.ptep	= ptep,
219 		.old	= READ_ONCE(*ptep),
220 		.arg	= data->walker->arg,
221 		.mm_ops	= mm_ops,
222 		.start	= data->start,
223 		.addr	= data->addr,
224 		.end	= data->end,
225 		.level	= level,
226 		.flags	= flags,
227 	};
228 	int ret = 0;
229 	bool reload = false;
230 	kvm_pteref_t childp;
231 	bool table = kvm_pte_table(ctx.old, level);
232 
233 	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
234 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
235 		reload = true;
236 	}
237 
238 	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
239 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
240 		reload = true;
241 	}
242 
243 	/*
244 	 * Reload the page table after invoking the walker callback for leaf
245 	 * entries or after pre-order traversal, to allow the walker to descend
246 	 * into a newly installed or replaced table.
247 	 */
248 	if (reload) {
249 		ctx.old = READ_ONCE(*ptep);
250 		table = kvm_pte_table(ctx.old, level);
251 	}
252 
253 	if (!kvm_pgtable_walk_continue(data->walker, ret))
254 		goto out;
255 
256 	if (!table) {
257 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
258 		data->addr += kvm_granule_size(level);
259 		goto out;
260 	}
261 
262 	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
263 	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
264 	if (!kvm_pgtable_walk_continue(data->walker, ret))
265 		goto out;
266 
267 	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
268 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
269 
270 out:
271 	if (kvm_pgtable_walk_continue(data->walker, ret))
272 		return 0;
273 
274 	return ret;
275 }
276 
277 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
278 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
279 {
280 	u32 idx;
281 	int ret = 0;
282 
283 	if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
284 			 level > KVM_PGTABLE_LAST_LEVEL))
285 		return -EINVAL;
286 
287 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
288 		kvm_pteref_t pteref = &pgtable[idx];
289 
290 		if (data->addr >= data->end)
291 			break;
292 
293 		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
294 		if (ret)
295 			break;
296 	}
297 
298 	return ret;
299 }
300 
301 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
302 {
303 	u32 idx;
304 	int ret = 0;
305 	u64 limit = BIT(pgt->ia_bits);
306 
307 	if (data->addr > limit || data->end > limit)
308 		return -ERANGE;
309 
310 	if (!pgt->pgd)
311 		return -EINVAL;
312 
313 	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
314 		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
315 
316 		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
317 		if (ret)
318 			break;
319 	}
320 
321 	return ret;
322 }
323 
324 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
325 		     struct kvm_pgtable_walker *walker)
326 {
327 	struct kvm_pgtable_walk_data walk_data = {
328 		.start	= ALIGN_DOWN(addr, PAGE_SIZE),
329 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
330 		.end	= PAGE_ALIGN(walk_data.addr + size),
331 		.walker	= walker,
332 	};
333 	int r;
334 
335 	r = kvm_pgtable_walk_begin(walker);
336 	if (r)
337 		return r;
338 
339 	r = _kvm_pgtable_walk(pgt, &walk_data);
340 	kvm_pgtable_walk_end(walker);
341 
342 	return r;
343 }
344 
345 struct leaf_walk_data {
346 	kvm_pte_t	pte;
347 	s8		level;
348 };
349 
350 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
351 		       enum kvm_pgtable_walk_flags visit)
352 {
353 	struct leaf_walk_data *data = ctx->arg;
354 
355 	data->pte   = ctx->old;
356 	data->level = ctx->level;
357 
358 	return 0;
359 }
360 
361 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
362 			 kvm_pte_t *ptep, s8 *level)
363 {
364 	struct leaf_walk_data data;
365 	struct kvm_pgtable_walker walker = {
366 		.cb	= leaf_walker,
367 		.flags	= KVM_PGTABLE_WALK_LEAF,
368 		.arg	= &data,
369 	};
370 	int ret;
371 
372 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
373 			       PAGE_SIZE, &walker);
374 	if (!ret) {
375 		if (ptep)
376 			*ptep  = data.pte;
377 		if (level)
378 			*level = data.level;
379 	}
380 
381 	return ret;
382 }
383 
384 struct hyp_map_data {
385 	const u64			phys;
386 	kvm_pte_t			attr;
387 };
388 
389 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
390 {
391 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
392 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
393 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
394 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
395 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
396 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
397 
398 	if (!(prot & KVM_PGTABLE_PROT_R))
399 		return -EINVAL;
400 
401 	if (prot & KVM_PGTABLE_PROT_X) {
402 		if (prot & KVM_PGTABLE_PROT_W)
403 			return -EINVAL;
404 
405 		if (device)
406 			return -EINVAL;
407 
408 		if (system_supports_bti_kernel())
409 			attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
410 	} else {
411 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
412 	}
413 
414 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
415 	if (!kvm_lpa2_is_enabled())
416 		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
417 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
418 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
419 	*ptep = attr;
420 
421 	return 0;
422 }
423 
424 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
425 {
426 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
427 	u32 ap;
428 
429 	if (!kvm_pte_valid(pte))
430 		return prot;
431 
432 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
433 		prot |= KVM_PGTABLE_PROT_X;
434 
435 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
436 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
437 		prot |= KVM_PGTABLE_PROT_R;
438 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
439 		prot |= KVM_PGTABLE_PROT_RW;
440 
441 	return prot;
442 }
443 
444 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
445 				    struct hyp_map_data *data)
446 {
447 	u64 phys = data->phys + (ctx->addr - ctx->start);
448 	kvm_pte_t new;
449 
450 	if (!kvm_block_mapping_supported(ctx, phys))
451 		return false;
452 
453 	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
454 	if (ctx->old == new)
455 		return true;
456 	if (!kvm_pte_valid(ctx->old))
457 		ctx->mm_ops->get_page(ctx->ptep);
458 	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
459 		return false;
460 
461 	smp_store_release(ctx->ptep, new);
462 	return true;
463 }
464 
465 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
466 			  enum kvm_pgtable_walk_flags visit)
467 {
468 	kvm_pte_t *childp, new;
469 	struct hyp_map_data *data = ctx->arg;
470 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
471 
472 	if (hyp_map_walker_try_leaf(ctx, data))
473 		return 0;
474 
475 	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
476 		return -EINVAL;
477 
478 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
479 	if (!childp)
480 		return -ENOMEM;
481 
482 	new = kvm_init_table_pte(childp, mm_ops);
483 	mm_ops->get_page(ctx->ptep);
484 	smp_store_release(ctx->ptep, new);
485 
486 	return 0;
487 }
488 
489 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
490 			enum kvm_pgtable_prot prot)
491 {
492 	int ret;
493 	struct hyp_map_data map_data = {
494 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
495 	};
496 	struct kvm_pgtable_walker walker = {
497 		.cb	= hyp_map_walker,
498 		.flags	= KVM_PGTABLE_WALK_LEAF,
499 		.arg	= &map_data,
500 	};
501 
502 	ret = hyp_set_prot_attr(prot, &map_data.attr);
503 	if (ret)
504 		return ret;
505 
506 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
507 	dsb(ishst);
508 	isb();
509 	return ret;
510 }
511 
512 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
513 			    enum kvm_pgtable_walk_flags visit)
514 {
515 	kvm_pte_t *childp = NULL;
516 	u64 granule = kvm_granule_size(ctx->level);
517 	u64 *unmapped = ctx->arg;
518 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
519 
520 	if (!kvm_pte_valid(ctx->old))
521 		return -EINVAL;
522 
523 	if (kvm_pte_table(ctx->old, ctx->level)) {
524 		childp = kvm_pte_follow(ctx->old, mm_ops);
525 
526 		if (mm_ops->page_count(childp) != 1)
527 			return 0;
528 
529 		kvm_clear_pte(ctx->ptep);
530 		dsb(ishst);
531 		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
532 	} else {
533 		if (ctx->end - ctx->addr < granule)
534 			return -EINVAL;
535 
536 		kvm_clear_pte(ctx->ptep);
537 		dsb(ishst);
538 		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
539 		*unmapped += granule;
540 	}
541 
542 	dsb(ish);
543 	isb();
544 	mm_ops->put_page(ctx->ptep);
545 
546 	if (childp)
547 		mm_ops->put_page(childp);
548 
549 	return 0;
550 }
551 
552 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
553 {
554 	u64 unmapped = 0;
555 	struct kvm_pgtable_walker walker = {
556 		.cb	= hyp_unmap_walker,
557 		.arg	= &unmapped,
558 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
559 	};
560 
561 	if (!pgt->mm_ops->page_count)
562 		return 0;
563 
564 	kvm_pgtable_walk(pgt, addr, size, &walker);
565 	return unmapped;
566 }
567 
568 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
569 			 struct kvm_pgtable_mm_ops *mm_ops)
570 {
571 	s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
572 			 ARM64_HW_PGTABLE_LEVELS(va_bits);
573 
574 	if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
575 	    start_level > KVM_PGTABLE_LAST_LEVEL)
576 		return -EINVAL;
577 
578 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
579 	if (!pgt->pgd)
580 		return -ENOMEM;
581 
582 	pgt->ia_bits		= va_bits;
583 	pgt->start_level	= start_level;
584 	pgt->mm_ops		= mm_ops;
585 	pgt->mmu		= NULL;
586 	pgt->force_pte_cb	= NULL;
587 
588 	return 0;
589 }
590 
591 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
592 			   enum kvm_pgtable_walk_flags visit)
593 {
594 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
595 
596 	if (!kvm_pte_valid(ctx->old))
597 		return 0;
598 
599 	mm_ops->put_page(ctx->ptep);
600 
601 	if (kvm_pte_table(ctx->old, ctx->level))
602 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
603 
604 	return 0;
605 }
606 
607 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
608 {
609 	struct kvm_pgtable_walker walker = {
610 		.cb	= hyp_free_walker,
611 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
612 	};
613 
614 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
615 	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
616 	pgt->pgd = NULL;
617 }
618 
619 struct stage2_map_data {
620 	const u64			phys;
621 	kvm_pte_t			attr;
622 	u8				owner_id;
623 
624 	kvm_pte_t			*anchor;
625 	kvm_pte_t			*childp;
626 
627 	struct kvm_s2_mmu		*mmu;
628 	void				*memcache;
629 
630 	/* Force mappings to page granularity */
631 	bool				force_pte;
632 };
633 
634 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
635 {
636 	u64 vtcr = VTCR_EL2_FLAGS;
637 	s8 lvls;
638 
639 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
640 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
641 	/*
642 	 * Use a minimum 2 level page table to prevent splitting
643 	 * host PMD huge pages at stage2.
644 	 */
645 	lvls = stage2_pgtable_levels(phys_shift);
646 	if (lvls < 2)
647 		lvls = 2;
648 
649 	/*
650 	 * When LPA2 is enabled, the HW supports an extra level of translation
651 	 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
652 	 * to as an addition to SL0 to enable encoding this extra start level.
653 	 * However, since we always use concatenated pages for the first level
654 	 * lookup, we will never need this extra level and therefore do not need
655 	 * to touch SL2.
656 	 */
657 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
658 
659 #ifdef CONFIG_ARM64_HW_AFDBM
660 	/*
661 	 * Enable the Hardware Access Flag management, unconditionally
662 	 * on all CPUs. In systems that have asymmetric support for the feature
663 	 * this allows KVM to leverage hardware support on the subset of cores
664 	 * that implement the feature.
665 	 *
666 	 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
667 	 * hardware) on implementations that do not advertise support for the
668 	 * feature. As such, setting HA unconditionally is safe, unless you
669 	 * happen to be running on a design that has unadvertised support for
670 	 * HAFDBS. Here be dragons.
671 	 */
672 	if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
673 		vtcr |= VTCR_EL2_HA;
674 #endif /* CONFIG_ARM64_HW_AFDBM */
675 
676 	if (kvm_lpa2_is_enabled())
677 		vtcr |= VTCR_EL2_DS;
678 
679 	/* Set the vmid bits */
680 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
681 		VTCR_EL2_VS_16BIT :
682 		VTCR_EL2_VS_8BIT;
683 
684 	return vtcr;
685 }
686 
687 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
688 {
689 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
690 		return false;
691 
692 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
693 }
694 
695 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
696 				phys_addr_t addr, size_t size)
697 {
698 	unsigned long pages, inval_pages;
699 
700 	if (!system_supports_tlb_range()) {
701 		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
702 		return;
703 	}
704 
705 	pages = size >> PAGE_SHIFT;
706 	while (pages > 0) {
707 		inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
708 		kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
709 
710 		addr += inval_pages << PAGE_SHIFT;
711 		pages -= inval_pages;
712 	}
713 }
714 
715 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
716 
717 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
718 				kvm_pte_t *ptep)
719 {
720 	kvm_pte_t attr;
721 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
722 
723 	switch (prot & (KVM_PGTABLE_PROT_DEVICE |
724 			KVM_PGTABLE_PROT_NORMAL_NC)) {
725 	case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
726 		return -EINVAL;
727 	case KVM_PGTABLE_PROT_DEVICE:
728 		if (prot & KVM_PGTABLE_PROT_X)
729 			return -EINVAL;
730 		attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
731 		break;
732 	case KVM_PGTABLE_PROT_NORMAL_NC:
733 		if (prot & KVM_PGTABLE_PROT_X)
734 			return -EINVAL;
735 		attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
736 		break;
737 	default:
738 		attr = KVM_S2_MEMATTR(pgt, NORMAL);
739 	}
740 
741 	if (!(prot & KVM_PGTABLE_PROT_X))
742 		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
743 
744 	if (prot & KVM_PGTABLE_PROT_R)
745 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
746 
747 	if (prot & KVM_PGTABLE_PROT_W)
748 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
749 
750 	if (!kvm_lpa2_is_enabled())
751 		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
752 
753 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
754 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
755 	*ptep = attr;
756 
757 	return 0;
758 }
759 
760 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
761 {
762 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
763 
764 	if (!kvm_pte_valid(pte))
765 		return prot;
766 
767 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
768 		prot |= KVM_PGTABLE_PROT_R;
769 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
770 		prot |= KVM_PGTABLE_PROT_W;
771 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
772 		prot |= KVM_PGTABLE_PROT_X;
773 
774 	return prot;
775 }
776 
777 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
778 {
779 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
780 		return true;
781 
782 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
783 }
784 
785 static bool stage2_pte_is_counted(kvm_pte_t pte)
786 {
787 	/*
788 	 * The refcount tracks valid entries as well as invalid entries if they
789 	 * encode ownership of a page to another entity than the page-table
790 	 * owner, whose id is 0.
791 	 */
792 	return !!pte;
793 }
794 
795 static bool stage2_pte_is_locked(kvm_pte_t pte)
796 {
797 	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
798 }
799 
800 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
801 {
802 	if (!kvm_pgtable_walk_shared(ctx)) {
803 		WRITE_ONCE(*ctx->ptep, new);
804 		return true;
805 	}
806 
807 	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
808 }
809 
810 /**
811  * stage2_try_break_pte() - Invalidates a pte according to the
812  *			    'break-before-make' requirements of the
813  *			    architecture.
814  *
815  * @ctx: context of the visited pte.
816  * @mmu: stage-2 mmu
817  *
818  * Returns: true if the pte was successfully broken.
819  *
820  * If the removed pte was valid, performs the necessary serialization and TLB
821  * invalidation for the old value. For counted ptes, drops the reference count
822  * on the containing table page.
823  */
824 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
825 				 struct kvm_s2_mmu *mmu)
826 {
827 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
828 
829 	if (stage2_pte_is_locked(ctx->old)) {
830 		/*
831 		 * Should never occur if this walker has exclusive access to the
832 		 * page tables.
833 		 */
834 		WARN_ON(!kvm_pgtable_walk_shared(ctx));
835 		return false;
836 	}
837 
838 	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
839 		return false;
840 
841 	if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
842 		/*
843 		 * Perform the appropriate TLB invalidation based on the
844 		 * evicted pte value (if any).
845 		 */
846 		if (kvm_pte_table(ctx->old, ctx->level))
847 			kvm_tlb_flush_vmid_range(mmu, ctx->addr,
848 						kvm_granule_size(ctx->level));
849 		else if (kvm_pte_valid(ctx->old))
850 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
851 				     ctx->addr, ctx->level);
852 	}
853 
854 	if (stage2_pte_is_counted(ctx->old))
855 		mm_ops->put_page(ctx->ptep);
856 
857 	return true;
858 }
859 
860 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
861 {
862 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
863 
864 	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
865 
866 	if (stage2_pte_is_counted(new))
867 		mm_ops->get_page(ctx->ptep);
868 
869 	smp_store_release(ctx->ptep, new);
870 }
871 
872 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
873 {
874 	/*
875 	 * If FEAT_TLBIRANGE is implemented, defer the individual
876 	 * TLB invalidations until the entire walk is finished, and
877 	 * then use the range-based TLBI instructions to do the
878 	 * invalidations. Condition deferred TLB invalidation on the
879 	 * system supporting FWB as the optimization is entirely
880 	 * pointless when the unmap walker needs to perform CMOs.
881 	 */
882 	return system_supports_tlb_range() && stage2_has_fwb(pgt);
883 }
884 
885 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
886 				struct kvm_s2_mmu *mmu,
887 				struct kvm_pgtable_mm_ops *mm_ops)
888 {
889 	struct kvm_pgtable *pgt = ctx->arg;
890 
891 	/*
892 	 * Clear the existing PTE, and perform break-before-make if it was
893 	 * valid. Depending on the system support, defer the TLB maintenance
894 	 * for the same until the entire unmap walk is completed.
895 	 */
896 	if (kvm_pte_valid(ctx->old)) {
897 		kvm_clear_pte(ctx->ptep);
898 
899 		if (!stage2_unmap_defer_tlb_flush(pgt))
900 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
901 					ctx->addr, ctx->level);
902 	}
903 
904 	mm_ops->put_page(ctx->ptep);
905 }
906 
907 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
908 {
909 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
910 	return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
911 }
912 
913 static bool stage2_pte_executable(kvm_pte_t pte)
914 {
915 	return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
916 }
917 
918 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
919 				       const struct stage2_map_data *data)
920 {
921 	u64 phys = data->phys;
922 
923 	/*
924 	 * Stage-2 walks to update ownership data are communicated to the map
925 	 * walker using an invalid PA. Avoid offsetting an already invalid PA,
926 	 * which could overflow and make the address valid again.
927 	 */
928 	if (!kvm_phys_is_valid(phys))
929 		return phys;
930 
931 	/*
932 	 * Otherwise, work out the correct PA based on how far the walk has
933 	 * gotten.
934 	 */
935 	return phys + (ctx->addr - ctx->start);
936 }
937 
938 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
939 					struct stage2_map_data *data)
940 {
941 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
942 
943 	if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
944 		return false;
945 
946 	return kvm_block_mapping_supported(ctx, phys);
947 }
948 
949 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
950 				      struct stage2_map_data *data)
951 {
952 	kvm_pte_t new;
953 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
954 	u64 granule = kvm_granule_size(ctx->level);
955 	struct kvm_pgtable *pgt = data->mmu->pgt;
956 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
957 
958 	if (!stage2_leaf_mapping_allowed(ctx, data))
959 		return -E2BIG;
960 
961 	if (kvm_phys_is_valid(phys))
962 		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
963 	else
964 		new = kvm_init_invalid_leaf_owner(data->owner_id);
965 
966 	/*
967 	 * Skip updating the PTE if we are trying to recreate the exact
968 	 * same mapping or only change the access permissions. Instead,
969 	 * the vCPU will exit one more time from guest if still needed
970 	 * and then go through the path of relaxing permissions.
971 	 */
972 	if (!stage2_pte_needs_update(ctx->old, new))
973 		return -EAGAIN;
974 
975 	if (!stage2_try_break_pte(ctx, data->mmu))
976 		return -EAGAIN;
977 
978 	/* Perform CMOs before installation of the guest stage-2 PTE */
979 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
980 	    stage2_pte_cacheable(pgt, new))
981 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
982 					       granule);
983 
984 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
985 	    stage2_pte_executable(new))
986 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
987 
988 	stage2_make_pte(ctx, new);
989 
990 	return 0;
991 }
992 
993 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
994 				     struct stage2_map_data *data)
995 {
996 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
997 	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
998 	int ret;
999 
1000 	if (!stage2_leaf_mapping_allowed(ctx, data))
1001 		return 0;
1002 
1003 	ret = stage2_map_walker_try_leaf(ctx, data);
1004 	if (ret)
1005 		return ret;
1006 
1007 	mm_ops->free_unlinked_table(childp, ctx->level);
1008 	return 0;
1009 }
1010 
1011 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
1012 				struct stage2_map_data *data)
1013 {
1014 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1015 	kvm_pte_t *childp, new;
1016 	int ret;
1017 
1018 	ret = stage2_map_walker_try_leaf(ctx, data);
1019 	if (ret != -E2BIG)
1020 		return ret;
1021 
1022 	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
1023 		return -EINVAL;
1024 
1025 	if (!data->memcache)
1026 		return -ENOMEM;
1027 
1028 	childp = mm_ops->zalloc_page(data->memcache);
1029 	if (!childp)
1030 		return -ENOMEM;
1031 
1032 	if (!stage2_try_break_pte(ctx, data->mmu)) {
1033 		mm_ops->put_page(childp);
1034 		return -EAGAIN;
1035 	}
1036 
1037 	/*
1038 	 * If we've run into an existing block mapping then replace it with
1039 	 * a table. Accesses beyond 'end' that fall within the new table
1040 	 * will be mapped lazily.
1041 	 */
1042 	new = kvm_init_table_pte(childp, mm_ops);
1043 	stage2_make_pte(ctx, new);
1044 
1045 	return 0;
1046 }
1047 
1048 /*
1049  * The TABLE_PRE callback runs for table entries on the way down, looking
1050  * for table entries which we could conceivably replace with a block entry
1051  * for this mapping. If it finds one it replaces the entry and calls
1052  * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1053  *
1054  * Otherwise, the LEAF callback performs the mapping at the existing leaves
1055  * instead.
1056  */
1057 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1058 			     enum kvm_pgtable_walk_flags visit)
1059 {
1060 	struct stage2_map_data *data = ctx->arg;
1061 
1062 	switch (visit) {
1063 	case KVM_PGTABLE_WALK_TABLE_PRE:
1064 		return stage2_map_walk_table_pre(ctx, data);
1065 	case KVM_PGTABLE_WALK_LEAF:
1066 		return stage2_map_walk_leaf(ctx, data);
1067 	default:
1068 		return -EINVAL;
1069 	}
1070 }
1071 
1072 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1073 			   u64 phys, enum kvm_pgtable_prot prot,
1074 			   void *mc, enum kvm_pgtable_walk_flags flags)
1075 {
1076 	int ret;
1077 	struct stage2_map_data map_data = {
1078 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
1079 		.mmu		= pgt->mmu,
1080 		.memcache	= mc,
1081 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1082 	};
1083 	struct kvm_pgtable_walker walker = {
1084 		.cb		= stage2_map_walker,
1085 		.flags		= flags |
1086 				  KVM_PGTABLE_WALK_TABLE_PRE |
1087 				  KVM_PGTABLE_WALK_LEAF,
1088 		.arg		= &map_data,
1089 	};
1090 
1091 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1092 		return -EINVAL;
1093 
1094 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1095 	if (ret)
1096 		return ret;
1097 
1098 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1099 	dsb(ishst);
1100 	return ret;
1101 }
1102 
1103 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1104 				 void *mc, u8 owner_id)
1105 {
1106 	int ret;
1107 	struct stage2_map_data map_data = {
1108 		.phys		= KVM_PHYS_INVALID,
1109 		.mmu		= pgt->mmu,
1110 		.memcache	= mc,
1111 		.owner_id	= owner_id,
1112 		.force_pte	= true,
1113 	};
1114 	struct kvm_pgtable_walker walker = {
1115 		.cb		= stage2_map_walker,
1116 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
1117 				  KVM_PGTABLE_WALK_LEAF,
1118 		.arg		= &map_data,
1119 	};
1120 
1121 	if (owner_id > KVM_MAX_OWNER_ID)
1122 		return -EINVAL;
1123 
1124 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1125 	return ret;
1126 }
1127 
1128 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1129 			       enum kvm_pgtable_walk_flags visit)
1130 {
1131 	struct kvm_pgtable *pgt = ctx->arg;
1132 	struct kvm_s2_mmu *mmu = pgt->mmu;
1133 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1134 	kvm_pte_t *childp = NULL;
1135 	bool need_flush = false;
1136 
1137 	if (!kvm_pte_valid(ctx->old)) {
1138 		if (stage2_pte_is_counted(ctx->old)) {
1139 			kvm_clear_pte(ctx->ptep);
1140 			mm_ops->put_page(ctx->ptep);
1141 		}
1142 		return 0;
1143 	}
1144 
1145 	if (kvm_pte_table(ctx->old, ctx->level)) {
1146 		childp = kvm_pte_follow(ctx->old, mm_ops);
1147 
1148 		if (mm_ops->page_count(childp) != 1)
1149 			return 0;
1150 	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1151 		need_flush = !stage2_has_fwb(pgt);
1152 	}
1153 
1154 	/*
1155 	 * This is similar to the map() path in that we unmap the entire
1156 	 * block entry and rely on the remaining portions being faulted
1157 	 * back lazily.
1158 	 */
1159 	stage2_unmap_put_pte(ctx, mmu, mm_ops);
1160 
1161 	if (need_flush && mm_ops->dcache_clean_inval_poc)
1162 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1163 					       kvm_granule_size(ctx->level));
1164 
1165 	if (childp)
1166 		mm_ops->put_page(childp);
1167 
1168 	return 0;
1169 }
1170 
1171 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1172 {
1173 	int ret;
1174 	struct kvm_pgtable_walker walker = {
1175 		.cb	= stage2_unmap_walker,
1176 		.arg	= pgt,
1177 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1178 	};
1179 
1180 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1181 	if (stage2_unmap_defer_tlb_flush(pgt))
1182 		/* Perform the deferred TLB invalidations */
1183 		kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1184 
1185 	return ret;
1186 }
1187 
1188 struct stage2_attr_data {
1189 	kvm_pte_t			attr_set;
1190 	kvm_pte_t			attr_clr;
1191 	kvm_pte_t			pte;
1192 	s8				level;
1193 };
1194 
1195 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1196 			      enum kvm_pgtable_walk_flags visit)
1197 {
1198 	kvm_pte_t pte = ctx->old;
1199 	struct stage2_attr_data *data = ctx->arg;
1200 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1201 
1202 	if (!kvm_pte_valid(ctx->old))
1203 		return -EAGAIN;
1204 
1205 	data->level = ctx->level;
1206 	data->pte = pte;
1207 	pte &= ~data->attr_clr;
1208 	pte |= data->attr_set;
1209 
1210 	/*
1211 	 * We may race with the CPU trying to set the access flag here,
1212 	 * but worst-case the access flag update gets lost and will be
1213 	 * set on the next access instead.
1214 	 */
1215 	if (data->pte != pte) {
1216 		/*
1217 		 * Invalidate instruction cache before updating the guest
1218 		 * stage-2 PTE if we are going to add executable permission.
1219 		 */
1220 		if (mm_ops->icache_inval_pou &&
1221 		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1222 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1223 						  kvm_granule_size(ctx->level));
1224 
1225 		if (!stage2_try_set_pte(ctx, pte))
1226 			return -EAGAIN;
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1233 				    u64 size, kvm_pte_t attr_set,
1234 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1235 				    s8 *level, enum kvm_pgtable_walk_flags flags)
1236 {
1237 	int ret;
1238 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1239 	struct stage2_attr_data data = {
1240 		.attr_set	= attr_set & attr_mask,
1241 		.attr_clr	= attr_clr & attr_mask,
1242 	};
1243 	struct kvm_pgtable_walker walker = {
1244 		.cb		= stage2_attr_walker,
1245 		.arg		= &data,
1246 		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
1247 	};
1248 
1249 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1250 	if (ret)
1251 		return ret;
1252 
1253 	if (orig_pte)
1254 		*orig_pte = data.pte;
1255 
1256 	if (level)
1257 		*level = data.level;
1258 	return 0;
1259 }
1260 
1261 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1262 {
1263 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1264 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1265 					NULL, NULL, 0);
1266 }
1267 
1268 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1269 {
1270 	kvm_pte_t pte = 0;
1271 	int ret;
1272 
1273 	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1274 				       &pte, NULL,
1275 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1276 				       KVM_PGTABLE_WALK_SHARED);
1277 	if (!ret)
1278 		dsb(ishst);
1279 
1280 	return pte;
1281 }
1282 
1283 struct stage2_age_data {
1284 	bool	mkold;
1285 	bool	young;
1286 };
1287 
1288 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1289 			     enum kvm_pgtable_walk_flags visit)
1290 {
1291 	kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1292 	struct stage2_age_data *data = ctx->arg;
1293 
1294 	if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1295 		return 0;
1296 
1297 	data->young = true;
1298 
1299 	/*
1300 	 * stage2_age_walker() is always called while holding the MMU lock for
1301 	 * write, so this will always succeed. Nonetheless, this deliberately
1302 	 * follows the race detection pattern of the other stage-2 walkers in
1303 	 * case the locking mechanics of the MMU notifiers is ever changed.
1304 	 */
1305 	if (data->mkold && !stage2_try_set_pte(ctx, new))
1306 		return -EAGAIN;
1307 
1308 	/*
1309 	 * "But where's the TLBI?!", you scream.
1310 	 * "Over in the core code", I sigh.
1311 	 *
1312 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1313 	 */
1314 	return 0;
1315 }
1316 
1317 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1318 					 u64 size, bool mkold)
1319 {
1320 	struct stage2_age_data data = {
1321 		.mkold		= mkold,
1322 	};
1323 	struct kvm_pgtable_walker walker = {
1324 		.cb		= stage2_age_walker,
1325 		.arg		= &data,
1326 		.flags		= KVM_PGTABLE_WALK_LEAF,
1327 	};
1328 
1329 	WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1330 	return data.young;
1331 }
1332 
1333 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1334 				   enum kvm_pgtable_prot prot)
1335 {
1336 	int ret;
1337 	s8 level;
1338 	kvm_pte_t set = 0, clr = 0;
1339 
1340 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1341 		return -EINVAL;
1342 
1343 	if (prot & KVM_PGTABLE_PROT_R)
1344 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1345 
1346 	if (prot & KVM_PGTABLE_PROT_W)
1347 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1348 
1349 	if (prot & KVM_PGTABLE_PROT_X)
1350 		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1351 
1352 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1353 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1354 				       KVM_PGTABLE_WALK_SHARED);
1355 	if (!ret || ret == -EAGAIN)
1356 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1357 	return ret;
1358 }
1359 
1360 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1361 			       enum kvm_pgtable_walk_flags visit)
1362 {
1363 	struct kvm_pgtable *pgt = ctx->arg;
1364 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1365 
1366 	if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
1367 		return 0;
1368 
1369 	if (mm_ops->dcache_clean_inval_poc)
1370 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1371 					       kvm_granule_size(ctx->level));
1372 	return 0;
1373 }
1374 
1375 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1376 {
1377 	struct kvm_pgtable_walker walker = {
1378 		.cb	= stage2_flush_walker,
1379 		.flags	= KVM_PGTABLE_WALK_LEAF,
1380 		.arg	= pgt,
1381 	};
1382 
1383 	if (stage2_has_fwb(pgt))
1384 		return 0;
1385 
1386 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1387 }
1388 
1389 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1390 					      u64 phys, s8 level,
1391 					      enum kvm_pgtable_prot prot,
1392 					      void *mc, bool force_pte)
1393 {
1394 	struct stage2_map_data map_data = {
1395 		.phys		= phys,
1396 		.mmu		= pgt->mmu,
1397 		.memcache	= mc,
1398 		.force_pte	= force_pte,
1399 	};
1400 	struct kvm_pgtable_walker walker = {
1401 		.cb		= stage2_map_walker,
1402 		.flags		= KVM_PGTABLE_WALK_LEAF |
1403 				  KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1404 				  KVM_PGTABLE_WALK_SKIP_CMO,
1405 		.arg		= &map_data,
1406 	};
1407 	/*
1408 	 * The input address (.addr) is irrelevant for walking an
1409 	 * unlinked table. Construct an ambiguous IA range to map
1410 	 * kvm_granule_size(level) worth of memory.
1411 	 */
1412 	struct kvm_pgtable_walk_data data = {
1413 		.walker	= &walker,
1414 		.addr	= 0,
1415 		.end	= kvm_granule_size(level),
1416 	};
1417 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1418 	kvm_pte_t *pgtable;
1419 	int ret;
1420 
1421 	if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1422 		return ERR_PTR(-EINVAL);
1423 
1424 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1425 	if (ret)
1426 		return ERR_PTR(ret);
1427 
1428 	pgtable = mm_ops->zalloc_page(mc);
1429 	if (!pgtable)
1430 		return ERR_PTR(-ENOMEM);
1431 
1432 	ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1433 				 level + 1);
1434 	if (ret) {
1435 		kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1436 		return ERR_PTR(ret);
1437 	}
1438 
1439 	return pgtable;
1440 }
1441 
1442 /*
1443  * Get the number of page-tables needed to replace a block with a
1444  * fully populated tree up to the PTE entries. Note that @level is
1445  * interpreted as in "level @level entry".
1446  */
1447 static int stage2_block_get_nr_page_tables(s8 level)
1448 {
1449 	switch (level) {
1450 	case 1:
1451 		return PTRS_PER_PTE + 1;
1452 	case 2:
1453 		return 1;
1454 	case 3:
1455 		return 0;
1456 	default:
1457 		WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1458 			     level > KVM_PGTABLE_LAST_LEVEL);
1459 		return -EINVAL;
1460 	};
1461 }
1462 
1463 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1464 			       enum kvm_pgtable_walk_flags visit)
1465 {
1466 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1467 	struct kvm_mmu_memory_cache *mc = ctx->arg;
1468 	struct kvm_s2_mmu *mmu;
1469 	kvm_pte_t pte = ctx->old, new, *childp;
1470 	enum kvm_pgtable_prot prot;
1471 	s8 level = ctx->level;
1472 	bool force_pte;
1473 	int nr_pages;
1474 	u64 phys;
1475 
1476 	/* No huge-pages exist at the last level */
1477 	if (level == KVM_PGTABLE_LAST_LEVEL)
1478 		return 0;
1479 
1480 	/* We only split valid block mappings */
1481 	if (!kvm_pte_valid(pte))
1482 		return 0;
1483 
1484 	nr_pages = stage2_block_get_nr_page_tables(level);
1485 	if (nr_pages < 0)
1486 		return nr_pages;
1487 
1488 	if (mc->nobjs >= nr_pages) {
1489 		/* Build a tree mapped down to the PTE granularity. */
1490 		force_pte = true;
1491 	} else {
1492 		/*
1493 		 * Don't force PTEs, so create_unlinked() below does
1494 		 * not populate the tree up to the PTE level. The
1495 		 * consequence is that the call will require a single
1496 		 * page of level 2 entries at level 1, or a single
1497 		 * page of PTEs at level 2. If we are at level 1, the
1498 		 * PTEs will be created recursively.
1499 		 */
1500 		force_pte = false;
1501 		nr_pages = 1;
1502 	}
1503 
1504 	if (mc->nobjs < nr_pages)
1505 		return -ENOMEM;
1506 
1507 	mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1508 	phys = kvm_pte_to_phys(pte);
1509 	prot = kvm_pgtable_stage2_pte_prot(pte);
1510 
1511 	childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1512 						    level, prot, mc, force_pte);
1513 	if (IS_ERR(childp))
1514 		return PTR_ERR(childp);
1515 
1516 	if (!stage2_try_break_pte(ctx, mmu)) {
1517 		kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1518 		return -EAGAIN;
1519 	}
1520 
1521 	/*
1522 	 * Note, the contents of the page table are guaranteed to be made
1523 	 * visible before the new PTE is assigned because stage2_make_pte()
1524 	 * writes the PTE using smp_store_release().
1525 	 */
1526 	new = kvm_init_table_pte(childp, mm_ops);
1527 	stage2_make_pte(ctx, new);
1528 	dsb(ishst);
1529 	return 0;
1530 }
1531 
1532 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1533 			     struct kvm_mmu_memory_cache *mc)
1534 {
1535 	struct kvm_pgtable_walker walker = {
1536 		.cb	= stage2_split_walker,
1537 		.flags	= KVM_PGTABLE_WALK_LEAF,
1538 		.arg	= mc,
1539 	};
1540 
1541 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1542 }
1543 
1544 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1545 			      struct kvm_pgtable_mm_ops *mm_ops,
1546 			      enum kvm_pgtable_stage2_flags flags,
1547 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1548 {
1549 	size_t pgd_sz;
1550 	u64 vtcr = mmu->vtcr;
1551 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1552 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1553 	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1554 
1555 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1556 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1557 	if (!pgt->pgd)
1558 		return -ENOMEM;
1559 
1560 	pgt->ia_bits		= ia_bits;
1561 	pgt->start_level	= start_level;
1562 	pgt->mm_ops		= mm_ops;
1563 	pgt->mmu		= mmu;
1564 	pgt->flags		= flags;
1565 	pgt->force_pte_cb	= force_pte_cb;
1566 
1567 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1568 	dsb(ishst);
1569 	return 0;
1570 }
1571 
1572 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1573 {
1574 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1575 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1576 	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1577 
1578 	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1579 }
1580 
1581 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1582 			      enum kvm_pgtable_walk_flags visit)
1583 {
1584 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1585 
1586 	if (!stage2_pte_is_counted(ctx->old))
1587 		return 0;
1588 
1589 	mm_ops->put_page(ctx->ptep);
1590 
1591 	if (kvm_pte_table(ctx->old, ctx->level))
1592 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1593 
1594 	return 0;
1595 }
1596 
1597 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1598 {
1599 	size_t pgd_sz;
1600 	struct kvm_pgtable_walker walker = {
1601 		.cb	= stage2_free_walker,
1602 		.flags	= KVM_PGTABLE_WALK_LEAF |
1603 			  KVM_PGTABLE_WALK_TABLE_POST,
1604 	};
1605 
1606 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1607 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1608 	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1609 	pgt->pgd = NULL;
1610 }
1611 
1612 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1613 {
1614 	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1615 	struct kvm_pgtable_walker walker = {
1616 		.cb	= stage2_free_walker,
1617 		.flags	= KVM_PGTABLE_WALK_LEAF |
1618 			  KVM_PGTABLE_WALK_TABLE_POST,
1619 	};
1620 	struct kvm_pgtable_walk_data data = {
1621 		.walker	= &walker,
1622 
1623 		/*
1624 		 * At this point the IPA really doesn't matter, as the page
1625 		 * table being traversed has already been removed from the stage
1626 		 * 2. Set an appropriate range to cover the entire page table.
1627 		 */
1628 		.addr	= 0,
1629 		.end	= kvm_granule_size(level),
1630 	};
1631 
1632 	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1633 
1634 	WARN_ON(mm_ops->page_count(pgtable) != 1);
1635 	mm_ops->put_page(pgtable);
1636 }
1637