xref: /linux/arch/arm64/kvm/hyp/pgtable.c (revision 5cd2340cb6a383d04fd88e48fabc2a21a909d6a1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 
15 #define KVM_PTE_TYPE			BIT(1)
16 #define KVM_PTE_TYPE_BLOCK		0
17 #define KVM_PTE_TYPE_PAGE		1
18 #define KVM_PTE_TYPE_TABLE		1
19 
20 #define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)
21 
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO		\
25 	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
26 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW		\
27 	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
28 #define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
29 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
30 #define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)
31 
32 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
35 #define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
36 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
37 #define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)
38 
39 #define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 50)
40 
41 #define KVM_PTE_LEAF_ATTR_HI_SW		GENMASK(58, 55)
42 
43 #define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)
44 
45 #define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)
46 
47 #define KVM_PTE_LEAF_ATTR_HI_S1_GP	BIT(50)
48 
49 #define KVM_PTE_LEAF_ATTR_S2_PERMS	(KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
50 					 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
51 					 KVM_PTE_LEAF_ATTR_HI_S2_XN)
52 
53 #define KVM_INVALID_PTE_OWNER_MASK	GENMASK(9, 2)
54 #define KVM_MAX_OWNER_ID		1
55 
56 /*
57  * Used to indicate a pte for which a 'break-before-make' sequence is in
58  * progress.
59  */
60 #define KVM_INVALID_PTE_LOCKED		BIT(10)
61 
62 struct kvm_pgtable_walk_data {
63 	struct kvm_pgtable_walker	*walker;
64 
65 	const u64			start;
66 	u64				addr;
67 	const u64			end;
68 };
69 
70 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
71 {
72 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
73 }
74 
75 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
76 {
77 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
78 }
79 
80 static bool kvm_phys_is_valid(u64 phys)
81 {
82 	u64 parange_max = kvm_get_parange_max();
83 	u8 shift = id_aa64mmfr0_parange_to_phys_shift(parange_max);
84 
85 	return phys < BIT(shift);
86 }
87 
88 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
89 {
90 	u64 granule = kvm_granule_size(ctx->level);
91 
92 	if (!kvm_level_supports_block_mapping(ctx->level))
93 		return false;
94 
95 	if (granule > (ctx->end - ctx->addr))
96 		return false;
97 
98 	if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
99 		return false;
100 
101 	return IS_ALIGNED(ctx->addr, granule);
102 }
103 
104 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
105 {
106 	u64 shift = kvm_granule_shift(level);
107 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
108 
109 	return (data->addr >> shift) & mask;
110 }
111 
112 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
113 {
114 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
115 	u64 mask = BIT(pgt->ia_bits) - 1;
116 
117 	return (addr & mask) >> shift;
118 }
119 
120 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
121 {
122 	struct kvm_pgtable pgt = {
123 		.ia_bits	= ia_bits,
124 		.start_level	= start_level,
125 	};
126 
127 	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
128 }
129 
130 static bool kvm_pte_table(kvm_pte_t pte, s8 level)
131 {
132 	if (level == KVM_PGTABLE_LAST_LEVEL)
133 		return false;
134 
135 	if (!kvm_pte_valid(pte))
136 		return false;
137 
138 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
139 }
140 
141 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
142 {
143 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
144 }
145 
146 static void kvm_clear_pte(kvm_pte_t *ptep)
147 {
148 	WRITE_ONCE(*ptep, 0);
149 }
150 
151 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
152 {
153 	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
154 
155 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
156 	pte |= KVM_PTE_VALID;
157 	return pte;
158 }
159 
160 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
161 {
162 	kvm_pte_t pte = kvm_phys_to_pte(pa);
163 	u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
164 						       KVM_PTE_TYPE_BLOCK;
165 
166 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
167 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
168 	pte |= KVM_PTE_VALID;
169 
170 	return pte;
171 }
172 
173 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
174 {
175 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
176 }
177 
178 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
179 				  const struct kvm_pgtable_visit_ctx *ctx,
180 				  enum kvm_pgtable_walk_flags visit)
181 {
182 	struct kvm_pgtable_walker *walker = data->walker;
183 
184 	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
185 	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
186 	return walker->cb(ctx, visit);
187 }
188 
189 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
190 				      int r)
191 {
192 	/*
193 	 * Visitor callbacks return EAGAIN when the conditions that led to a
194 	 * fault are no longer reflected in the page tables due to a race to
195 	 * update a PTE. In the context of a fault handler this is interpreted
196 	 * as a signal to retry guest execution.
197 	 *
198 	 * Ignore the return code altogether for walkers outside a fault handler
199 	 * (e.g. write protecting a range of memory) and chug along with the
200 	 * page table walk.
201 	 */
202 	if (r == -EAGAIN)
203 		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
204 
205 	return !r;
206 }
207 
208 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
209 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
210 
211 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
212 				      struct kvm_pgtable_mm_ops *mm_ops,
213 				      kvm_pteref_t pteref, s8 level)
214 {
215 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
216 	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
217 	struct kvm_pgtable_visit_ctx ctx = {
218 		.ptep	= ptep,
219 		.old	= READ_ONCE(*ptep),
220 		.arg	= data->walker->arg,
221 		.mm_ops	= mm_ops,
222 		.start	= data->start,
223 		.addr	= data->addr,
224 		.end	= data->end,
225 		.level	= level,
226 		.flags	= flags,
227 	};
228 	int ret = 0;
229 	bool reload = false;
230 	kvm_pteref_t childp;
231 	bool table = kvm_pte_table(ctx.old, level);
232 
233 	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
234 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
235 		reload = true;
236 	}
237 
238 	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
239 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
240 		reload = true;
241 	}
242 
243 	/*
244 	 * Reload the page table after invoking the walker callback for leaf
245 	 * entries or after pre-order traversal, to allow the walker to descend
246 	 * into a newly installed or replaced table.
247 	 */
248 	if (reload) {
249 		ctx.old = READ_ONCE(*ptep);
250 		table = kvm_pte_table(ctx.old, level);
251 	}
252 
253 	if (!kvm_pgtable_walk_continue(data->walker, ret))
254 		goto out;
255 
256 	if (!table) {
257 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
258 		data->addr += kvm_granule_size(level);
259 		goto out;
260 	}
261 
262 	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
263 	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
264 	if (!kvm_pgtable_walk_continue(data->walker, ret))
265 		goto out;
266 
267 	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
268 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
269 
270 out:
271 	if (kvm_pgtable_walk_continue(data->walker, ret))
272 		return 0;
273 
274 	return ret;
275 }
276 
277 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
278 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
279 {
280 	u32 idx;
281 	int ret = 0;
282 
283 	if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
284 			 level > KVM_PGTABLE_LAST_LEVEL))
285 		return -EINVAL;
286 
287 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
288 		kvm_pteref_t pteref = &pgtable[idx];
289 
290 		if (data->addr >= data->end)
291 			break;
292 
293 		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
294 		if (ret)
295 			break;
296 	}
297 
298 	return ret;
299 }
300 
301 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
302 {
303 	u32 idx;
304 	int ret = 0;
305 	u64 limit = BIT(pgt->ia_bits);
306 
307 	if (data->addr > limit || data->end > limit)
308 		return -ERANGE;
309 
310 	if (!pgt->pgd)
311 		return -EINVAL;
312 
313 	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
314 		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
315 
316 		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
317 		if (ret)
318 			break;
319 	}
320 
321 	return ret;
322 }
323 
324 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
325 		     struct kvm_pgtable_walker *walker)
326 {
327 	struct kvm_pgtable_walk_data walk_data = {
328 		.start	= ALIGN_DOWN(addr, PAGE_SIZE),
329 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
330 		.end	= PAGE_ALIGN(walk_data.addr + size),
331 		.walker	= walker,
332 	};
333 	int r;
334 
335 	r = kvm_pgtable_walk_begin(walker);
336 	if (r)
337 		return r;
338 
339 	r = _kvm_pgtable_walk(pgt, &walk_data);
340 	kvm_pgtable_walk_end(walker);
341 
342 	return r;
343 }
344 
345 struct leaf_walk_data {
346 	kvm_pte_t	pte;
347 	s8		level;
348 };
349 
350 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
351 		       enum kvm_pgtable_walk_flags visit)
352 {
353 	struct leaf_walk_data *data = ctx->arg;
354 
355 	data->pte   = ctx->old;
356 	data->level = ctx->level;
357 
358 	return 0;
359 }
360 
361 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
362 			 kvm_pte_t *ptep, s8 *level)
363 {
364 	struct leaf_walk_data data;
365 	struct kvm_pgtable_walker walker = {
366 		.cb	= leaf_walker,
367 		.flags	= KVM_PGTABLE_WALK_LEAF,
368 		.arg	= &data,
369 	};
370 	int ret;
371 
372 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
373 			       PAGE_SIZE, &walker);
374 	if (!ret) {
375 		if (ptep)
376 			*ptep  = data.pte;
377 		if (level)
378 			*level = data.level;
379 	}
380 
381 	return ret;
382 }
383 
384 struct hyp_map_data {
385 	const u64			phys;
386 	kvm_pte_t			attr;
387 };
388 
389 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
390 {
391 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
392 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
393 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
394 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
395 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
396 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
397 
398 	if (!(prot & KVM_PGTABLE_PROT_R))
399 		return -EINVAL;
400 
401 	if (prot & KVM_PGTABLE_PROT_X) {
402 		if (prot & KVM_PGTABLE_PROT_W)
403 			return -EINVAL;
404 
405 		if (device)
406 			return -EINVAL;
407 
408 		if (system_supports_bti_kernel())
409 			attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
410 	} else {
411 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
412 	}
413 
414 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
415 	if (!kvm_lpa2_is_enabled())
416 		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
417 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
418 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
419 	*ptep = attr;
420 
421 	return 0;
422 }
423 
424 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
425 {
426 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
427 	u32 ap;
428 
429 	if (!kvm_pte_valid(pte))
430 		return prot;
431 
432 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
433 		prot |= KVM_PGTABLE_PROT_X;
434 
435 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
436 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
437 		prot |= KVM_PGTABLE_PROT_R;
438 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
439 		prot |= KVM_PGTABLE_PROT_RW;
440 
441 	return prot;
442 }
443 
444 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
445 				    struct hyp_map_data *data)
446 {
447 	u64 phys = data->phys + (ctx->addr - ctx->start);
448 	kvm_pte_t new;
449 
450 	if (!kvm_block_mapping_supported(ctx, phys))
451 		return false;
452 
453 	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
454 	if (ctx->old == new)
455 		return true;
456 	if (!kvm_pte_valid(ctx->old))
457 		ctx->mm_ops->get_page(ctx->ptep);
458 	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
459 		return false;
460 
461 	smp_store_release(ctx->ptep, new);
462 	return true;
463 }
464 
465 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
466 			  enum kvm_pgtable_walk_flags visit)
467 {
468 	kvm_pte_t *childp, new;
469 	struct hyp_map_data *data = ctx->arg;
470 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
471 
472 	if (hyp_map_walker_try_leaf(ctx, data))
473 		return 0;
474 
475 	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
476 		return -EINVAL;
477 
478 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
479 	if (!childp)
480 		return -ENOMEM;
481 
482 	new = kvm_init_table_pte(childp, mm_ops);
483 	mm_ops->get_page(ctx->ptep);
484 	smp_store_release(ctx->ptep, new);
485 
486 	return 0;
487 }
488 
489 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
490 			enum kvm_pgtable_prot prot)
491 {
492 	int ret;
493 	struct hyp_map_data map_data = {
494 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
495 	};
496 	struct kvm_pgtable_walker walker = {
497 		.cb	= hyp_map_walker,
498 		.flags	= KVM_PGTABLE_WALK_LEAF,
499 		.arg	= &map_data,
500 	};
501 
502 	ret = hyp_set_prot_attr(prot, &map_data.attr);
503 	if (ret)
504 		return ret;
505 
506 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
507 	dsb(ishst);
508 	isb();
509 	return ret;
510 }
511 
512 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
513 			    enum kvm_pgtable_walk_flags visit)
514 {
515 	kvm_pte_t *childp = NULL;
516 	u64 granule = kvm_granule_size(ctx->level);
517 	u64 *unmapped = ctx->arg;
518 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
519 
520 	if (!kvm_pte_valid(ctx->old))
521 		return -EINVAL;
522 
523 	if (kvm_pte_table(ctx->old, ctx->level)) {
524 		childp = kvm_pte_follow(ctx->old, mm_ops);
525 
526 		if (mm_ops->page_count(childp) != 1)
527 			return 0;
528 
529 		kvm_clear_pte(ctx->ptep);
530 		dsb(ishst);
531 		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
532 	} else {
533 		if (ctx->end - ctx->addr < granule)
534 			return -EINVAL;
535 
536 		kvm_clear_pte(ctx->ptep);
537 		dsb(ishst);
538 		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
539 		*unmapped += granule;
540 	}
541 
542 	dsb(ish);
543 	isb();
544 	mm_ops->put_page(ctx->ptep);
545 
546 	if (childp)
547 		mm_ops->put_page(childp);
548 
549 	return 0;
550 }
551 
552 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
553 {
554 	u64 unmapped = 0;
555 	struct kvm_pgtable_walker walker = {
556 		.cb	= hyp_unmap_walker,
557 		.arg	= &unmapped,
558 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
559 	};
560 
561 	if (!pgt->mm_ops->page_count)
562 		return 0;
563 
564 	kvm_pgtable_walk(pgt, addr, size, &walker);
565 	return unmapped;
566 }
567 
568 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
569 			 struct kvm_pgtable_mm_ops *mm_ops)
570 {
571 	s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
572 			 ARM64_HW_PGTABLE_LEVELS(va_bits);
573 
574 	if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
575 	    start_level > KVM_PGTABLE_LAST_LEVEL)
576 		return -EINVAL;
577 
578 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
579 	if (!pgt->pgd)
580 		return -ENOMEM;
581 
582 	pgt->ia_bits		= va_bits;
583 	pgt->start_level	= start_level;
584 	pgt->mm_ops		= mm_ops;
585 	pgt->mmu		= NULL;
586 	pgt->force_pte_cb	= NULL;
587 
588 	return 0;
589 }
590 
591 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
592 			   enum kvm_pgtable_walk_flags visit)
593 {
594 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
595 
596 	if (!kvm_pte_valid(ctx->old))
597 		return 0;
598 
599 	mm_ops->put_page(ctx->ptep);
600 
601 	if (kvm_pte_table(ctx->old, ctx->level))
602 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
603 
604 	return 0;
605 }
606 
607 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
608 {
609 	struct kvm_pgtable_walker walker = {
610 		.cb	= hyp_free_walker,
611 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
612 	};
613 
614 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
615 	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
616 	pgt->pgd = NULL;
617 }
618 
619 struct stage2_map_data {
620 	const u64			phys;
621 	kvm_pte_t			attr;
622 	u8				owner_id;
623 
624 	kvm_pte_t			*anchor;
625 	kvm_pte_t			*childp;
626 
627 	struct kvm_s2_mmu		*mmu;
628 	void				*memcache;
629 
630 	/* Force mappings to page granularity */
631 	bool				force_pte;
632 };
633 
634 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
635 {
636 	u64 vtcr = VTCR_EL2_FLAGS;
637 	s8 lvls;
638 
639 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
640 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
641 	/*
642 	 * Use a minimum 2 level page table to prevent splitting
643 	 * host PMD huge pages at stage2.
644 	 */
645 	lvls = stage2_pgtable_levels(phys_shift);
646 	if (lvls < 2)
647 		lvls = 2;
648 
649 	/*
650 	 * When LPA2 is enabled, the HW supports an extra level of translation
651 	 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
652 	 * to as an addition to SL0 to enable encoding this extra start level.
653 	 * However, since we always use concatenated pages for the first level
654 	 * lookup, we will never need this extra level and therefore do not need
655 	 * to touch SL2.
656 	 */
657 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
658 
659 #ifdef CONFIG_ARM64_HW_AFDBM
660 	/*
661 	 * Enable the Hardware Access Flag management, unconditionally
662 	 * on all CPUs. In systems that have asymmetric support for the feature
663 	 * this allows KVM to leverage hardware support on the subset of cores
664 	 * that implement the feature.
665 	 *
666 	 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
667 	 * hardware) on implementations that do not advertise support for the
668 	 * feature. As such, setting HA unconditionally is safe, unless you
669 	 * happen to be running on a design that has unadvertised support for
670 	 * HAFDBS. Here be dragons.
671 	 */
672 	if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
673 		vtcr |= VTCR_EL2_HA;
674 #endif /* CONFIG_ARM64_HW_AFDBM */
675 
676 	if (kvm_lpa2_is_enabled())
677 		vtcr |= VTCR_EL2_DS;
678 
679 	/* Set the vmid bits */
680 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
681 		VTCR_EL2_VS_16BIT :
682 		VTCR_EL2_VS_8BIT;
683 
684 	return vtcr;
685 }
686 
687 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
688 {
689 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
690 		return false;
691 
692 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
693 }
694 
695 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
696 				phys_addr_t addr, size_t size)
697 {
698 	unsigned long pages, inval_pages;
699 
700 	if (!system_supports_tlb_range()) {
701 		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
702 		return;
703 	}
704 
705 	pages = size >> PAGE_SHIFT;
706 	while (pages > 0) {
707 		inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
708 		kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
709 
710 		addr += inval_pages << PAGE_SHIFT;
711 		pages -= inval_pages;
712 	}
713 }
714 
715 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
716 
717 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
718 				kvm_pte_t *ptep)
719 {
720 	kvm_pte_t attr;
721 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
722 
723 	switch (prot & (KVM_PGTABLE_PROT_DEVICE |
724 			KVM_PGTABLE_PROT_NORMAL_NC)) {
725 	case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
726 		return -EINVAL;
727 	case KVM_PGTABLE_PROT_DEVICE:
728 		if (prot & KVM_PGTABLE_PROT_X)
729 			return -EINVAL;
730 		attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
731 		break;
732 	case KVM_PGTABLE_PROT_NORMAL_NC:
733 		if (prot & KVM_PGTABLE_PROT_X)
734 			return -EINVAL;
735 		attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
736 		break;
737 	default:
738 		attr = KVM_S2_MEMATTR(pgt, NORMAL);
739 	}
740 
741 	if (!(prot & KVM_PGTABLE_PROT_X))
742 		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
743 
744 	if (prot & KVM_PGTABLE_PROT_R)
745 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
746 
747 	if (prot & KVM_PGTABLE_PROT_W)
748 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
749 
750 	if (!kvm_lpa2_is_enabled())
751 		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
752 
753 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
754 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
755 	*ptep = attr;
756 
757 	return 0;
758 }
759 
760 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
761 {
762 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
763 
764 	if (!kvm_pte_valid(pte))
765 		return prot;
766 
767 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
768 		prot |= KVM_PGTABLE_PROT_R;
769 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
770 		prot |= KVM_PGTABLE_PROT_W;
771 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
772 		prot |= KVM_PGTABLE_PROT_X;
773 
774 	return prot;
775 }
776 
777 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
778 {
779 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
780 		return true;
781 
782 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
783 }
784 
785 static bool stage2_pte_is_counted(kvm_pte_t pte)
786 {
787 	/*
788 	 * The refcount tracks valid entries as well as invalid entries if they
789 	 * encode ownership of a page to another entity than the page-table
790 	 * owner, whose id is 0.
791 	 */
792 	return !!pte;
793 }
794 
795 static bool stage2_pte_is_locked(kvm_pte_t pte)
796 {
797 	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
798 }
799 
800 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
801 {
802 	if (!kvm_pgtable_walk_shared(ctx)) {
803 		WRITE_ONCE(*ctx->ptep, new);
804 		return true;
805 	}
806 
807 	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
808 }
809 
810 /**
811  * stage2_try_break_pte() - Invalidates a pte according to the
812  *			    'break-before-make' requirements of the
813  *			    architecture.
814  *
815  * @ctx: context of the visited pte.
816  * @mmu: stage-2 mmu
817  *
818  * Returns: true if the pte was successfully broken.
819  *
820  * If the removed pte was valid, performs the necessary serialization and TLB
821  * invalidation for the old value. For counted ptes, drops the reference count
822  * on the containing table page.
823  */
824 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
825 				 struct kvm_s2_mmu *mmu)
826 {
827 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
828 
829 	if (stage2_pte_is_locked(ctx->old)) {
830 		/*
831 		 * Should never occur if this walker has exclusive access to the
832 		 * page tables.
833 		 */
834 		WARN_ON(!kvm_pgtable_walk_shared(ctx));
835 		return false;
836 	}
837 
838 	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
839 		return false;
840 
841 	if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
842 		/*
843 		 * Perform the appropriate TLB invalidation based on the
844 		 * evicted pte value (if any).
845 		 */
846 		if (kvm_pte_table(ctx->old, ctx->level)) {
847 			u64 size = kvm_granule_size(ctx->level);
848 			u64 addr = ALIGN_DOWN(ctx->addr, size);
849 
850 			kvm_tlb_flush_vmid_range(mmu, addr, size);
851 		} else if (kvm_pte_valid(ctx->old)) {
852 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
853 				     ctx->addr, ctx->level);
854 		}
855 	}
856 
857 	if (stage2_pte_is_counted(ctx->old))
858 		mm_ops->put_page(ctx->ptep);
859 
860 	return true;
861 }
862 
863 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
864 {
865 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
866 
867 	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
868 
869 	if (stage2_pte_is_counted(new))
870 		mm_ops->get_page(ctx->ptep);
871 
872 	smp_store_release(ctx->ptep, new);
873 }
874 
875 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
876 {
877 	/*
878 	 * If FEAT_TLBIRANGE is implemented, defer the individual
879 	 * TLB invalidations until the entire walk is finished, and
880 	 * then use the range-based TLBI instructions to do the
881 	 * invalidations. Condition deferred TLB invalidation on the
882 	 * system supporting FWB as the optimization is entirely
883 	 * pointless when the unmap walker needs to perform CMOs.
884 	 */
885 	return system_supports_tlb_range() && stage2_has_fwb(pgt);
886 }
887 
888 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
889 				struct kvm_s2_mmu *mmu,
890 				struct kvm_pgtable_mm_ops *mm_ops)
891 {
892 	struct kvm_pgtable *pgt = ctx->arg;
893 
894 	/*
895 	 * Clear the existing PTE, and perform break-before-make if it was
896 	 * valid. Depending on the system support, defer the TLB maintenance
897 	 * for the same until the entire unmap walk is completed.
898 	 */
899 	if (kvm_pte_valid(ctx->old)) {
900 		kvm_clear_pte(ctx->ptep);
901 
902 		if (kvm_pte_table(ctx->old, ctx->level)) {
903 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
904 				     TLBI_TTL_UNKNOWN);
905 		} else if (!stage2_unmap_defer_tlb_flush(pgt)) {
906 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
907 				     ctx->level);
908 		}
909 	}
910 
911 	mm_ops->put_page(ctx->ptep);
912 }
913 
914 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
915 {
916 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
917 	return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
918 }
919 
920 static bool stage2_pte_executable(kvm_pte_t pte)
921 {
922 	return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
923 }
924 
925 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
926 				       const struct stage2_map_data *data)
927 {
928 	u64 phys = data->phys;
929 
930 	/*
931 	 * Stage-2 walks to update ownership data are communicated to the map
932 	 * walker using an invalid PA. Avoid offsetting an already invalid PA,
933 	 * which could overflow and make the address valid again.
934 	 */
935 	if (!kvm_phys_is_valid(phys))
936 		return phys;
937 
938 	/*
939 	 * Otherwise, work out the correct PA based on how far the walk has
940 	 * gotten.
941 	 */
942 	return phys + (ctx->addr - ctx->start);
943 }
944 
945 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
946 					struct stage2_map_data *data)
947 {
948 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
949 
950 	if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
951 		return false;
952 
953 	return kvm_block_mapping_supported(ctx, phys);
954 }
955 
956 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
957 				      struct stage2_map_data *data)
958 {
959 	kvm_pte_t new;
960 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
961 	u64 granule = kvm_granule_size(ctx->level);
962 	struct kvm_pgtable *pgt = data->mmu->pgt;
963 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
964 
965 	if (!stage2_leaf_mapping_allowed(ctx, data))
966 		return -E2BIG;
967 
968 	if (kvm_phys_is_valid(phys))
969 		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
970 	else
971 		new = kvm_init_invalid_leaf_owner(data->owner_id);
972 
973 	/*
974 	 * Skip updating the PTE if we are trying to recreate the exact
975 	 * same mapping or only change the access permissions. Instead,
976 	 * the vCPU will exit one more time from guest if still needed
977 	 * and then go through the path of relaxing permissions.
978 	 */
979 	if (!stage2_pte_needs_update(ctx->old, new))
980 		return -EAGAIN;
981 
982 	/* If we're only changing software bits, then store them and go! */
983 	if (!kvm_pgtable_walk_shared(ctx) &&
984 	    !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
985 		bool old_is_counted = stage2_pte_is_counted(ctx->old);
986 
987 		if (old_is_counted != stage2_pte_is_counted(new)) {
988 			if (old_is_counted)
989 				mm_ops->put_page(ctx->ptep);
990 			else
991 				mm_ops->get_page(ctx->ptep);
992 		}
993 		WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
994 		return 0;
995 	}
996 
997 	if (!stage2_try_break_pte(ctx, data->mmu))
998 		return -EAGAIN;
999 
1000 	/* Perform CMOs before installation of the guest stage-2 PTE */
1001 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
1002 	    stage2_pte_cacheable(pgt, new))
1003 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
1004 					       granule);
1005 
1006 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
1007 	    stage2_pte_executable(new))
1008 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
1009 
1010 	stage2_make_pte(ctx, new);
1011 
1012 	return 0;
1013 }
1014 
1015 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
1016 				     struct stage2_map_data *data)
1017 {
1018 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1019 	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
1020 	int ret;
1021 
1022 	if (!stage2_leaf_mapping_allowed(ctx, data))
1023 		return 0;
1024 
1025 	ret = stage2_map_walker_try_leaf(ctx, data);
1026 	if (ret)
1027 		return ret;
1028 
1029 	mm_ops->free_unlinked_table(childp, ctx->level);
1030 	return 0;
1031 }
1032 
1033 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
1034 				struct stage2_map_data *data)
1035 {
1036 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1037 	kvm_pte_t *childp, new;
1038 	int ret;
1039 
1040 	ret = stage2_map_walker_try_leaf(ctx, data);
1041 	if (ret != -E2BIG)
1042 		return ret;
1043 
1044 	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
1045 		return -EINVAL;
1046 
1047 	if (!data->memcache)
1048 		return -ENOMEM;
1049 
1050 	childp = mm_ops->zalloc_page(data->memcache);
1051 	if (!childp)
1052 		return -ENOMEM;
1053 
1054 	if (!stage2_try_break_pte(ctx, data->mmu)) {
1055 		mm_ops->put_page(childp);
1056 		return -EAGAIN;
1057 	}
1058 
1059 	/*
1060 	 * If we've run into an existing block mapping then replace it with
1061 	 * a table. Accesses beyond 'end' that fall within the new table
1062 	 * will be mapped lazily.
1063 	 */
1064 	new = kvm_init_table_pte(childp, mm_ops);
1065 	stage2_make_pte(ctx, new);
1066 
1067 	return 0;
1068 }
1069 
1070 /*
1071  * The TABLE_PRE callback runs for table entries on the way down, looking
1072  * for table entries which we could conceivably replace with a block entry
1073  * for this mapping. If it finds one it replaces the entry and calls
1074  * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1075  *
1076  * Otherwise, the LEAF callback performs the mapping at the existing leaves
1077  * instead.
1078  */
1079 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1080 			     enum kvm_pgtable_walk_flags visit)
1081 {
1082 	struct stage2_map_data *data = ctx->arg;
1083 
1084 	switch (visit) {
1085 	case KVM_PGTABLE_WALK_TABLE_PRE:
1086 		return stage2_map_walk_table_pre(ctx, data);
1087 	case KVM_PGTABLE_WALK_LEAF:
1088 		return stage2_map_walk_leaf(ctx, data);
1089 	default:
1090 		return -EINVAL;
1091 	}
1092 }
1093 
1094 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1095 			   u64 phys, enum kvm_pgtable_prot prot,
1096 			   void *mc, enum kvm_pgtable_walk_flags flags)
1097 {
1098 	int ret;
1099 	struct stage2_map_data map_data = {
1100 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
1101 		.mmu		= pgt->mmu,
1102 		.memcache	= mc,
1103 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1104 	};
1105 	struct kvm_pgtable_walker walker = {
1106 		.cb		= stage2_map_walker,
1107 		.flags		= flags |
1108 				  KVM_PGTABLE_WALK_TABLE_PRE |
1109 				  KVM_PGTABLE_WALK_LEAF,
1110 		.arg		= &map_data,
1111 	};
1112 
1113 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1114 		return -EINVAL;
1115 
1116 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1117 	if (ret)
1118 		return ret;
1119 
1120 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1121 	dsb(ishst);
1122 	return ret;
1123 }
1124 
1125 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1126 				 void *mc, u8 owner_id)
1127 {
1128 	int ret;
1129 	struct stage2_map_data map_data = {
1130 		.phys		= KVM_PHYS_INVALID,
1131 		.mmu		= pgt->mmu,
1132 		.memcache	= mc,
1133 		.owner_id	= owner_id,
1134 		.force_pte	= true,
1135 	};
1136 	struct kvm_pgtable_walker walker = {
1137 		.cb		= stage2_map_walker,
1138 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
1139 				  KVM_PGTABLE_WALK_LEAF,
1140 		.arg		= &map_data,
1141 	};
1142 
1143 	if (owner_id > KVM_MAX_OWNER_ID)
1144 		return -EINVAL;
1145 
1146 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1147 	return ret;
1148 }
1149 
1150 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1151 			       enum kvm_pgtable_walk_flags visit)
1152 {
1153 	struct kvm_pgtable *pgt = ctx->arg;
1154 	struct kvm_s2_mmu *mmu = pgt->mmu;
1155 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1156 	kvm_pte_t *childp = NULL;
1157 	bool need_flush = false;
1158 
1159 	if (!kvm_pte_valid(ctx->old)) {
1160 		if (stage2_pte_is_counted(ctx->old)) {
1161 			kvm_clear_pte(ctx->ptep);
1162 			mm_ops->put_page(ctx->ptep);
1163 		}
1164 		return 0;
1165 	}
1166 
1167 	if (kvm_pte_table(ctx->old, ctx->level)) {
1168 		childp = kvm_pte_follow(ctx->old, mm_ops);
1169 
1170 		if (mm_ops->page_count(childp) != 1)
1171 			return 0;
1172 	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1173 		need_flush = !stage2_has_fwb(pgt);
1174 	}
1175 
1176 	/*
1177 	 * This is similar to the map() path in that we unmap the entire
1178 	 * block entry and rely on the remaining portions being faulted
1179 	 * back lazily.
1180 	 */
1181 	stage2_unmap_put_pte(ctx, mmu, mm_ops);
1182 
1183 	if (need_flush && mm_ops->dcache_clean_inval_poc)
1184 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1185 					       kvm_granule_size(ctx->level));
1186 
1187 	if (childp)
1188 		mm_ops->put_page(childp);
1189 
1190 	return 0;
1191 }
1192 
1193 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1194 {
1195 	int ret;
1196 	struct kvm_pgtable_walker walker = {
1197 		.cb	= stage2_unmap_walker,
1198 		.arg	= pgt,
1199 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1200 	};
1201 
1202 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1203 	if (stage2_unmap_defer_tlb_flush(pgt))
1204 		/* Perform the deferred TLB invalidations */
1205 		kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1206 
1207 	return ret;
1208 }
1209 
1210 struct stage2_attr_data {
1211 	kvm_pte_t			attr_set;
1212 	kvm_pte_t			attr_clr;
1213 	kvm_pte_t			pte;
1214 	s8				level;
1215 };
1216 
1217 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1218 			      enum kvm_pgtable_walk_flags visit)
1219 {
1220 	kvm_pte_t pte = ctx->old;
1221 	struct stage2_attr_data *data = ctx->arg;
1222 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1223 
1224 	if (!kvm_pte_valid(ctx->old))
1225 		return -EAGAIN;
1226 
1227 	data->level = ctx->level;
1228 	data->pte = pte;
1229 	pte &= ~data->attr_clr;
1230 	pte |= data->attr_set;
1231 
1232 	/*
1233 	 * We may race with the CPU trying to set the access flag here,
1234 	 * but worst-case the access flag update gets lost and will be
1235 	 * set on the next access instead.
1236 	 */
1237 	if (data->pte != pte) {
1238 		/*
1239 		 * Invalidate instruction cache before updating the guest
1240 		 * stage-2 PTE if we are going to add executable permission.
1241 		 */
1242 		if (mm_ops->icache_inval_pou &&
1243 		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1244 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1245 						  kvm_granule_size(ctx->level));
1246 
1247 		if (!stage2_try_set_pte(ctx, pte))
1248 			return -EAGAIN;
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1255 				    u64 size, kvm_pte_t attr_set,
1256 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1257 				    s8 *level, enum kvm_pgtable_walk_flags flags)
1258 {
1259 	int ret;
1260 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1261 	struct stage2_attr_data data = {
1262 		.attr_set	= attr_set & attr_mask,
1263 		.attr_clr	= attr_clr & attr_mask,
1264 	};
1265 	struct kvm_pgtable_walker walker = {
1266 		.cb		= stage2_attr_walker,
1267 		.arg		= &data,
1268 		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
1269 	};
1270 
1271 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1272 	if (ret)
1273 		return ret;
1274 
1275 	if (orig_pte)
1276 		*orig_pte = data.pte;
1277 
1278 	if (level)
1279 		*level = data.level;
1280 	return 0;
1281 }
1282 
1283 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1284 {
1285 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1286 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1287 					NULL, NULL, 0);
1288 }
1289 
1290 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1291 {
1292 	kvm_pte_t pte = 0;
1293 	int ret;
1294 
1295 	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1296 				       &pte, NULL,
1297 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1298 				       KVM_PGTABLE_WALK_SHARED);
1299 	if (!ret)
1300 		dsb(ishst);
1301 
1302 	return pte;
1303 }
1304 
1305 struct stage2_age_data {
1306 	bool	mkold;
1307 	bool	young;
1308 };
1309 
1310 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1311 			     enum kvm_pgtable_walk_flags visit)
1312 {
1313 	kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1314 	struct stage2_age_data *data = ctx->arg;
1315 
1316 	if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1317 		return 0;
1318 
1319 	data->young = true;
1320 
1321 	/*
1322 	 * stage2_age_walker() is always called while holding the MMU lock for
1323 	 * write, so this will always succeed. Nonetheless, this deliberately
1324 	 * follows the race detection pattern of the other stage-2 walkers in
1325 	 * case the locking mechanics of the MMU notifiers is ever changed.
1326 	 */
1327 	if (data->mkold && !stage2_try_set_pte(ctx, new))
1328 		return -EAGAIN;
1329 
1330 	/*
1331 	 * "But where's the TLBI?!", you scream.
1332 	 * "Over in the core code", I sigh.
1333 	 *
1334 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1335 	 */
1336 	return 0;
1337 }
1338 
1339 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1340 					 u64 size, bool mkold)
1341 {
1342 	struct stage2_age_data data = {
1343 		.mkold		= mkold,
1344 	};
1345 	struct kvm_pgtable_walker walker = {
1346 		.cb		= stage2_age_walker,
1347 		.arg		= &data,
1348 		.flags		= KVM_PGTABLE_WALK_LEAF,
1349 	};
1350 
1351 	WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1352 	return data.young;
1353 }
1354 
1355 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1356 				   enum kvm_pgtable_prot prot)
1357 {
1358 	int ret;
1359 	s8 level;
1360 	kvm_pte_t set = 0, clr = 0;
1361 
1362 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1363 		return -EINVAL;
1364 
1365 	if (prot & KVM_PGTABLE_PROT_R)
1366 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1367 
1368 	if (prot & KVM_PGTABLE_PROT_W)
1369 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1370 
1371 	if (prot & KVM_PGTABLE_PROT_X)
1372 		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1373 
1374 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1375 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1376 				       KVM_PGTABLE_WALK_SHARED);
1377 	if (!ret || ret == -EAGAIN)
1378 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1379 	return ret;
1380 }
1381 
1382 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1383 			       enum kvm_pgtable_walk_flags visit)
1384 {
1385 	struct kvm_pgtable *pgt = ctx->arg;
1386 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1387 
1388 	if (!stage2_pte_cacheable(pgt, ctx->old))
1389 		return 0;
1390 
1391 	if (mm_ops->dcache_clean_inval_poc)
1392 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1393 					       kvm_granule_size(ctx->level));
1394 	return 0;
1395 }
1396 
1397 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1398 {
1399 	struct kvm_pgtable_walker walker = {
1400 		.cb	= stage2_flush_walker,
1401 		.flags	= KVM_PGTABLE_WALK_LEAF,
1402 		.arg	= pgt,
1403 	};
1404 
1405 	if (stage2_has_fwb(pgt))
1406 		return 0;
1407 
1408 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1409 }
1410 
1411 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1412 					      u64 phys, s8 level,
1413 					      enum kvm_pgtable_prot prot,
1414 					      void *mc, bool force_pte)
1415 {
1416 	struct stage2_map_data map_data = {
1417 		.phys		= phys,
1418 		.mmu		= pgt->mmu,
1419 		.memcache	= mc,
1420 		.force_pte	= force_pte,
1421 	};
1422 	struct kvm_pgtable_walker walker = {
1423 		.cb		= stage2_map_walker,
1424 		.flags		= KVM_PGTABLE_WALK_LEAF |
1425 				  KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1426 				  KVM_PGTABLE_WALK_SKIP_CMO,
1427 		.arg		= &map_data,
1428 	};
1429 	/*
1430 	 * The input address (.addr) is irrelevant for walking an
1431 	 * unlinked table. Construct an ambiguous IA range to map
1432 	 * kvm_granule_size(level) worth of memory.
1433 	 */
1434 	struct kvm_pgtable_walk_data data = {
1435 		.walker	= &walker,
1436 		.addr	= 0,
1437 		.end	= kvm_granule_size(level),
1438 	};
1439 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1440 	kvm_pte_t *pgtable;
1441 	int ret;
1442 
1443 	if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1444 		return ERR_PTR(-EINVAL);
1445 
1446 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1447 	if (ret)
1448 		return ERR_PTR(ret);
1449 
1450 	pgtable = mm_ops->zalloc_page(mc);
1451 	if (!pgtable)
1452 		return ERR_PTR(-ENOMEM);
1453 
1454 	ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1455 				 level + 1);
1456 	if (ret) {
1457 		kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1458 		return ERR_PTR(ret);
1459 	}
1460 
1461 	return pgtable;
1462 }
1463 
1464 /*
1465  * Get the number of page-tables needed to replace a block with a
1466  * fully populated tree up to the PTE entries. Note that @level is
1467  * interpreted as in "level @level entry".
1468  */
1469 static int stage2_block_get_nr_page_tables(s8 level)
1470 {
1471 	switch (level) {
1472 	case 1:
1473 		return PTRS_PER_PTE + 1;
1474 	case 2:
1475 		return 1;
1476 	case 3:
1477 		return 0;
1478 	default:
1479 		WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1480 			     level > KVM_PGTABLE_LAST_LEVEL);
1481 		return -EINVAL;
1482 	};
1483 }
1484 
1485 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1486 			       enum kvm_pgtable_walk_flags visit)
1487 {
1488 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1489 	struct kvm_mmu_memory_cache *mc = ctx->arg;
1490 	struct kvm_s2_mmu *mmu;
1491 	kvm_pte_t pte = ctx->old, new, *childp;
1492 	enum kvm_pgtable_prot prot;
1493 	s8 level = ctx->level;
1494 	bool force_pte;
1495 	int nr_pages;
1496 	u64 phys;
1497 
1498 	/* No huge-pages exist at the last level */
1499 	if (level == KVM_PGTABLE_LAST_LEVEL)
1500 		return 0;
1501 
1502 	/* We only split valid block mappings */
1503 	if (!kvm_pte_valid(pte))
1504 		return 0;
1505 
1506 	nr_pages = stage2_block_get_nr_page_tables(level);
1507 	if (nr_pages < 0)
1508 		return nr_pages;
1509 
1510 	if (mc->nobjs >= nr_pages) {
1511 		/* Build a tree mapped down to the PTE granularity. */
1512 		force_pte = true;
1513 	} else {
1514 		/*
1515 		 * Don't force PTEs, so create_unlinked() below does
1516 		 * not populate the tree up to the PTE level. The
1517 		 * consequence is that the call will require a single
1518 		 * page of level 2 entries at level 1, or a single
1519 		 * page of PTEs at level 2. If we are at level 1, the
1520 		 * PTEs will be created recursively.
1521 		 */
1522 		force_pte = false;
1523 		nr_pages = 1;
1524 	}
1525 
1526 	if (mc->nobjs < nr_pages)
1527 		return -ENOMEM;
1528 
1529 	mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1530 	phys = kvm_pte_to_phys(pte);
1531 	prot = kvm_pgtable_stage2_pte_prot(pte);
1532 
1533 	childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1534 						    level, prot, mc, force_pte);
1535 	if (IS_ERR(childp))
1536 		return PTR_ERR(childp);
1537 
1538 	if (!stage2_try_break_pte(ctx, mmu)) {
1539 		kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1540 		return -EAGAIN;
1541 	}
1542 
1543 	/*
1544 	 * Note, the contents of the page table are guaranteed to be made
1545 	 * visible before the new PTE is assigned because stage2_make_pte()
1546 	 * writes the PTE using smp_store_release().
1547 	 */
1548 	new = kvm_init_table_pte(childp, mm_ops);
1549 	stage2_make_pte(ctx, new);
1550 	dsb(ishst);
1551 	return 0;
1552 }
1553 
1554 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1555 			     struct kvm_mmu_memory_cache *mc)
1556 {
1557 	struct kvm_pgtable_walker walker = {
1558 		.cb	= stage2_split_walker,
1559 		.flags	= KVM_PGTABLE_WALK_LEAF,
1560 		.arg	= mc,
1561 	};
1562 
1563 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1564 }
1565 
1566 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1567 			      struct kvm_pgtable_mm_ops *mm_ops,
1568 			      enum kvm_pgtable_stage2_flags flags,
1569 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1570 {
1571 	size_t pgd_sz;
1572 	u64 vtcr = mmu->vtcr;
1573 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1574 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1575 	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1576 
1577 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1578 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1579 	if (!pgt->pgd)
1580 		return -ENOMEM;
1581 
1582 	pgt->ia_bits		= ia_bits;
1583 	pgt->start_level	= start_level;
1584 	pgt->mm_ops		= mm_ops;
1585 	pgt->mmu		= mmu;
1586 	pgt->flags		= flags;
1587 	pgt->force_pte_cb	= force_pte_cb;
1588 
1589 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1590 	dsb(ishst);
1591 	return 0;
1592 }
1593 
1594 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1595 {
1596 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1597 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1598 	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1599 
1600 	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1601 }
1602 
1603 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1604 			      enum kvm_pgtable_walk_flags visit)
1605 {
1606 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1607 
1608 	if (!stage2_pte_is_counted(ctx->old))
1609 		return 0;
1610 
1611 	mm_ops->put_page(ctx->ptep);
1612 
1613 	if (kvm_pte_table(ctx->old, ctx->level))
1614 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1615 
1616 	return 0;
1617 }
1618 
1619 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1620 {
1621 	size_t pgd_sz;
1622 	struct kvm_pgtable_walker walker = {
1623 		.cb	= stage2_free_walker,
1624 		.flags	= KVM_PGTABLE_WALK_LEAF |
1625 			  KVM_PGTABLE_WALK_TABLE_POST,
1626 	};
1627 
1628 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1629 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1630 	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1631 	pgt->pgd = NULL;
1632 }
1633 
1634 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1635 {
1636 	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1637 	struct kvm_pgtable_walker walker = {
1638 		.cb	= stage2_free_walker,
1639 		.flags	= KVM_PGTABLE_WALK_LEAF |
1640 			  KVM_PGTABLE_WALK_TABLE_POST,
1641 	};
1642 	struct kvm_pgtable_walk_data data = {
1643 		.walker	= &walker,
1644 
1645 		/*
1646 		 * At this point the IPA really doesn't matter, as the page
1647 		 * table being traversed has already been removed from the stage
1648 		 * 2. Set an appropriate range to cover the entire page table.
1649 		 */
1650 		.addr	= 0,
1651 		.end	= kvm_granule_size(level),
1652 	};
1653 
1654 	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1655 
1656 	WARN_ON(mm_ops->page_count(pgtable) != 1);
1657 	mm_ops->put_page(pgtable);
1658 }
1659