xref: /linux/arch/arm64/kvm/hyp/pgtable.c (revision 8838a1a2d219a86ab05e679c73f68dd75a25aca5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 
15 #define KVM_PTE_TYPE			BIT(1)
16 #define KVM_PTE_TYPE_BLOCK		0
17 #define KVM_PTE_TYPE_PAGE		1
18 #define KVM_PTE_TYPE_TABLE		1
19 
20 struct kvm_pgtable_walk_data {
21 	struct kvm_pgtable_walker	*walker;
22 
23 	const u64			start;
24 	u64				addr;
25 	const u64			end;
26 };
27 
28 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
29 {
30 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
31 }
32 
33 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
34 {
35 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
36 }
37 
38 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
39 {
40 	u64 granule = kvm_granule_size(ctx->level);
41 
42 	if (!kvm_level_supports_block_mapping(ctx->level))
43 		return false;
44 
45 	if (granule > (ctx->end - ctx->addr))
46 		return false;
47 
48 	if (!IS_ALIGNED(phys, granule))
49 		return false;
50 
51 	return IS_ALIGNED(ctx->addr, granule);
52 }
53 
54 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
55 {
56 	u64 shift = kvm_granule_shift(level);
57 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
58 
59 	return (data->addr >> shift) & mask;
60 }
61 
62 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
63 {
64 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
65 	u64 mask = BIT(pgt->ia_bits) - 1;
66 
67 	return (addr & mask) >> shift;
68 }
69 
70 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
71 {
72 	struct kvm_pgtable pgt = {
73 		.ia_bits	= ia_bits,
74 		.start_level	= start_level,
75 	};
76 
77 	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
78 }
79 
80 static bool kvm_pte_table(kvm_pte_t pte, s8 level)
81 {
82 	if (level == KVM_PGTABLE_LAST_LEVEL)
83 		return false;
84 
85 	if (!kvm_pte_valid(pte))
86 		return false;
87 
88 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
89 }
90 
91 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
92 {
93 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
94 }
95 
96 static void kvm_clear_pte(kvm_pte_t *ptep)
97 {
98 	WRITE_ONCE(*ptep, 0);
99 }
100 
101 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
102 {
103 	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
104 
105 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
106 	pte |= KVM_PTE_VALID;
107 	return pte;
108 }
109 
110 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
111 {
112 	kvm_pte_t pte = kvm_phys_to_pte(pa);
113 	u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
114 						       KVM_PTE_TYPE_BLOCK;
115 
116 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
117 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
118 	pte |= KVM_PTE_VALID;
119 
120 	return pte;
121 }
122 
123 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
124 {
125 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
126 }
127 
128 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
129 				  const struct kvm_pgtable_visit_ctx *ctx,
130 				  enum kvm_pgtable_walk_flags visit)
131 {
132 	struct kvm_pgtable_walker *walker = data->walker;
133 
134 	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
135 	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
136 	return walker->cb(ctx, visit);
137 }
138 
139 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
140 				      int r)
141 {
142 	/*
143 	 * Visitor callbacks return EAGAIN when the conditions that led to a
144 	 * fault are no longer reflected in the page tables due to a race to
145 	 * update a PTE. In the context of a fault handler this is interpreted
146 	 * as a signal to retry guest execution.
147 	 *
148 	 * Ignore the return code altogether for walkers outside a fault handler
149 	 * (e.g. write protecting a range of memory) and chug along with the
150 	 * page table walk.
151 	 */
152 	if (r == -EAGAIN)
153 		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
154 
155 	return !r;
156 }
157 
158 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
159 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
160 
161 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
162 				      struct kvm_pgtable_mm_ops *mm_ops,
163 				      kvm_pteref_t pteref, s8 level)
164 {
165 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
166 	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
167 	struct kvm_pgtable_visit_ctx ctx = {
168 		.ptep	= ptep,
169 		.old	= READ_ONCE(*ptep),
170 		.arg	= data->walker->arg,
171 		.mm_ops	= mm_ops,
172 		.start	= data->start,
173 		.addr	= data->addr,
174 		.end	= data->end,
175 		.level	= level,
176 		.flags	= flags,
177 	};
178 	int ret = 0;
179 	bool reload = false;
180 	kvm_pteref_t childp;
181 	bool table = kvm_pte_table(ctx.old, level);
182 
183 	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
184 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
185 		reload = true;
186 	}
187 
188 	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
189 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
190 		reload = true;
191 	}
192 
193 	/*
194 	 * Reload the page table after invoking the walker callback for leaf
195 	 * entries or after pre-order traversal, to allow the walker to descend
196 	 * into a newly installed or replaced table.
197 	 */
198 	if (reload) {
199 		ctx.old = READ_ONCE(*ptep);
200 		table = kvm_pte_table(ctx.old, level);
201 	}
202 
203 	if (!kvm_pgtable_walk_continue(data->walker, ret))
204 		goto out;
205 
206 	if (!table) {
207 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
208 		data->addr += kvm_granule_size(level);
209 		goto out;
210 	}
211 
212 	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
213 	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
214 	if (!kvm_pgtable_walk_continue(data->walker, ret))
215 		goto out;
216 
217 	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
218 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
219 
220 out:
221 	if (kvm_pgtable_walk_continue(data->walker, ret))
222 		return 0;
223 
224 	return ret;
225 }
226 
227 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
228 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
229 {
230 	u32 idx;
231 	int ret = 0;
232 
233 	if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
234 			 level > KVM_PGTABLE_LAST_LEVEL))
235 		return -EINVAL;
236 
237 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
238 		kvm_pteref_t pteref = &pgtable[idx];
239 
240 		if (data->addr >= data->end)
241 			break;
242 
243 		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
244 		if (ret)
245 			break;
246 	}
247 
248 	return ret;
249 }
250 
251 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
252 {
253 	u32 idx;
254 	int ret = 0;
255 	u64 limit = BIT(pgt->ia_bits);
256 
257 	if (data->addr > limit || data->end > limit)
258 		return -ERANGE;
259 
260 	if (!pgt->pgd)
261 		return -EINVAL;
262 
263 	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
264 		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
265 
266 		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
267 		if (ret)
268 			break;
269 	}
270 
271 	return ret;
272 }
273 
274 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
275 		     struct kvm_pgtable_walker *walker)
276 {
277 	struct kvm_pgtable_walk_data walk_data = {
278 		.start	= ALIGN_DOWN(addr, PAGE_SIZE),
279 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
280 		.end	= PAGE_ALIGN(walk_data.addr + size),
281 		.walker	= walker,
282 	};
283 	int r;
284 
285 	r = kvm_pgtable_walk_begin(walker);
286 	if (r)
287 		return r;
288 
289 	r = _kvm_pgtable_walk(pgt, &walk_data);
290 	kvm_pgtable_walk_end(walker);
291 
292 	return r;
293 }
294 
295 struct leaf_walk_data {
296 	kvm_pte_t	pte;
297 	s8		level;
298 };
299 
300 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
301 		       enum kvm_pgtable_walk_flags visit)
302 {
303 	struct leaf_walk_data *data = ctx->arg;
304 
305 	data->pte   = ctx->old;
306 	data->level = ctx->level;
307 
308 	return 0;
309 }
310 
311 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
312 			 kvm_pte_t *ptep, s8 *level)
313 {
314 	struct leaf_walk_data data;
315 	struct kvm_pgtable_walker walker = {
316 		.cb	= leaf_walker,
317 		.flags	= KVM_PGTABLE_WALK_LEAF,
318 		.arg	= &data,
319 	};
320 	int ret;
321 
322 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
323 			       PAGE_SIZE, &walker);
324 	if (!ret) {
325 		if (ptep)
326 			*ptep  = data.pte;
327 		if (level)
328 			*level = data.level;
329 	}
330 
331 	return ret;
332 }
333 
334 struct hyp_map_data {
335 	const u64			phys;
336 	kvm_pte_t			attr;
337 };
338 
339 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
340 {
341 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
342 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
343 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
344 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
345 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
346 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
347 
348 	if (!(prot & KVM_PGTABLE_PROT_R))
349 		return -EINVAL;
350 
351 	if (prot & KVM_PGTABLE_PROT_X) {
352 		if (prot & KVM_PGTABLE_PROT_W)
353 			return -EINVAL;
354 
355 		if (device)
356 			return -EINVAL;
357 
358 		if (system_supports_bti_kernel())
359 			attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
360 	} else {
361 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
362 	}
363 
364 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
365 	if (!kvm_lpa2_is_enabled())
366 		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
367 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
368 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
369 	*ptep = attr;
370 
371 	return 0;
372 }
373 
374 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
375 {
376 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
377 	u32 ap;
378 
379 	if (!kvm_pte_valid(pte))
380 		return prot;
381 
382 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
383 		prot |= KVM_PGTABLE_PROT_X;
384 
385 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
386 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
387 		prot |= KVM_PGTABLE_PROT_R;
388 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
389 		prot |= KVM_PGTABLE_PROT_RW;
390 
391 	return prot;
392 }
393 
394 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
395 				    struct hyp_map_data *data)
396 {
397 	u64 phys = data->phys + (ctx->addr - ctx->start);
398 	kvm_pte_t new;
399 
400 	if (!kvm_block_mapping_supported(ctx, phys))
401 		return false;
402 
403 	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
404 	if (ctx->old == new)
405 		return true;
406 	if (!kvm_pte_valid(ctx->old))
407 		ctx->mm_ops->get_page(ctx->ptep);
408 	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
409 		return false;
410 
411 	smp_store_release(ctx->ptep, new);
412 	return true;
413 }
414 
415 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
416 			  enum kvm_pgtable_walk_flags visit)
417 {
418 	kvm_pte_t *childp, new;
419 	struct hyp_map_data *data = ctx->arg;
420 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
421 
422 	if (hyp_map_walker_try_leaf(ctx, data))
423 		return 0;
424 
425 	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
426 		return -EINVAL;
427 
428 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
429 	if (!childp)
430 		return -ENOMEM;
431 
432 	new = kvm_init_table_pte(childp, mm_ops);
433 	mm_ops->get_page(ctx->ptep);
434 	smp_store_release(ctx->ptep, new);
435 
436 	return 0;
437 }
438 
439 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
440 			enum kvm_pgtable_prot prot)
441 {
442 	int ret;
443 	struct hyp_map_data map_data = {
444 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
445 	};
446 	struct kvm_pgtable_walker walker = {
447 		.cb	= hyp_map_walker,
448 		.flags	= KVM_PGTABLE_WALK_LEAF,
449 		.arg	= &map_data,
450 	};
451 
452 	ret = hyp_set_prot_attr(prot, &map_data.attr);
453 	if (ret)
454 		return ret;
455 
456 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
457 	dsb(ishst);
458 	isb();
459 	return ret;
460 }
461 
462 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
463 			    enum kvm_pgtable_walk_flags visit)
464 {
465 	kvm_pte_t *childp = NULL;
466 	u64 granule = kvm_granule_size(ctx->level);
467 	u64 *unmapped = ctx->arg;
468 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
469 
470 	if (!kvm_pte_valid(ctx->old))
471 		return -EINVAL;
472 
473 	if (kvm_pte_table(ctx->old, ctx->level)) {
474 		childp = kvm_pte_follow(ctx->old, mm_ops);
475 
476 		if (mm_ops->page_count(childp) != 1)
477 			return 0;
478 
479 		kvm_clear_pte(ctx->ptep);
480 		dsb(ishst);
481 		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
482 	} else {
483 		if (ctx->end - ctx->addr < granule)
484 			return -EINVAL;
485 
486 		kvm_clear_pte(ctx->ptep);
487 		dsb(ishst);
488 		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
489 		*unmapped += granule;
490 	}
491 
492 	dsb(ish);
493 	isb();
494 	mm_ops->put_page(ctx->ptep);
495 
496 	if (childp)
497 		mm_ops->put_page(childp);
498 
499 	return 0;
500 }
501 
502 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
503 {
504 	u64 unmapped = 0;
505 	struct kvm_pgtable_walker walker = {
506 		.cb	= hyp_unmap_walker,
507 		.arg	= &unmapped,
508 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
509 	};
510 
511 	if (!pgt->mm_ops->page_count)
512 		return 0;
513 
514 	kvm_pgtable_walk(pgt, addr, size, &walker);
515 	return unmapped;
516 }
517 
518 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
519 			 struct kvm_pgtable_mm_ops *mm_ops)
520 {
521 	s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
522 			 ARM64_HW_PGTABLE_LEVELS(va_bits);
523 
524 	if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
525 	    start_level > KVM_PGTABLE_LAST_LEVEL)
526 		return -EINVAL;
527 
528 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
529 	if (!pgt->pgd)
530 		return -ENOMEM;
531 
532 	pgt->ia_bits		= va_bits;
533 	pgt->start_level	= start_level;
534 	pgt->mm_ops		= mm_ops;
535 	pgt->mmu		= NULL;
536 	pgt->force_pte_cb	= NULL;
537 
538 	return 0;
539 }
540 
541 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
542 			   enum kvm_pgtable_walk_flags visit)
543 {
544 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
545 
546 	if (!kvm_pte_valid(ctx->old))
547 		return 0;
548 
549 	mm_ops->put_page(ctx->ptep);
550 
551 	if (kvm_pte_table(ctx->old, ctx->level))
552 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
553 
554 	return 0;
555 }
556 
557 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
558 {
559 	struct kvm_pgtable_walker walker = {
560 		.cb	= hyp_free_walker,
561 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
562 	};
563 
564 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
565 	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
566 	pgt->pgd = NULL;
567 }
568 
569 struct stage2_map_data {
570 	const u64			phys;
571 	kvm_pte_t			attr;
572 	u8				owner_id;
573 
574 	kvm_pte_t			*anchor;
575 	kvm_pte_t			*childp;
576 
577 	struct kvm_s2_mmu		*mmu;
578 	void				*memcache;
579 
580 	/* Force mappings to page granularity */
581 	bool				force_pte;
582 
583 	/* Walk should update owner_id only */
584 	bool				annotation;
585 };
586 
587 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
588 {
589 	u64 vtcr = VTCR_EL2_FLAGS;
590 	s8 lvls;
591 
592 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
593 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
594 	/*
595 	 * Use a minimum 2 level page table to prevent splitting
596 	 * host PMD huge pages at stage2.
597 	 */
598 	lvls = stage2_pgtable_levels(phys_shift);
599 	if (lvls < 2)
600 		lvls = 2;
601 
602 	/*
603 	 * When LPA2 is enabled, the HW supports an extra level of translation
604 	 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
605 	 * to as an addition to SL0 to enable encoding this extra start level.
606 	 * However, since we always use concatenated pages for the first level
607 	 * lookup, we will never need this extra level and therefore do not need
608 	 * to touch SL2.
609 	 */
610 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
611 
612 #ifdef CONFIG_ARM64_HW_AFDBM
613 	/*
614 	 * Enable the Hardware Access Flag management, unconditionally
615 	 * on all CPUs. In systems that have asymmetric support for the feature
616 	 * this allows KVM to leverage hardware support on the subset of cores
617 	 * that implement the feature.
618 	 *
619 	 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
620 	 * hardware) on implementations that do not advertise support for the
621 	 * feature. As such, setting HA unconditionally is safe, unless you
622 	 * happen to be running on a design that has unadvertised support for
623 	 * HAFDBS. Here be dragons.
624 	 */
625 	if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
626 		vtcr |= VTCR_EL2_HA;
627 #endif /* CONFIG_ARM64_HW_AFDBM */
628 
629 	if (kvm_lpa2_is_enabled())
630 		vtcr |= VTCR_EL2_DS;
631 
632 	/* Set the vmid bits */
633 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
634 		VTCR_EL2_VS_16BIT :
635 		VTCR_EL2_VS_8BIT;
636 
637 	return vtcr;
638 }
639 
640 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
641 {
642 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
643 		return false;
644 
645 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
646 }
647 
648 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
649 				phys_addr_t addr, size_t size)
650 {
651 	unsigned long pages, inval_pages;
652 
653 	if (!system_supports_tlb_range()) {
654 		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
655 		return;
656 	}
657 
658 	pages = size >> PAGE_SHIFT;
659 	while (pages > 0) {
660 		inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
661 		kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
662 
663 		addr += inval_pages << PAGE_SHIFT;
664 		pages -= inval_pages;
665 	}
666 }
667 
668 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
669 
670 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
671 				kvm_pte_t *ptep)
672 {
673 	kvm_pte_t attr;
674 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
675 
676 	switch (prot & (KVM_PGTABLE_PROT_DEVICE |
677 			KVM_PGTABLE_PROT_NORMAL_NC)) {
678 	case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
679 		return -EINVAL;
680 	case KVM_PGTABLE_PROT_DEVICE:
681 		if (prot & KVM_PGTABLE_PROT_X)
682 			return -EINVAL;
683 		attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
684 		break;
685 	case KVM_PGTABLE_PROT_NORMAL_NC:
686 		if (prot & KVM_PGTABLE_PROT_X)
687 			return -EINVAL;
688 		attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
689 		break;
690 	default:
691 		attr = KVM_S2_MEMATTR(pgt, NORMAL);
692 	}
693 
694 	if (!(prot & KVM_PGTABLE_PROT_X))
695 		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
696 
697 	if (prot & KVM_PGTABLE_PROT_R)
698 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
699 
700 	if (prot & KVM_PGTABLE_PROT_W)
701 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
702 
703 	if (!kvm_lpa2_is_enabled())
704 		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
705 
706 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
707 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
708 	*ptep = attr;
709 
710 	return 0;
711 }
712 
713 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
714 {
715 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
716 
717 	if (!kvm_pte_valid(pte))
718 		return prot;
719 
720 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
721 		prot |= KVM_PGTABLE_PROT_R;
722 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
723 		prot |= KVM_PGTABLE_PROT_W;
724 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
725 		prot |= KVM_PGTABLE_PROT_X;
726 
727 	return prot;
728 }
729 
730 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
731 {
732 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
733 		return true;
734 
735 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
736 }
737 
738 static bool stage2_pte_is_counted(kvm_pte_t pte)
739 {
740 	/*
741 	 * The refcount tracks valid entries as well as invalid entries if they
742 	 * encode ownership of a page to another entity than the page-table
743 	 * owner, whose id is 0.
744 	 */
745 	return !!pte;
746 }
747 
748 static bool stage2_pte_is_locked(kvm_pte_t pte)
749 {
750 	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
751 }
752 
753 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
754 {
755 	if (!kvm_pgtable_walk_shared(ctx)) {
756 		WRITE_ONCE(*ctx->ptep, new);
757 		return true;
758 	}
759 
760 	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
761 }
762 
763 /**
764  * stage2_try_break_pte() - Invalidates a pte according to the
765  *			    'break-before-make' requirements of the
766  *			    architecture.
767  *
768  * @ctx: context of the visited pte.
769  * @mmu: stage-2 mmu
770  *
771  * Returns: true if the pte was successfully broken.
772  *
773  * If the removed pte was valid, performs the necessary serialization and TLB
774  * invalidation for the old value. For counted ptes, drops the reference count
775  * on the containing table page.
776  */
777 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
778 				 struct kvm_s2_mmu *mmu)
779 {
780 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
781 
782 	if (stage2_pte_is_locked(ctx->old)) {
783 		/*
784 		 * Should never occur if this walker has exclusive access to the
785 		 * page tables.
786 		 */
787 		WARN_ON(!kvm_pgtable_walk_shared(ctx));
788 		return false;
789 	}
790 
791 	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
792 		return false;
793 
794 	if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
795 		/*
796 		 * Perform the appropriate TLB invalidation based on the
797 		 * evicted pte value (if any).
798 		 */
799 		if (kvm_pte_table(ctx->old, ctx->level)) {
800 			u64 size = kvm_granule_size(ctx->level);
801 			u64 addr = ALIGN_DOWN(ctx->addr, size);
802 
803 			kvm_tlb_flush_vmid_range(mmu, addr, size);
804 		} else if (kvm_pte_valid(ctx->old)) {
805 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
806 				     ctx->addr, ctx->level);
807 		}
808 	}
809 
810 	if (stage2_pte_is_counted(ctx->old))
811 		mm_ops->put_page(ctx->ptep);
812 
813 	return true;
814 }
815 
816 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
817 {
818 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
819 
820 	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
821 
822 	if (stage2_pte_is_counted(new))
823 		mm_ops->get_page(ctx->ptep);
824 
825 	smp_store_release(ctx->ptep, new);
826 }
827 
828 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
829 {
830 	/*
831 	 * If FEAT_TLBIRANGE is implemented, defer the individual
832 	 * TLB invalidations until the entire walk is finished, and
833 	 * then use the range-based TLBI instructions to do the
834 	 * invalidations. Condition deferred TLB invalidation on the
835 	 * system supporting FWB as the optimization is entirely
836 	 * pointless when the unmap walker needs to perform CMOs.
837 	 */
838 	return system_supports_tlb_range() && stage2_has_fwb(pgt);
839 }
840 
841 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
842 				struct kvm_s2_mmu *mmu,
843 				struct kvm_pgtable_mm_ops *mm_ops)
844 {
845 	struct kvm_pgtable *pgt = ctx->arg;
846 
847 	/*
848 	 * Clear the existing PTE, and perform break-before-make if it was
849 	 * valid. Depending on the system support, defer the TLB maintenance
850 	 * for the same until the entire unmap walk is completed.
851 	 */
852 	if (kvm_pte_valid(ctx->old)) {
853 		kvm_clear_pte(ctx->ptep);
854 
855 		if (kvm_pte_table(ctx->old, ctx->level)) {
856 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
857 				     TLBI_TTL_UNKNOWN);
858 		} else if (!stage2_unmap_defer_tlb_flush(pgt)) {
859 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
860 				     ctx->level);
861 		}
862 	}
863 
864 	mm_ops->put_page(ctx->ptep);
865 }
866 
867 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
868 {
869 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
870 	return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
871 }
872 
873 static bool stage2_pte_executable(kvm_pte_t pte)
874 {
875 	return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
876 }
877 
878 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
879 				       const struct stage2_map_data *data)
880 {
881 	u64 phys = data->phys;
882 
883 	/* Work out the correct PA based on how far the walk has gotten */
884 	return phys + (ctx->addr - ctx->start);
885 }
886 
887 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
888 					struct stage2_map_data *data)
889 {
890 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
891 
892 	if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
893 		return false;
894 
895 	if (data->annotation)
896 		return true;
897 
898 	return kvm_block_mapping_supported(ctx, phys);
899 }
900 
901 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
902 				      struct stage2_map_data *data)
903 {
904 	kvm_pte_t new;
905 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
906 	u64 granule = kvm_granule_size(ctx->level);
907 	struct kvm_pgtable *pgt = data->mmu->pgt;
908 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
909 
910 	if (!stage2_leaf_mapping_allowed(ctx, data))
911 		return -E2BIG;
912 
913 	if (!data->annotation)
914 		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
915 	else
916 		new = kvm_init_invalid_leaf_owner(data->owner_id);
917 
918 	/*
919 	 * Skip updating the PTE if we are trying to recreate the exact
920 	 * same mapping or only change the access permissions. Instead,
921 	 * the vCPU will exit one more time from guest if still needed
922 	 * and then go through the path of relaxing permissions.
923 	 */
924 	if (!stage2_pte_needs_update(ctx->old, new))
925 		return -EAGAIN;
926 
927 	/* If we're only changing software bits, then store them and go! */
928 	if (!kvm_pgtable_walk_shared(ctx) &&
929 	    !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
930 		bool old_is_counted = stage2_pte_is_counted(ctx->old);
931 
932 		if (old_is_counted != stage2_pte_is_counted(new)) {
933 			if (old_is_counted)
934 				mm_ops->put_page(ctx->ptep);
935 			else
936 				mm_ops->get_page(ctx->ptep);
937 		}
938 		WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
939 		return 0;
940 	}
941 
942 	if (!stage2_try_break_pte(ctx, data->mmu))
943 		return -EAGAIN;
944 
945 	/* Perform CMOs before installation of the guest stage-2 PTE */
946 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
947 	    stage2_pte_cacheable(pgt, new))
948 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
949 					       granule);
950 
951 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
952 	    stage2_pte_executable(new))
953 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
954 
955 	stage2_make_pte(ctx, new);
956 
957 	return 0;
958 }
959 
960 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
961 				     struct stage2_map_data *data)
962 {
963 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
964 	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
965 	int ret;
966 
967 	if (!stage2_leaf_mapping_allowed(ctx, data))
968 		return 0;
969 
970 	ret = stage2_map_walker_try_leaf(ctx, data);
971 	if (ret)
972 		return ret;
973 
974 	mm_ops->free_unlinked_table(childp, ctx->level);
975 	return 0;
976 }
977 
978 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
979 				struct stage2_map_data *data)
980 {
981 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
982 	kvm_pte_t *childp, new;
983 	int ret;
984 
985 	ret = stage2_map_walker_try_leaf(ctx, data);
986 	if (ret != -E2BIG)
987 		return ret;
988 
989 	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
990 		return -EINVAL;
991 
992 	if (!data->memcache)
993 		return -ENOMEM;
994 
995 	childp = mm_ops->zalloc_page(data->memcache);
996 	if (!childp)
997 		return -ENOMEM;
998 
999 	if (!stage2_try_break_pte(ctx, data->mmu)) {
1000 		mm_ops->put_page(childp);
1001 		return -EAGAIN;
1002 	}
1003 
1004 	/*
1005 	 * If we've run into an existing block mapping then replace it with
1006 	 * a table. Accesses beyond 'end' that fall within the new table
1007 	 * will be mapped lazily.
1008 	 */
1009 	new = kvm_init_table_pte(childp, mm_ops);
1010 	stage2_make_pte(ctx, new);
1011 
1012 	return 0;
1013 }
1014 
1015 /*
1016  * The TABLE_PRE callback runs for table entries on the way down, looking
1017  * for table entries which we could conceivably replace with a block entry
1018  * for this mapping. If it finds one it replaces the entry and calls
1019  * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1020  *
1021  * Otherwise, the LEAF callback performs the mapping at the existing leaves
1022  * instead.
1023  */
1024 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1025 			     enum kvm_pgtable_walk_flags visit)
1026 {
1027 	struct stage2_map_data *data = ctx->arg;
1028 
1029 	switch (visit) {
1030 	case KVM_PGTABLE_WALK_TABLE_PRE:
1031 		return stage2_map_walk_table_pre(ctx, data);
1032 	case KVM_PGTABLE_WALK_LEAF:
1033 		return stage2_map_walk_leaf(ctx, data);
1034 	default:
1035 		return -EINVAL;
1036 	}
1037 }
1038 
1039 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1040 			   u64 phys, enum kvm_pgtable_prot prot,
1041 			   void *mc, enum kvm_pgtable_walk_flags flags)
1042 {
1043 	int ret;
1044 	struct stage2_map_data map_data = {
1045 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
1046 		.mmu		= pgt->mmu,
1047 		.memcache	= mc,
1048 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1049 	};
1050 	struct kvm_pgtable_walker walker = {
1051 		.cb		= stage2_map_walker,
1052 		.flags		= flags |
1053 				  KVM_PGTABLE_WALK_TABLE_PRE |
1054 				  KVM_PGTABLE_WALK_LEAF,
1055 		.arg		= &map_data,
1056 	};
1057 
1058 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1059 		return -EINVAL;
1060 
1061 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1062 	if (ret)
1063 		return ret;
1064 
1065 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1066 	dsb(ishst);
1067 	return ret;
1068 }
1069 
1070 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1071 				 void *mc, u8 owner_id)
1072 {
1073 	int ret;
1074 	struct stage2_map_data map_data = {
1075 		.mmu		= pgt->mmu,
1076 		.memcache	= mc,
1077 		.owner_id	= owner_id,
1078 		.force_pte	= true,
1079 		.annotation	= true,
1080 	};
1081 	struct kvm_pgtable_walker walker = {
1082 		.cb		= stage2_map_walker,
1083 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
1084 				  KVM_PGTABLE_WALK_LEAF,
1085 		.arg		= &map_data,
1086 	};
1087 
1088 	if (owner_id > KVM_MAX_OWNER_ID)
1089 		return -EINVAL;
1090 
1091 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1092 	return ret;
1093 }
1094 
1095 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1096 			       enum kvm_pgtable_walk_flags visit)
1097 {
1098 	struct kvm_pgtable *pgt = ctx->arg;
1099 	struct kvm_s2_mmu *mmu = pgt->mmu;
1100 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1101 	kvm_pte_t *childp = NULL;
1102 	bool need_flush = false;
1103 
1104 	if (!kvm_pte_valid(ctx->old)) {
1105 		if (stage2_pte_is_counted(ctx->old)) {
1106 			kvm_clear_pte(ctx->ptep);
1107 			mm_ops->put_page(ctx->ptep);
1108 		}
1109 		return 0;
1110 	}
1111 
1112 	if (kvm_pte_table(ctx->old, ctx->level)) {
1113 		childp = kvm_pte_follow(ctx->old, mm_ops);
1114 
1115 		if (mm_ops->page_count(childp) != 1)
1116 			return 0;
1117 	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1118 		need_flush = !stage2_has_fwb(pgt);
1119 	}
1120 
1121 	/*
1122 	 * This is similar to the map() path in that we unmap the entire
1123 	 * block entry and rely on the remaining portions being faulted
1124 	 * back lazily.
1125 	 */
1126 	stage2_unmap_put_pte(ctx, mmu, mm_ops);
1127 
1128 	if (need_flush && mm_ops->dcache_clean_inval_poc)
1129 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1130 					       kvm_granule_size(ctx->level));
1131 
1132 	if (childp)
1133 		mm_ops->put_page(childp);
1134 
1135 	return 0;
1136 }
1137 
1138 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1139 {
1140 	int ret;
1141 	struct kvm_pgtable_walker walker = {
1142 		.cb	= stage2_unmap_walker,
1143 		.arg	= pgt,
1144 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1145 	};
1146 
1147 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1148 	if (stage2_unmap_defer_tlb_flush(pgt))
1149 		/* Perform the deferred TLB invalidations */
1150 		kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1151 
1152 	return ret;
1153 }
1154 
1155 struct stage2_attr_data {
1156 	kvm_pte_t			attr_set;
1157 	kvm_pte_t			attr_clr;
1158 	kvm_pte_t			pte;
1159 	s8				level;
1160 };
1161 
1162 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1163 			      enum kvm_pgtable_walk_flags visit)
1164 {
1165 	kvm_pte_t pte = ctx->old;
1166 	struct stage2_attr_data *data = ctx->arg;
1167 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1168 
1169 	if (!kvm_pte_valid(ctx->old))
1170 		return -EAGAIN;
1171 
1172 	data->level = ctx->level;
1173 	data->pte = pte;
1174 	pte &= ~data->attr_clr;
1175 	pte |= data->attr_set;
1176 
1177 	/*
1178 	 * We may race with the CPU trying to set the access flag here,
1179 	 * but worst-case the access flag update gets lost and will be
1180 	 * set on the next access instead.
1181 	 */
1182 	if (data->pte != pte) {
1183 		/*
1184 		 * Invalidate instruction cache before updating the guest
1185 		 * stage-2 PTE if we are going to add executable permission.
1186 		 */
1187 		if (mm_ops->icache_inval_pou &&
1188 		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1189 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1190 						  kvm_granule_size(ctx->level));
1191 
1192 		if (!stage2_try_set_pte(ctx, pte))
1193 			return -EAGAIN;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1200 				    u64 size, kvm_pte_t attr_set,
1201 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1202 				    s8 *level, enum kvm_pgtable_walk_flags flags)
1203 {
1204 	int ret;
1205 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1206 	struct stage2_attr_data data = {
1207 		.attr_set	= attr_set & attr_mask,
1208 		.attr_clr	= attr_clr & attr_mask,
1209 	};
1210 	struct kvm_pgtable_walker walker = {
1211 		.cb		= stage2_attr_walker,
1212 		.arg		= &data,
1213 		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
1214 	};
1215 
1216 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1217 	if (ret)
1218 		return ret;
1219 
1220 	if (orig_pte)
1221 		*orig_pte = data.pte;
1222 
1223 	if (level)
1224 		*level = data.level;
1225 	return 0;
1226 }
1227 
1228 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1229 {
1230 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1231 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1232 					NULL, NULL, 0);
1233 }
1234 
1235 void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1236 {
1237 	int ret;
1238 
1239 	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1240 				       NULL, NULL,
1241 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1242 				       KVM_PGTABLE_WALK_SHARED);
1243 	if (!ret)
1244 		dsb(ishst);
1245 }
1246 
1247 struct stage2_age_data {
1248 	bool	mkold;
1249 	bool	young;
1250 };
1251 
1252 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1253 			     enum kvm_pgtable_walk_flags visit)
1254 {
1255 	kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1256 	struct stage2_age_data *data = ctx->arg;
1257 
1258 	if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1259 		return 0;
1260 
1261 	data->young = true;
1262 
1263 	/*
1264 	 * stage2_age_walker() is always called while holding the MMU lock for
1265 	 * write, so this will always succeed. Nonetheless, this deliberately
1266 	 * follows the race detection pattern of the other stage-2 walkers in
1267 	 * case the locking mechanics of the MMU notifiers is ever changed.
1268 	 */
1269 	if (data->mkold && !stage2_try_set_pte(ctx, new))
1270 		return -EAGAIN;
1271 
1272 	/*
1273 	 * "But where's the TLBI?!", you scream.
1274 	 * "Over in the core code", I sigh.
1275 	 *
1276 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1277 	 */
1278 	return 0;
1279 }
1280 
1281 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1282 					 u64 size, bool mkold)
1283 {
1284 	struct stage2_age_data data = {
1285 		.mkold		= mkold,
1286 	};
1287 	struct kvm_pgtable_walker walker = {
1288 		.cb		= stage2_age_walker,
1289 		.arg		= &data,
1290 		.flags		= KVM_PGTABLE_WALK_LEAF,
1291 	};
1292 
1293 	WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1294 	return data.young;
1295 }
1296 
1297 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1298 				   enum kvm_pgtable_prot prot)
1299 {
1300 	int ret;
1301 	s8 level;
1302 	kvm_pte_t set = 0, clr = 0;
1303 
1304 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1305 		return -EINVAL;
1306 
1307 	if (prot & KVM_PGTABLE_PROT_R)
1308 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1309 
1310 	if (prot & KVM_PGTABLE_PROT_W)
1311 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1312 
1313 	if (prot & KVM_PGTABLE_PROT_X)
1314 		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1315 
1316 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1317 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1318 				       KVM_PGTABLE_WALK_SHARED);
1319 	if (!ret || ret == -EAGAIN)
1320 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1321 	return ret;
1322 }
1323 
1324 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1325 			       enum kvm_pgtable_walk_flags visit)
1326 {
1327 	struct kvm_pgtable *pgt = ctx->arg;
1328 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1329 
1330 	if (!stage2_pte_cacheable(pgt, ctx->old))
1331 		return 0;
1332 
1333 	if (mm_ops->dcache_clean_inval_poc)
1334 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1335 					       kvm_granule_size(ctx->level));
1336 	return 0;
1337 }
1338 
1339 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1340 {
1341 	struct kvm_pgtable_walker walker = {
1342 		.cb	= stage2_flush_walker,
1343 		.flags	= KVM_PGTABLE_WALK_LEAF,
1344 		.arg	= pgt,
1345 	};
1346 
1347 	if (stage2_has_fwb(pgt))
1348 		return 0;
1349 
1350 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1351 }
1352 
1353 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1354 					      u64 phys, s8 level,
1355 					      enum kvm_pgtable_prot prot,
1356 					      void *mc, bool force_pte)
1357 {
1358 	struct stage2_map_data map_data = {
1359 		.phys		= phys,
1360 		.mmu		= pgt->mmu,
1361 		.memcache	= mc,
1362 		.force_pte	= force_pte,
1363 	};
1364 	struct kvm_pgtable_walker walker = {
1365 		.cb		= stage2_map_walker,
1366 		.flags		= KVM_PGTABLE_WALK_LEAF |
1367 				  KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1368 				  KVM_PGTABLE_WALK_SKIP_CMO,
1369 		.arg		= &map_data,
1370 	};
1371 	/*
1372 	 * The input address (.addr) is irrelevant for walking an
1373 	 * unlinked table. Construct an ambiguous IA range to map
1374 	 * kvm_granule_size(level) worth of memory.
1375 	 */
1376 	struct kvm_pgtable_walk_data data = {
1377 		.walker	= &walker,
1378 		.addr	= 0,
1379 		.end	= kvm_granule_size(level),
1380 	};
1381 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1382 	kvm_pte_t *pgtable;
1383 	int ret;
1384 
1385 	if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1386 		return ERR_PTR(-EINVAL);
1387 
1388 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1389 	if (ret)
1390 		return ERR_PTR(ret);
1391 
1392 	pgtable = mm_ops->zalloc_page(mc);
1393 	if (!pgtable)
1394 		return ERR_PTR(-ENOMEM);
1395 
1396 	ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1397 				 level + 1);
1398 	if (ret) {
1399 		kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1400 		return ERR_PTR(ret);
1401 	}
1402 
1403 	return pgtable;
1404 }
1405 
1406 /*
1407  * Get the number of page-tables needed to replace a block with a
1408  * fully populated tree up to the PTE entries. Note that @level is
1409  * interpreted as in "level @level entry".
1410  */
1411 static int stage2_block_get_nr_page_tables(s8 level)
1412 {
1413 	switch (level) {
1414 	case 1:
1415 		return PTRS_PER_PTE + 1;
1416 	case 2:
1417 		return 1;
1418 	case 3:
1419 		return 0;
1420 	default:
1421 		WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1422 			     level > KVM_PGTABLE_LAST_LEVEL);
1423 		return -EINVAL;
1424 	};
1425 }
1426 
1427 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1428 			       enum kvm_pgtable_walk_flags visit)
1429 {
1430 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1431 	struct kvm_mmu_memory_cache *mc = ctx->arg;
1432 	struct kvm_s2_mmu *mmu;
1433 	kvm_pte_t pte = ctx->old, new, *childp;
1434 	enum kvm_pgtable_prot prot;
1435 	s8 level = ctx->level;
1436 	bool force_pte;
1437 	int nr_pages;
1438 	u64 phys;
1439 
1440 	/* No huge-pages exist at the last level */
1441 	if (level == KVM_PGTABLE_LAST_LEVEL)
1442 		return 0;
1443 
1444 	/* We only split valid block mappings */
1445 	if (!kvm_pte_valid(pte))
1446 		return 0;
1447 
1448 	nr_pages = stage2_block_get_nr_page_tables(level);
1449 	if (nr_pages < 0)
1450 		return nr_pages;
1451 
1452 	if (mc->nobjs >= nr_pages) {
1453 		/* Build a tree mapped down to the PTE granularity. */
1454 		force_pte = true;
1455 	} else {
1456 		/*
1457 		 * Don't force PTEs, so create_unlinked() below does
1458 		 * not populate the tree up to the PTE level. The
1459 		 * consequence is that the call will require a single
1460 		 * page of level 2 entries at level 1, or a single
1461 		 * page of PTEs at level 2. If we are at level 1, the
1462 		 * PTEs will be created recursively.
1463 		 */
1464 		force_pte = false;
1465 		nr_pages = 1;
1466 	}
1467 
1468 	if (mc->nobjs < nr_pages)
1469 		return -ENOMEM;
1470 
1471 	mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1472 	phys = kvm_pte_to_phys(pte);
1473 	prot = kvm_pgtable_stage2_pte_prot(pte);
1474 
1475 	childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1476 						    level, prot, mc, force_pte);
1477 	if (IS_ERR(childp))
1478 		return PTR_ERR(childp);
1479 
1480 	if (!stage2_try_break_pte(ctx, mmu)) {
1481 		kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1482 		return -EAGAIN;
1483 	}
1484 
1485 	/*
1486 	 * Note, the contents of the page table are guaranteed to be made
1487 	 * visible before the new PTE is assigned because stage2_make_pte()
1488 	 * writes the PTE using smp_store_release().
1489 	 */
1490 	new = kvm_init_table_pte(childp, mm_ops);
1491 	stage2_make_pte(ctx, new);
1492 	return 0;
1493 }
1494 
1495 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1496 			     struct kvm_mmu_memory_cache *mc)
1497 {
1498 	struct kvm_pgtable_walker walker = {
1499 		.cb	= stage2_split_walker,
1500 		.flags	= KVM_PGTABLE_WALK_LEAF,
1501 		.arg	= mc,
1502 	};
1503 	int ret;
1504 
1505 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1506 	dsb(ishst);
1507 	return ret;
1508 }
1509 
1510 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1511 			      struct kvm_pgtable_mm_ops *mm_ops,
1512 			      enum kvm_pgtable_stage2_flags flags,
1513 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1514 {
1515 	size_t pgd_sz;
1516 	u64 vtcr = mmu->vtcr;
1517 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1518 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1519 	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1520 
1521 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1522 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1523 	if (!pgt->pgd)
1524 		return -ENOMEM;
1525 
1526 	pgt->ia_bits		= ia_bits;
1527 	pgt->start_level	= start_level;
1528 	pgt->mm_ops		= mm_ops;
1529 	pgt->mmu		= mmu;
1530 	pgt->flags		= flags;
1531 	pgt->force_pte_cb	= force_pte_cb;
1532 
1533 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1534 	dsb(ishst);
1535 	return 0;
1536 }
1537 
1538 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1539 {
1540 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1541 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1542 	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1543 
1544 	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1545 }
1546 
1547 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1548 			      enum kvm_pgtable_walk_flags visit)
1549 {
1550 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1551 
1552 	if (!stage2_pte_is_counted(ctx->old))
1553 		return 0;
1554 
1555 	mm_ops->put_page(ctx->ptep);
1556 
1557 	if (kvm_pte_table(ctx->old, ctx->level))
1558 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1559 
1560 	return 0;
1561 }
1562 
1563 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1564 {
1565 	size_t pgd_sz;
1566 	struct kvm_pgtable_walker walker = {
1567 		.cb	= stage2_free_walker,
1568 		.flags	= KVM_PGTABLE_WALK_LEAF |
1569 			  KVM_PGTABLE_WALK_TABLE_POST,
1570 	};
1571 
1572 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1573 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1574 	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1575 	pgt->pgd = NULL;
1576 }
1577 
1578 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1579 {
1580 	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1581 	struct kvm_pgtable_walker walker = {
1582 		.cb	= stage2_free_walker,
1583 		.flags	= KVM_PGTABLE_WALK_LEAF |
1584 			  KVM_PGTABLE_WALK_TABLE_POST,
1585 	};
1586 	struct kvm_pgtable_walk_data data = {
1587 		.walker	= &walker,
1588 
1589 		/*
1590 		 * At this point the IPA really doesn't matter, as the page
1591 		 * table being traversed has already been removed from the stage
1592 		 * 2. Set an appropriate range to cover the entire page table.
1593 		 */
1594 		.addr	= 0,
1595 		.end	= kvm_granule_size(level),
1596 	};
1597 
1598 	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1599 
1600 	WARN_ON(mm_ops->page_count(pgtable) != 1);
1601 	mm_ops->put_page(pgtable);
1602 }
1603