xref: /linux/arch/arm64/kvm/hyp/pgtable.c (revision d90d90a1978af6530c7d8b201c4ab117d0506b1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 
15 #define KVM_PTE_TYPE			BIT(1)
16 #define KVM_PTE_TYPE_BLOCK		0
17 #define KVM_PTE_TYPE_PAGE		1
18 #define KVM_PTE_TYPE_TABLE		1
19 
20 #define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)
21 
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO	3
25 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW	1
26 #define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
27 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
28 #define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)
29 
30 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
31 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
32 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
35 #define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)
36 
37 #define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 51)
38 
39 #define KVM_PTE_LEAF_ATTR_HI_SW		GENMASK(58, 55)
40 
41 #define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)
42 
43 #define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)
44 
45 #define KVM_PTE_LEAF_ATTR_S2_PERMS	(KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
46 					 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
47 					 KVM_PTE_LEAF_ATTR_HI_S2_XN)
48 
49 #define KVM_INVALID_PTE_OWNER_MASK	GENMASK(9, 2)
50 #define KVM_MAX_OWNER_ID		1
51 
52 /*
53  * Used to indicate a pte for which a 'break-before-make' sequence is in
54  * progress.
55  */
56 #define KVM_INVALID_PTE_LOCKED		BIT(10)
57 
58 struct kvm_pgtable_walk_data {
59 	struct kvm_pgtable_walker	*walker;
60 
61 	u64				addr;
62 	u64				end;
63 };
64 
65 static bool kvm_phys_is_valid(u64 phys)
66 {
67 	return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
68 }
69 
70 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
71 {
72 	u64 granule = kvm_granule_size(ctx->level);
73 
74 	if (!kvm_level_supports_block_mapping(ctx->level))
75 		return false;
76 
77 	if (granule > (ctx->end - ctx->addr))
78 		return false;
79 
80 	if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
81 		return false;
82 
83 	return IS_ALIGNED(ctx->addr, granule);
84 }
85 
86 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
87 {
88 	u64 shift = kvm_granule_shift(level);
89 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
90 
91 	return (data->addr >> shift) & mask;
92 }
93 
94 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
95 {
96 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
97 	u64 mask = BIT(pgt->ia_bits) - 1;
98 
99 	return (addr & mask) >> shift;
100 }
101 
102 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
103 {
104 	struct kvm_pgtable pgt = {
105 		.ia_bits	= ia_bits,
106 		.start_level	= start_level,
107 	};
108 
109 	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
110 }
111 
112 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
113 {
114 	if (level == KVM_PGTABLE_MAX_LEVELS - 1)
115 		return false;
116 
117 	if (!kvm_pte_valid(pte))
118 		return false;
119 
120 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
121 }
122 
123 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
124 {
125 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
126 }
127 
128 static void kvm_clear_pte(kvm_pte_t *ptep)
129 {
130 	WRITE_ONCE(*ptep, 0);
131 }
132 
133 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
134 {
135 	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
136 
137 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
138 	pte |= KVM_PTE_VALID;
139 	return pte;
140 }
141 
142 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
143 {
144 	kvm_pte_t pte = kvm_phys_to_pte(pa);
145 	u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
146 							   KVM_PTE_TYPE_BLOCK;
147 
148 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
149 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
150 	pte |= KVM_PTE_VALID;
151 
152 	return pte;
153 }
154 
155 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
156 {
157 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
158 }
159 
160 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
161 				  const struct kvm_pgtable_visit_ctx *ctx,
162 				  enum kvm_pgtable_walk_flags visit)
163 {
164 	struct kvm_pgtable_walker *walker = data->walker;
165 
166 	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
167 	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
168 	return walker->cb(ctx, visit);
169 }
170 
171 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
172 				      int r)
173 {
174 	/*
175 	 * Visitor callbacks return EAGAIN when the conditions that led to a
176 	 * fault are no longer reflected in the page tables due to a race to
177 	 * update a PTE. In the context of a fault handler this is interpreted
178 	 * as a signal to retry guest execution.
179 	 *
180 	 * Ignore the return code altogether for walkers outside a fault handler
181 	 * (e.g. write protecting a range of memory) and chug along with the
182 	 * page table walk.
183 	 */
184 	if (r == -EAGAIN)
185 		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
186 
187 	return !r;
188 }
189 
190 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
191 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level);
192 
193 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
194 				      struct kvm_pgtable_mm_ops *mm_ops,
195 				      kvm_pteref_t pteref, u32 level)
196 {
197 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
198 	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
199 	struct kvm_pgtable_visit_ctx ctx = {
200 		.ptep	= ptep,
201 		.old	= READ_ONCE(*ptep),
202 		.arg	= data->walker->arg,
203 		.mm_ops	= mm_ops,
204 		.addr	= data->addr,
205 		.end	= data->end,
206 		.level	= level,
207 		.flags	= flags,
208 	};
209 	int ret = 0;
210 	kvm_pteref_t childp;
211 	bool table = kvm_pte_table(ctx.old, level);
212 
213 	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE))
214 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
215 
216 	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
217 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
218 		ctx.old = READ_ONCE(*ptep);
219 		table = kvm_pte_table(ctx.old, level);
220 	}
221 
222 	if (!kvm_pgtable_walk_continue(data->walker, ret))
223 		goto out;
224 
225 	if (!table) {
226 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
227 		data->addr += kvm_granule_size(level);
228 		goto out;
229 	}
230 
231 	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
232 	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
233 	if (!kvm_pgtable_walk_continue(data->walker, ret))
234 		goto out;
235 
236 	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
237 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
238 
239 out:
240 	if (kvm_pgtable_walk_continue(data->walker, ret))
241 		return 0;
242 
243 	return ret;
244 }
245 
246 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
247 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level)
248 {
249 	u32 idx;
250 	int ret = 0;
251 
252 	if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
253 		return -EINVAL;
254 
255 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
256 		kvm_pteref_t pteref = &pgtable[idx];
257 
258 		if (data->addr >= data->end)
259 			break;
260 
261 		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
262 		if (ret)
263 			break;
264 	}
265 
266 	return ret;
267 }
268 
269 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
270 {
271 	u32 idx;
272 	int ret = 0;
273 	u64 limit = BIT(pgt->ia_bits);
274 
275 	if (data->addr > limit || data->end > limit)
276 		return -ERANGE;
277 
278 	if (!pgt->pgd)
279 		return -EINVAL;
280 
281 	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
282 		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
283 
284 		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
285 		if (ret)
286 			break;
287 	}
288 
289 	return ret;
290 }
291 
292 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
293 		     struct kvm_pgtable_walker *walker)
294 {
295 	struct kvm_pgtable_walk_data walk_data = {
296 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
297 		.end	= PAGE_ALIGN(walk_data.addr + size),
298 		.walker	= walker,
299 	};
300 	int r;
301 
302 	r = kvm_pgtable_walk_begin(walker);
303 	if (r)
304 		return r;
305 
306 	r = _kvm_pgtable_walk(pgt, &walk_data);
307 	kvm_pgtable_walk_end(walker);
308 
309 	return r;
310 }
311 
312 struct leaf_walk_data {
313 	kvm_pte_t	pte;
314 	u32		level;
315 };
316 
317 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
318 		       enum kvm_pgtable_walk_flags visit)
319 {
320 	struct leaf_walk_data *data = ctx->arg;
321 
322 	data->pte   = ctx->old;
323 	data->level = ctx->level;
324 
325 	return 0;
326 }
327 
328 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
329 			 kvm_pte_t *ptep, u32 *level)
330 {
331 	struct leaf_walk_data data;
332 	struct kvm_pgtable_walker walker = {
333 		.cb	= leaf_walker,
334 		.flags	= KVM_PGTABLE_WALK_LEAF,
335 		.arg	= &data,
336 	};
337 	int ret;
338 
339 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
340 			       PAGE_SIZE, &walker);
341 	if (!ret) {
342 		if (ptep)
343 			*ptep  = data.pte;
344 		if (level)
345 			*level = data.level;
346 	}
347 
348 	return ret;
349 }
350 
351 struct hyp_map_data {
352 	u64				phys;
353 	kvm_pte_t			attr;
354 };
355 
356 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
357 {
358 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
359 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
360 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
361 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
362 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
363 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
364 
365 	if (!(prot & KVM_PGTABLE_PROT_R))
366 		return -EINVAL;
367 
368 	if (prot & KVM_PGTABLE_PROT_X) {
369 		if (prot & KVM_PGTABLE_PROT_W)
370 			return -EINVAL;
371 
372 		if (device)
373 			return -EINVAL;
374 	} else {
375 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
376 	}
377 
378 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
379 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
380 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
381 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
382 	*ptep = attr;
383 
384 	return 0;
385 }
386 
387 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
388 {
389 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
390 	u32 ap;
391 
392 	if (!kvm_pte_valid(pte))
393 		return prot;
394 
395 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
396 		prot |= KVM_PGTABLE_PROT_X;
397 
398 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
399 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
400 		prot |= KVM_PGTABLE_PROT_R;
401 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
402 		prot |= KVM_PGTABLE_PROT_RW;
403 
404 	return prot;
405 }
406 
407 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
408 				    struct hyp_map_data *data)
409 {
410 	kvm_pte_t new;
411 	u64 granule = kvm_granule_size(ctx->level), phys = data->phys;
412 
413 	if (!kvm_block_mapping_supported(ctx, phys))
414 		return false;
415 
416 	data->phys += granule;
417 	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
418 	if (ctx->old == new)
419 		return true;
420 	if (!kvm_pte_valid(ctx->old))
421 		ctx->mm_ops->get_page(ctx->ptep);
422 	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
423 		return false;
424 
425 	smp_store_release(ctx->ptep, new);
426 	return true;
427 }
428 
429 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
430 			  enum kvm_pgtable_walk_flags visit)
431 {
432 	kvm_pte_t *childp, new;
433 	struct hyp_map_data *data = ctx->arg;
434 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
435 
436 	if (hyp_map_walker_try_leaf(ctx, data))
437 		return 0;
438 
439 	if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
440 		return -EINVAL;
441 
442 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
443 	if (!childp)
444 		return -ENOMEM;
445 
446 	new = kvm_init_table_pte(childp, mm_ops);
447 	mm_ops->get_page(ctx->ptep);
448 	smp_store_release(ctx->ptep, new);
449 
450 	return 0;
451 }
452 
453 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
454 			enum kvm_pgtable_prot prot)
455 {
456 	int ret;
457 	struct hyp_map_data map_data = {
458 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
459 	};
460 	struct kvm_pgtable_walker walker = {
461 		.cb	= hyp_map_walker,
462 		.flags	= KVM_PGTABLE_WALK_LEAF,
463 		.arg	= &map_data,
464 	};
465 
466 	ret = hyp_set_prot_attr(prot, &map_data.attr);
467 	if (ret)
468 		return ret;
469 
470 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
471 	dsb(ishst);
472 	isb();
473 	return ret;
474 }
475 
476 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
477 			    enum kvm_pgtable_walk_flags visit)
478 {
479 	kvm_pte_t *childp = NULL;
480 	u64 granule = kvm_granule_size(ctx->level);
481 	u64 *unmapped = ctx->arg;
482 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
483 
484 	if (!kvm_pte_valid(ctx->old))
485 		return -EINVAL;
486 
487 	if (kvm_pte_table(ctx->old, ctx->level)) {
488 		childp = kvm_pte_follow(ctx->old, mm_ops);
489 
490 		if (mm_ops->page_count(childp) != 1)
491 			return 0;
492 
493 		kvm_clear_pte(ctx->ptep);
494 		dsb(ishst);
495 		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
496 	} else {
497 		if (ctx->end - ctx->addr < granule)
498 			return -EINVAL;
499 
500 		kvm_clear_pte(ctx->ptep);
501 		dsb(ishst);
502 		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
503 		*unmapped += granule;
504 	}
505 
506 	dsb(ish);
507 	isb();
508 	mm_ops->put_page(ctx->ptep);
509 
510 	if (childp)
511 		mm_ops->put_page(childp);
512 
513 	return 0;
514 }
515 
516 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
517 {
518 	u64 unmapped = 0;
519 	struct kvm_pgtable_walker walker = {
520 		.cb	= hyp_unmap_walker,
521 		.arg	= &unmapped,
522 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
523 	};
524 
525 	if (!pgt->mm_ops->page_count)
526 		return 0;
527 
528 	kvm_pgtable_walk(pgt, addr, size, &walker);
529 	return unmapped;
530 }
531 
532 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
533 			 struct kvm_pgtable_mm_ops *mm_ops)
534 {
535 	u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
536 
537 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
538 	if (!pgt->pgd)
539 		return -ENOMEM;
540 
541 	pgt->ia_bits		= va_bits;
542 	pgt->start_level	= KVM_PGTABLE_MAX_LEVELS - levels;
543 	pgt->mm_ops		= mm_ops;
544 	pgt->mmu		= NULL;
545 	pgt->force_pte_cb	= NULL;
546 
547 	return 0;
548 }
549 
550 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
551 			   enum kvm_pgtable_walk_flags visit)
552 {
553 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
554 
555 	if (!kvm_pte_valid(ctx->old))
556 		return 0;
557 
558 	mm_ops->put_page(ctx->ptep);
559 
560 	if (kvm_pte_table(ctx->old, ctx->level))
561 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
562 
563 	return 0;
564 }
565 
566 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
567 {
568 	struct kvm_pgtable_walker walker = {
569 		.cb	= hyp_free_walker,
570 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
571 	};
572 
573 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
574 	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
575 	pgt->pgd = NULL;
576 }
577 
578 struct stage2_map_data {
579 	u64				phys;
580 	kvm_pte_t			attr;
581 	u8				owner_id;
582 
583 	kvm_pte_t			*anchor;
584 	kvm_pte_t			*childp;
585 
586 	struct kvm_s2_mmu		*mmu;
587 	void				*memcache;
588 
589 	/* Force mappings to page granularity */
590 	bool				force_pte;
591 };
592 
593 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
594 {
595 	u64 vtcr = VTCR_EL2_FLAGS;
596 	u8 lvls;
597 
598 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
599 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
600 	/*
601 	 * Use a minimum 2 level page table to prevent splitting
602 	 * host PMD huge pages at stage2.
603 	 */
604 	lvls = stage2_pgtable_levels(phys_shift);
605 	if (lvls < 2)
606 		lvls = 2;
607 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
608 
609 #ifdef CONFIG_ARM64_HW_AFDBM
610 	/*
611 	 * Enable the Hardware Access Flag management, unconditionally
612 	 * on all CPUs. The features is RES0 on CPUs without the support
613 	 * and must be ignored by the CPUs.
614 	 */
615 	vtcr |= VTCR_EL2_HA;
616 #endif /* CONFIG_ARM64_HW_AFDBM */
617 
618 	/* Set the vmid bits */
619 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
620 		VTCR_EL2_VS_16BIT :
621 		VTCR_EL2_VS_8BIT;
622 
623 	return vtcr;
624 }
625 
626 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
627 {
628 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
629 		return false;
630 
631 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
632 }
633 
634 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
635 
636 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
637 				kvm_pte_t *ptep)
638 {
639 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
640 	kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
641 			    KVM_S2_MEMATTR(pgt, NORMAL);
642 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
643 
644 	if (!(prot & KVM_PGTABLE_PROT_X))
645 		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
646 	else if (device)
647 		return -EINVAL;
648 
649 	if (prot & KVM_PGTABLE_PROT_R)
650 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
651 
652 	if (prot & KVM_PGTABLE_PROT_W)
653 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
654 
655 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
656 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
657 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
658 	*ptep = attr;
659 
660 	return 0;
661 }
662 
663 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
664 {
665 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
666 
667 	if (!kvm_pte_valid(pte))
668 		return prot;
669 
670 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
671 		prot |= KVM_PGTABLE_PROT_R;
672 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
673 		prot |= KVM_PGTABLE_PROT_W;
674 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
675 		prot |= KVM_PGTABLE_PROT_X;
676 
677 	return prot;
678 }
679 
680 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
681 {
682 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
683 		return true;
684 
685 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
686 }
687 
688 static bool stage2_pte_is_counted(kvm_pte_t pte)
689 {
690 	/*
691 	 * The refcount tracks valid entries as well as invalid entries if they
692 	 * encode ownership of a page to another entity than the page-table
693 	 * owner, whose id is 0.
694 	 */
695 	return !!pte;
696 }
697 
698 static bool stage2_pte_is_locked(kvm_pte_t pte)
699 {
700 	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
701 }
702 
703 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
704 {
705 	if (!kvm_pgtable_walk_shared(ctx)) {
706 		WRITE_ONCE(*ctx->ptep, new);
707 		return true;
708 	}
709 
710 	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
711 }
712 
713 /**
714  * stage2_try_break_pte() - Invalidates a pte according to the
715  *			    'break-before-make' requirements of the
716  *			    architecture.
717  *
718  * @ctx: context of the visited pte.
719  * @mmu: stage-2 mmu
720  *
721  * Returns: true if the pte was successfully broken.
722  *
723  * If the removed pte was valid, performs the necessary serialization and TLB
724  * invalidation for the old value. For counted ptes, drops the reference count
725  * on the containing table page.
726  */
727 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
728 				 struct kvm_s2_mmu *mmu)
729 {
730 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
731 
732 	if (stage2_pte_is_locked(ctx->old)) {
733 		/*
734 		 * Should never occur if this walker has exclusive access to the
735 		 * page tables.
736 		 */
737 		WARN_ON(!kvm_pgtable_walk_shared(ctx));
738 		return false;
739 	}
740 
741 	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
742 		return false;
743 
744 	/*
745 	 * Perform the appropriate TLB invalidation based on the evicted pte
746 	 * value (if any).
747 	 */
748 	if (kvm_pte_table(ctx->old, ctx->level))
749 		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
750 	else if (kvm_pte_valid(ctx->old))
751 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, ctx->level);
752 
753 	if (stage2_pte_is_counted(ctx->old))
754 		mm_ops->put_page(ctx->ptep);
755 
756 	return true;
757 }
758 
759 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
760 {
761 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
762 
763 	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
764 
765 	if (stage2_pte_is_counted(new))
766 		mm_ops->get_page(ctx->ptep);
767 
768 	smp_store_release(ctx->ptep, new);
769 }
770 
771 static void stage2_put_pte(const struct kvm_pgtable_visit_ctx *ctx, struct kvm_s2_mmu *mmu,
772 			   struct kvm_pgtable_mm_ops *mm_ops)
773 {
774 	/*
775 	 * Clear the existing PTE, and perform break-before-make with
776 	 * TLB maintenance if it was valid.
777 	 */
778 	if (kvm_pte_valid(ctx->old)) {
779 		kvm_clear_pte(ctx->ptep);
780 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, ctx->level);
781 	}
782 
783 	mm_ops->put_page(ctx->ptep);
784 }
785 
786 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
787 {
788 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
789 	return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
790 }
791 
792 static bool stage2_pte_executable(kvm_pte_t pte)
793 {
794 	return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
795 }
796 
797 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
798 					struct stage2_map_data *data)
799 {
800 	if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1)))
801 		return false;
802 
803 	return kvm_block_mapping_supported(ctx, data->phys);
804 }
805 
806 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
807 				      struct stage2_map_data *data)
808 {
809 	kvm_pte_t new;
810 	u64 granule = kvm_granule_size(ctx->level), phys = data->phys;
811 	struct kvm_pgtable *pgt = data->mmu->pgt;
812 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
813 
814 	if (!stage2_leaf_mapping_allowed(ctx, data))
815 		return -E2BIG;
816 
817 	if (kvm_phys_is_valid(phys))
818 		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
819 	else
820 		new = kvm_init_invalid_leaf_owner(data->owner_id);
821 
822 	/*
823 	 * Skip updating the PTE if we are trying to recreate the exact
824 	 * same mapping or only change the access permissions. Instead,
825 	 * the vCPU will exit one more time from guest if still needed
826 	 * and then go through the path of relaxing permissions.
827 	 */
828 	if (!stage2_pte_needs_update(ctx->old, new))
829 		return -EAGAIN;
830 
831 	if (!stage2_try_break_pte(ctx, data->mmu))
832 		return -EAGAIN;
833 
834 	/* Perform CMOs before installation of the guest stage-2 PTE */
835 	if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
836 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
837 						granule);
838 
839 	if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
840 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
841 
842 	stage2_make_pte(ctx, new);
843 
844 	if (kvm_phys_is_valid(phys))
845 		data->phys += granule;
846 	return 0;
847 }
848 
849 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
850 				     struct stage2_map_data *data)
851 {
852 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
853 	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
854 	int ret;
855 
856 	if (!stage2_leaf_mapping_allowed(ctx, data))
857 		return 0;
858 
859 	ret = stage2_map_walker_try_leaf(ctx, data);
860 	if (ret)
861 		return ret;
862 
863 	mm_ops->free_removed_table(childp, ctx->level);
864 	return 0;
865 }
866 
867 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
868 				struct stage2_map_data *data)
869 {
870 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
871 	kvm_pte_t *childp, new;
872 	int ret;
873 
874 	ret = stage2_map_walker_try_leaf(ctx, data);
875 	if (ret != -E2BIG)
876 		return ret;
877 
878 	if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
879 		return -EINVAL;
880 
881 	if (!data->memcache)
882 		return -ENOMEM;
883 
884 	childp = mm_ops->zalloc_page(data->memcache);
885 	if (!childp)
886 		return -ENOMEM;
887 
888 	if (!stage2_try_break_pte(ctx, data->mmu)) {
889 		mm_ops->put_page(childp);
890 		return -EAGAIN;
891 	}
892 
893 	/*
894 	 * If we've run into an existing block mapping then replace it with
895 	 * a table. Accesses beyond 'end' that fall within the new table
896 	 * will be mapped lazily.
897 	 */
898 	new = kvm_init_table_pte(childp, mm_ops);
899 	stage2_make_pte(ctx, new);
900 
901 	return 0;
902 }
903 
904 /*
905  * The TABLE_PRE callback runs for table entries on the way down, looking
906  * for table entries which we could conceivably replace with a block entry
907  * for this mapping. If it finds one it replaces the entry and calls
908  * kvm_pgtable_mm_ops::free_removed_table() to tear down the detached table.
909  *
910  * Otherwise, the LEAF callback performs the mapping at the existing leaves
911  * instead.
912  */
913 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
914 			     enum kvm_pgtable_walk_flags visit)
915 {
916 	struct stage2_map_data *data = ctx->arg;
917 
918 	switch (visit) {
919 	case KVM_PGTABLE_WALK_TABLE_PRE:
920 		return stage2_map_walk_table_pre(ctx, data);
921 	case KVM_PGTABLE_WALK_LEAF:
922 		return stage2_map_walk_leaf(ctx, data);
923 	default:
924 		return -EINVAL;
925 	}
926 }
927 
928 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
929 			   u64 phys, enum kvm_pgtable_prot prot,
930 			   void *mc, enum kvm_pgtable_walk_flags flags)
931 {
932 	int ret;
933 	struct stage2_map_data map_data = {
934 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
935 		.mmu		= pgt->mmu,
936 		.memcache	= mc,
937 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
938 	};
939 	struct kvm_pgtable_walker walker = {
940 		.cb		= stage2_map_walker,
941 		.flags		= flags |
942 				  KVM_PGTABLE_WALK_TABLE_PRE |
943 				  KVM_PGTABLE_WALK_LEAF,
944 		.arg		= &map_data,
945 	};
946 
947 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
948 		return -EINVAL;
949 
950 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
951 	if (ret)
952 		return ret;
953 
954 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
955 	dsb(ishst);
956 	return ret;
957 }
958 
959 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
960 				 void *mc, u8 owner_id)
961 {
962 	int ret;
963 	struct stage2_map_data map_data = {
964 		.phys		= KVM_PHYS_INVALID,
965 		.mmu		= pgt->mmu,
966 		.memcache	= mc,
967 		.owner_id	= owner_id,
968 		.force_pte	= true,
969 	};
970 	struct kvm_pgtable_walker walker = {
971 		.cb		= stage2_map_walker,
972 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
973 				  KVM_PGTABLE_WALK_LEAF,
974 		.arg		= &map_data,
975 	};
976 
977 	if (owner_id > KVM_MAX_OWNER_ID)
978 		return -EINVAL;
979 
980 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
981 	return ret;
982 }
983 
984 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
985 			       enum kvm_pgtable_walk_flags visit)
986 {
987 	struct kvm_pgtable *pgt = ctx->arg;
988 	struct kvm_s2_mmu *mmu = pgt->mmu;
989 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
990 	kvm_pte_t *childp = NULL;
991 	bool need_flush = false;
992 
993 	if (!kvm_pte_valid(ctx->old)) {
994 		if (stage2_pte_is_counted(ctx->old)) {
995 			kvm_clear_pte(ctx->ptep);
996 			mm_ops->put_page(ctx->ptep);
997 		}
998 		return 0;
999 	}
1000 
1001 	if (kvm_pte_table(ctx->old, ctx->level)) {
1002 		childp = kvm_pte_follow(ctx->old, mm_ops);
1003 
1004 		if (mm_ops->page_count(childp) != 1)
1005 			return 0;
1006 	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1007 		need_flush = !stage2_has_fwb(pgt);
1008 	}
1009 
1010 	/*
1011 	 * This is similar to the map() path in that we unmap the entire
1012 	 * block entry and rely on the remaining portions being faulted
1013 	 * back lazily.
1014 	 */
1015 	stage2_put_pte(ctx, mmu, mm_ops);
1016 
1017 	if (need_flush && mm_ops->dcache_clean_inval_poc)
1018 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1019 					       kvm_granule_size(ctx->level));
1020 
1021 	if (childp)
1022 		mm_ops->put_page(childp);
1023 
1024 	return 0;
1025 }
1026 
1027 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1028 {
1029 	struct kvm_pgtable_walker walker = {
1030 		.cb	= stage2_unmap_walker,
1031 		.arg	= pgt,
1032 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1033 	};
1034 
1035 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1036 }
1037 
1038 struct stage2_attr_data {
1039 	kvm_pte_t			attr_set;
1040 	kvm_pte_t			attr_clr;
1041 	kvm_pte_t			pte;
1042 	u32				level;
1043 };
1044 
1045 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1046 			      enum kvm_pgtable_walk_flags visit)
1047 {
1048 	kvm_pte_t pte = ctx->old;
1049 	struct stage2_attr_data *data = ctx->arg;
1050 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1051 
1052 	if (!kvm_pte_valid(ctx->old))
1053 		return -EAGAIN;
1054 
1055 	data->level = ctx->level;
1056 	data->pte = pte;
1057 	pte &= ~data->attr_clr;
1058 	pte |= data->attr_set;
1059 
1060 	/*
1061 	 * We may race with the CPU trying to set the access flag here,
1062 	 * but worst-case the access flag update gets lost and will be
1063 	 * set on the next access instead.
1064 	 */
1065 	if (data->pte != pte) {
1066 		/*
1067 		 * Invalidate instruction cache before updating the guest
1068 		 * stage-2 PTE if we are going to add executable permission.
1069 		 */
1070 		if (mm_ops->icache_inval_pou &&
1071 		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1072 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1073 						  kvm_granule_size(ctx->level));
1074 
1075 		if (!stage2_try_set_pte(ctx, pte))
1076 			return -EAGAIN;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1083 				    u64 size, kvm_pte_t attr_set,
1084 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1085 				    u32 *level, enum kvm_pgtable_walk_flags flags)
1086 {
1087 	int ret;
1088 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1089 	struct stage2_attr_data data = {
1090 		.attr_set	= attr_set & attr_mask,
1091 		.attr_clr	= attr_clr & attr_mask,
1092 	};
1093 	struct kvm_pgtable_walker walker = {
1094 		.cb		= stage2_attr_walker,
1095 		.arg		= &data,
1096 		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
1097 	};
1098 
1099 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1100 	if (ret)
1101 		return ret;
1102 
1103 	if (orig_pte)
1104 		*orig_pte = data.pte;
1105 
1106 	if (level)
1107 		*level = data.level;
1108 	return 0;
1109 }
1110 
1111 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1112 {
1113 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1114 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1115 					NULL, NULL, 0);
1116 }
1117 
1118 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1119 {
1120 	kvm_pte_t pte = 0;
1121 	int ret;
1122 
1123 	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1124 				       &pte, NULL,
1125 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1126 				       KVM_PGTABLE_WALK_SHARED);
1127 	if (!ret)
1128 		dsb(ishst);
1129 
1130 	return pte;
1131 }
1132 
1133 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
1134 {
1135 	kvm_pte_t pte = 0;
1136 	stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
1137 				 &pte, NULL, 0);
1138 	/*
1139 	 * "But where's the TLBI?!", you scream.
1140 	 * "Over in the core code", I sigh.
1141 	 *
1142 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1143 	 */
1144 	return pte;
1145 }
1146 
1147 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
1148 {
1149 	kvm_pte_t pte = 0;
1150 	stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL, 0);
1151 	return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
1152 }
1153 
1154 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1155 				   enum kvm_pgtable_prot prot)
1156 {
1157 	int ret;
1158 	u32 level;
1159 	kvm_pte_t set = 0, clr = 0;
1160 
1161 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1162 		return -EINVAL;
1163 
1164 	if (prot & KVM_PGTABLE_PROT_R)
1165 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1166 
1167 	if (prot & KVM_PGTABLE_PROT_W)
1168 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1169 
1170 	if (prot & KVM_PGTABLE_PROT_X)
1171 		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1172 
1173 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1174 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1175 				       KVM_PGTABLE_WALK_SHARED);
1176 	if (!ret)
1177 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
1178 	return ret;
1179 }
1180 
1181 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1182 			       enum kvm_pgtable_walk_flags visit)
1183 {
1184 	struct kvm_pgtable *pgt = ctx->arg;
1185 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1186 
1187 	if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
1188 		return 0;
1189 
1190 	if (mm_ops->dcache_clean_inval_poc)
1191 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1192 					       kvm_granule_size(ctx->level));
1193 	return 0;
1194 }
1195 
1196 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1197 {
1198 	struct kvm_pgtable_walker walker = {
1199 		.cb	= stage2_flush_walker,
1200 		.flags	= KVM_PGTABLE_WALK_LEAF,
1201 		.arg	= pgt,
1202 	};
1203 
1204 	if (stage2_has_fwb(pgt))
1205 		return 0;
1206 
1207 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1208 }
1209 
1210 
1211 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1212 			      struct kvm_pgtable_mm_ops *mm_ops,
1213 			      enum kvm_pgtable_stage2_flags flags,
1214 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1215 {
1216 	size_t pgd_sz;
1217 	u64 vtcr = mmu->arch->vtcr;
1218 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1219 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1220 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1221 
1222 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1223 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1224 	if (!pgt->pgd)
1225 		return -ENOMEM;
1226 
1227 	pgt->ia_bits		= ia_bits;
1228 	pgt->start_level	= start_level;
1229 	pgt->mm_ops		= mm_ops;
1230 	pgt->mmu		= mmu;
1231 	pgt->flags		= flags;
1232 	pgt->force_pte_cb	= force_pte_cb;
1233 
1234 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1235 	dsb(ishst);
1236 	return 0;
1237 }
1238 
1239 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1240 {
1241 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1242 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1243 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1244 
1245 	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1246 }
1247 
1248 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1249 			      enum kvm_pgtable_walk_flags visit)
1250 {
1251 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1252 
1253 	if (!stage2_pte_is_counted(ctx->old))
1254 		return 0;
1255 
1256 	mm_ops->put_page(ctx->ptep);
1257 
1258 	if (kvm_pte_table(ctx->old, ctx->level))
1259 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1260 
1261 	return 0;
1262 }
1263 
1264 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1265 {
1266 	size_t pgd_sz;
1267 	struct kvm_pgtable_walker walker = {
1268 		.cb	= stage2_free_walker,
1269 		.flags	= KVM_PGTABLE_WALK_LEAF |
1270 			  KVM_PGTABLE_WALK_TABLE_POST,
1271 	};
1272 
1273 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1274 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1275 	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1276 	pgt->pgd = NULL;
1277 }
1278 
1279 void kvm_pgtable_stage2_free_removed(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level)
1280 {
1281 	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1282 	struct kvm_pgtable_walker walker = {
1283 		.cb	= stage2_free_walker,
1284 		.flags	= KVM_PGTABLE_WALK_LEAF |
1285 			  KVM_PGTABLE_WALK_TABLE_POST,
1286 	};
1287 	struct kvm_pgtable_walk_data data = {
1288 		.walker	= &walker,
1289 
1290 		/*
1291 		 * At this point the IPA really doesn't matter, as the page
1292 		 * table being traversed has already been removed from the stage
1293 		 * 2. Set an appropriate range to cover the entire page table.
1294 		 */
1295 		.addr	= 0,
1296 		.end	= kvm_granule_size(level),
1297 	};
1298 
1299 	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1300 }
1301