1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2. 4 * No bombay mix was harmed in the writing of this file. 5 * 6 * Copyright (C) 2020 Google LLC 7 * Author: Will Deacon <will@kernel.org> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <asm/kvm_pgtable.h> 12 #include <asm/stage2_pgtable.h> 13 14 15 #define KVM_PTE_TYPE BIT(1) 16 #define KVM_PTE_TYPE_BLOCK 0 17 #define KVM_PTE_TYPE_PAGE 1 18 #define KVM_PTE_TYPE_TABLE 1 19 20 struct kvm_pgtable_walk_data { 21 struct kvm_pgtable_walker *walker; 22 23 const u64 start; 24 u64 addr; 25 const u64 end; 26 }; 27 28 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx) 29 { 30 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI); 31 } 32 33 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx) 34 { 35 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO); 36 } 37 38 static bool kvm_phys_is_valid(u64 phys) 39 { 40 u64 parange_max = kvm_get_parange_max(); 41 u8 shift = id_aa64mmfr0_parange_to_phys_shift(parange_max); 42 43 return phys < BIT(shift); 44 } 45 46 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys) 47 { 48 u64 granule = kvm_granule_size(ctx->level); 49 50 if (!kvm_level_supports_block_mapping(ctx->level)) 51 return false; 52 53 if (granule > (ctx->end - ctx->addr)) 54 return false; 55 56 if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule)) 57 return false; 58 59 return IS_ALIGNED(ctx->addr, granule); 60 } 61 62 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level) 63 { 64 u64 shift = kvm_granule_shift(level); 65 u64 mask = BIT(PAGE_SHIFT - 3) - 1; 66 67 return (data->addr >> shift) & mask; 68 } 69 70 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr) 71 { 72 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */ 73 u64 mask = BIT(pgt->ia_bits) - 1; 74 75 return (addr & mask) >> shift; 76 } 77 78 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level) 79 { 80 struct kvm_pgtable pgt = { 81 .ia_bits = ia_bits, 82 .start_level = start_level, 83 }; 84 85 return kvm_pgd_page_idx(&pgt, -1ULL) + 1; 86 } 87 88 static bool kvm_pte_table(kvm_pte_t pte, s8 level) 89 { 90 if (level == KVM_PGTABLE_LAST_LEVEL) 91 return false; 92 93 if (!kvm_pte_valid(pte)) 94 return false; 95 96 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE; 97 } 98 99 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops) 100 { 101 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte)); 102 } 103 104 static void kvm_clear_pte(kvm_pte_t *ptep) 105 { 106 WRITE_ONCE(*ptep, 0); 107 } 108 109 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops) 110 { 111 kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp)); 112 113 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE); 114 pte |= KVM_PTE_VALID; 115 return pte; 116 } 117 118 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level) 119 { 120 kvm_pte_t pte = kvm_phys_to_pte(pa); 121 u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE : 122 KVM_PTE_TYPE_BLOCK; 123 124 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI); 125 pte |= FIELD_PREP(KVM_PTE_TYPE, type); 126 pte |= KVM_PTE_VALID; 127 128 return pte; 129 } 130 131 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id) 132 { 133 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id); 134 } 135 136 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, 137 const struct kvm_pgtable_visit_ctx *ctx, 138 enum kvm_pgtable_walk_flags visit) 139 { 140 struct kvm_pgtable_walker *walker = data->walker; 141 142 /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */ 143 WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held()); 144 return walker->cb(ctx, visit); 145 } 146 147 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker, 148 int r) 149 { 150 /* 151 * Visitor callbacks return EAGAIN when the conditions that led to a 152 * fault are no longer reflected in the page tables due to a race to 153 * update a PTE. In the context of a fault handler this is interpreted 154 * as a signal to retry guest execution. 155 * 156 * Ignore the return code altogether for walkers outside a fault handler 157 * (e.g. write protecting a range of memory) and chug along with the 158 * page table walk. 159 */ 160 if (r == -EAGAIN) 161 return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT); 162 163 return !r; 164 } 165 166 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, 167 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level); 168 169 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, 170 struct kvm_pgtable_mm_ops *mm_ops, 171 kvm_pteref_t pteref, s8 level) 172 { 173 enum kvm_pgtable_walk_flags flags = data->walker->flags; 174 kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref); 175 struct kvm_pgtable_visit_ctx ctx = { 176 .ptep = ptep, 177 .old = READ_ONCE(*ptep), 178 .arg = data->walker->arg, 179 .mm_ops = mm_ops, 180 .start = data->start, 181 .addr = data->addr, 182 .end = data->end, 183 .level = level, 184 .flags = flags, 185 }; 186 int ret = 0; 187 bool reload = false; 188 kvm_pteref_t childp; 189 bool table = kvm_pte_table(ctx.old, level); 190 191 if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) { 192 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE); 193 reload = true; 194 } 195 196 if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) { 197 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF); 198 reload = true; 199 } 200 201 /* 202 * Reload the page table after invoking the walker callback for leaf 203 * entries or after pre-order traversal, to allow the walker to descend 204 * into a newly installed or replaced table. 205 */ 206 if (reload) { 207 ctx.old = READ_ONCE(*ptep); 208 table = kvm_pte_table(ctx.old, level); 209 } 210 211 if (!kvm_pgtable_walk_continue(data->walker, ret)) 212 goto out; 213 214 if (!table) { 215 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level)); 216 data->addr += kvm_granule_size(level); 217 goto out; 218 } 219 220 childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops); 221 ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1); 222 if (!kvm_pgtable_walk_continue(data->walker, ret)) 223 goto out; 224 225 if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST) 226 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST); 227 228 out: 229 if (kvm_pgtable_walk_continue(data->walker, ret)) 230 return 0; 231 232 return ret; 233 } 234 235 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, 236 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level) 237 { 238 u32 idx; 239 int ret = 0; 240 241 if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL || 242 level > KVM_PGTABLE_LAST_LEVEL)) 243 return -EINVAL; 244 245 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) { 246 kvm_pteref_t pteref = &pgtable[idx]; 247 248 if (data->addr >= data->end) 249 break; 250 251 ret = __kvm_pgtable_visit(data, mm_ops, pteref, level); 252 if (ret) 253 break; 254 } 255 256 return ret; 257 } 258 259 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data) 260 { 261 u32 idx; 262 int ret = 0; 263 u64 limit = BIT(pgt->ia_bits); 264 265 if (data->addr > limit || data->end > limit) 266 return -ERANGE; 267 268 if (!pgt->pgd) 269 return -EINVAL; 270 271 for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) { 272 kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE]; 273 274 ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level); 275 if (ret) 276 break; 277 } 278 279 return ret; 280 } 281 282 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, 283 struct kvm_pgtable_walker *walker) 284 { 285 struct kvm_pgtable_walk_data walk_data = { 286 .start = ALIGN_DOWN(addr, PAGE_SIZE), 287 .addr = ALIGN_DOWN(addr, PAGE_SIZE), 288 .end = PAGE_ALIGN(walk_data.addr + size), 289 .walker = walker, 290 }; 291 int r; 292 293 r = kvm_pgtable_walk_begin(walker); 294 if (r) 295 return r; 296 297 r = _kvm_pgtable_walk(pgt, &walk_data); 298 kvm_pgtable_walk_end(walker); 299 300 return r; 301 } 302 303 struct leaf_walk_data { 304 kvm_pte_t pte; 305 s8 level; 306 }; 307 308 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx, 309 enum kvm_pgtable_walk_flags visit) 310 { 311 struct leaf_walk_data *data = ctx->arg; 312 313 data->pte = ctx->old; 314 data->level = ctx->level; 315 316 return 0; 317 } 318 319 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr, 320 kvm_pte_t *ptep, s8 *level) 321 { 322 struct leaf_walk_data data; 323 struct kvm_pgtable_walker walker = { 324 .cb = leaf_walker, 325 .flags = KVM_PGTABLE_WALK_LEAF, 326 .arg = &data, 327 }; 328 int ret; 329 330 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE), 331 PAGE_SIZE, &walker); 332 if (!ret) { 333 if (ptep) 334 *ptep = data.pte; 335 if (level) 336 *level = data.level; 337 } 338 339 return ret; 340 } 341 342 struct hyp_map_data { 343 const u64 phys; 344 kvm_pte_t attr; 345 }; 346 347 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep) 348 { 349 bool device = prot & KVM_PGTABLE_PROT_DEVICE; 350 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL; 351 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype); 352 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS; 353 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW : 354 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO; 355 356 if (!(prot & KVM_PGTABLE_PROT_R)) 357 return -EINVAL; 358 359 if (prot & KVM_PGTABLE_PROT_X) { 360 if (prot & KVM_PGTABLE_PROT_W) 361 return -EINVAL; 362 363 if (device) 364 return -EINVAL; 365 366 if (system_supports_bti_kernel()) 367 attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP; 368 } else { 369 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; 370 } 371 372 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap); 373 if (!kvm_lpa2_is_enabled()) 374 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh); 375 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF; 376 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; 377 *ptep = attr; 378 379 return 0; 380 } 381 382 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte) 383 { 384 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; 385 u32 ap; 386 387 if (!kvm_pte_valid(pte)) 388 return prot; 389 390 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN)) 391 prot |= KVM_PGTABLE_PROT_X; 392 393 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte); 394 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO) 395 prot |= KVM_PGTABLE_PROT_R; 396 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW) 397 prot |= KVM_PGTABLE_PROT_RW; 398 399 return prot; 400 } 401 402 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, 403 struct hyp_map_data *data) 404 { 405 u64 phys = data->phys + (ctx->addr - ctx->start); 406 kvm_pte_t new; 407 408 if (!kvm_block_mapping_supported(ctx, phys)) 409 return false; 410 411 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level); 412 if (ctx->old == new) 413 return true; 414 if (!kvm_pte_valid(ctx->old)) 415 ctx->mm_ops->get_page(ctx->ptep); 416 else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) 417 return false; 418 419 smp_store_release(ctx->ptep, new); 420 return true; 421 } 422 423 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx, 424 enum kvm_pgtable_walk_flags visit) 425 { 426 kvm_pte_t *childp, new; 427 struct hyp_map_data *data = ctx->arg; 428 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 429 430 if (hyp_map_walker_try_leaf(ctx, data)) 431 return 0; 432 433 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL)) 434 return -EINVAL; 435 436 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL); 437 if (!childp) 438 return -ENOMEM; 439 440 new = kvm_init_table_pte(childp, mm_ops); 441 mm_ops->get_page(ctx->ptep); 442 smp_store_release(ctx->ptep, new); 443 444 return 0; 445 } 446 447 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, 448 enum kvm_pgtable_prot prot) 449 { 450 int ret; 451 struct hyp_map_data map_data = { 452 .phys = ALIGN_DOWN(phys, PAGE_SIZE), 453 }; 454 struct kvm_pgtable_walker walker = { 455 .cb = hyp_map_walker, 456 .flags = KVM_PGTABLE_WALK_LEAF, 457 .arg = &map_data, 458 }; 459 460 ret = hyp_set_prot_attr(prot, &map_data.attr); 461 if (ret) 462 return ret; 463 464 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 465 dsb(ishst); 466 isb(); 467 return ret; 468 } 469 470 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx, 471 enum kvm_pgtable_walk_flags visit) 472 { 473 kvm_pte_t *childp = NULL; 474 u64 granule = kvm_granule_size(ctx->level); 475 u64 *unmapped = ctx->arg; 476 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 477 478 if (!kvm_pte_valid(ctx->old)) 479 return -EINVAL; 480 481 if (kvm_pte_table(ctx->old, ctx->level)) { 482 childp = kvm_pte_follow(ctx->old, mm_ops); 483 484 if (mm_ops->page_count(childp) != 1) 485 return 0; 486 487 kvm_clear_pte(ctx->ptep); 488 dsb(ishst); 489 __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN); 490 } else { 491 if (ctx->end - ctx->addr < granule) 492 return -EINVAL; 493 494 kvm_clear_pte(ctx->ptep); 495 dsb(ishst); 496 __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level); 497 *unmapped += granule; 498 } 499 500 dsb(ish); 501 isb(); 502 mm_ops->put_page(ctx->ptep); 503 504 if (childp) 505 mm_ops->put_page(childp); 506 507 return 0; 508 } 509 510 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) 511 { 512 u64 unmapped = 0; 513 struct kvm_pgtable_walker walker = { 514 .cb = hyp_unmap_walker, 515 .arg = &unmapped, 516 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 517 }; 518 519 if (!pgt->mm_ops->page_count) 520 return 0; 521 522 kvm_pgtable_walk(pgt, addr, size, &walker); 523 return unmapped; 524 } 525 526 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits, 527 struct kvm_pgtable_mm_ops *mm_ops) 528 { 529 s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 - 530 ARM64_HW_PGTABLE_LEVELS(va_bits); 531 532 if (start_level < KVM_PGTABLE_FIRST_LEVEL || 533 start_level > KVM_PGTABLE_LAST_LEVEL) 534 return -EINVAL; 535 536 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL); 537 if (!pgt->pgd) 538 return -ENOMEM; 539 540 pgt->ia_bits = va_bits; 541 pgt->start_level = start_level; 542 pgt->mm_ops = mm_ops; 543 pgt->mmu = NULL; 544 pgt->force_pte_cb = NULL; 545 546 return 0; 547 } 548 549 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx, 550 enum kvm_pgtable_walk_flags visit) 551 { 552 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 553 554 if (!kvm_pte_valid(ctx->old)) 555 return 0; 556 557 mm_ops->put_page(ctx->ptep); 558 559 if (kvm_pte_table(ctx->old, ctx->level)) 560 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops)); 561 562 return 0; 563 } 564 565 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) 566 { 567 struct kvm_pgtable_walker walker = { 568 .cb = hyp_free_walker, 569 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 570 }; 571 572 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); 573 pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd)); 574 pgt->pgd = NULL; 575 } 576 577 struct stage2_map_data { 578 const u64 phys; 579 kvm_pte_t attr; 580 u8 owner_id; 581 582 kvm_pte_t *anchor; 583 kvm_pte_t *childp; 584 585 struct kvm_s2_mmu *mmu; 586 void *memcache; 587 588 /* Force mappings to page granularity */ 589 bool force_pte; 590 }; 591 592 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift) 593 { 594 u64 vtcr = VTCR_EL2_FLAGS; 595 s8 lvls; 596 597 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT; 598 vtcr |= VTCR_EL2_T0SZ(phys_shift); 599 /* 600 * Use a minimum 2 level page table to prevent splitting 601 * host PMD huge pages at stage2. 602 */ 603 lvls = stage2_pgtable_levels(phys_shift); 604 if (lvls < 2) 605 lvls = 2; 606 607 /* 608 * When LPA2 is enabled, the HW supports an extra level of translation 609 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2 610 * to as an addition to SL0 to enable encoding this extra start level. 611 * However, since we always use concatenated pages for the first level 612 * lookup, we will never need this extra level and therefore do not need 613 * to touch SL2. 614 */ 615 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls); 616 617 #ifdef CONFIG_ARM64_HW_AFDBM 618 /* 619 * Enable the Hardware Access Flag management, unconditionally 620 * on all CPUs. In systems that have asymmetric support for the feature 621 * this allows KVM to leverage hardware support on the subset of cores 622 * that implement the feature. 623 * 624 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by 625 * hardware) on implementations that do not advertise support for the 626 * feature. As such, setting HA unconditionally is safe, unless you 627 * happen to be running on a design that has unadvertised support for 628 * HAFDBS. Here be dragons. 629 */ 630 if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) 631 vtcr |= VTCR_EL2_HA; 632 #endif /* CONFIG_ARM64_HW_AFDBM */ 633 634 if (kvm_lpa2_is_enabled()) 635 vtcr |= VTCR_EL2_DS; 636 637 /* Set the vmid bits */ 638 vtcr |= (get_vmid_bits(mmfr1) == 16) ? 639 VTCR_EL2_VS_16BIT : 640 VTCR_EL2_VS_8BIT; 641 642 return vtcr; 643 } 644 645 static bool stage2_has_fwb(struct kvm_pgtable *pgt) 646 { 647 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 648 return false; 649 650 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB); 651 } 652 653 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu, 654 phys_addr_t addr, size_t size) 655 { 656 unsigned long pages, inval_pages; 657 658 if (!system_supports_tlb_range()) { 659 kvm_call_hyp(__kvm_tlb_flush_vmid, mmu); 660 return; 661 } 662 663 pages = size >> PAGE_SHIFT; 664 while (pages > 0) { 665 inval_pages = min(pages, MAX_TLBI_RANGE_PAGES); 666 kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages); 667 668 addr += inval_pages << PAGE_SHIFT; 669 pages -= inval_pages; 670 } 671 } 672 673 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt)) 674 675 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot, 676 kvm_pte_t *ptep) 677 { 678 kvm_pte_t attr; 679 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; 680 681 switch (prot & (KVM_PGTABLE_PROT_DEVICE | 682 KVM_PGTABLE_PROT_NORMAL_NC)) { 683 case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC: 684 return -EINVAL; 685 case KVM_PGTABLE_PROT_DEVICE: 686 if (prot & KVM_PGTABLE_PROT_X) 687 return -EINVAL; 688 attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE); 689 break; 690 case KVM_PGTABLE_PROT_NORMAL_NC: 691 if (prot & KVM_PGTABLE_PROT_X) 692 return -EINVAL; 693 attr = KVM_S2_MEMATTR(pgt, NORMAL_NC); 694 break; 695 default: 696 attr = KVM_S2_MEMATTR(pgt, NORMAL); 697 } 698 699 if (!(prot & KVM_PGTABLE_PROT_X)) 700 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; 701 702 if (prot & KVM_PGTABLE_PROT_R) 703 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; 704 705 if (prot & KVM_PGTABLE_PROT_W) 706 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; 707 708 if (!kvm_lpa2_is_enabled()) 709 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); 710 711 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; 712 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; 713 *ptep = attr; 714 715 return 0; 716 } 717 718 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte) 719 { 720 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; 721 722 if (!kvm_pte_valid(pte)) 723 return prot; 724 725 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R) 726 prot |= KVM_PGTABLE_PROT_R; 727 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W) 728 prot |= KVM_PGTABLE_PROT_W; 729 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN)) 730 prot |= KVM_PGTABLE_PROT_X; 731 732 return prot; 733 } 734 735 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new) 736 { 737 if (!kvm_pte_valid(old) || !kvm_pte_valid(new)) 738 return true; 739 740 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS)); 741 } 742 743 static bool stage2_pte_is_counted(kvm_pte_t pte) 744 { 745 /* 746 * The refcount tracks valid entries as well as invalid entries if they 747 * encode ownership of a page to another entity than the page-table 748 * owner, whose id is 0. 749 */ 750 return !!pte; 751 } 752 753 static bool stage2_pte_is_locked(kvm_pte_t pte) 754 { 755 return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED); 756 } 757 758 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new) 759 { 760 if (!kvm_pgtable_walk_shared(ctx)) { 761 WRITE_ONCE(*ctx->ptep, new); 762 return true; 763 } 764 765 return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old; 766 } 767 768 /** 769 * stage2_try_break_pte() - Invalidates a pte according to the 770 * 'break-before-make' requirements of the 771 * architecture. 772 * 773 * @ctx: context of the visited pte. 774 * @mmu: stage-2 mmu 775 * 776 * Returns: true if the pte was successfully broken. 777 * 778 * If the removed pte was valid, performs the necessary serialization and TLB 779 * invalidation for the old value. For counted ptes, drops the reference count 780 * on the containing table page. 781 */ 782 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx, 783 struct kvm_s2_mmu *mmu) 784 { 785 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 786 787 if (stage2_pte_is_locked(ctx->old)) { 788 /* 789 * Should never occur if this walker has exclusive access to the 790 * page tables. 791 */ 792 WARN_ON(!kvm_pgtable_walk_shared(ctx)); 793 return false; 794 } 795 796 if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED)) 797 return false; 798 799 if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) { 800 /* 801 * Perform the appropriate TLB invalidation based on the 802 * evicted pte value (if any). 803 */ 804 if (kvm_pte_table(ctx->old, ctx->level)) { 805 u64 size = kvm_granule_size(ctx->level); 806 u64 addr = ALIGN_DOWN(ctx->addr, size); 807 808 kvm_tlb_flush_vmid_range(mmu, addr, size); 809 } else if (kvm_pte_valid(ctx->old)) { 810 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, 811 ctx->addr, ctx->level); 812 } 813 } 814 815 if (stage2_pte_is_counted(ctx->old)) 816 mm_ops->put_page(ctx->ptep); 817 818 return true; 819 } 820 821 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new) 822 { 823 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 824 825 WARN_ON(!stage2_pte_is_locked(*ctx->ptep)); 826 827 if (stage2_pte_is_counted(new)) 828 mm_ops->get_page(ctx->ptep); 829 830 smp_store_release(ctx->ptep, new); 831 } 832 833 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt) 834 { 835 /* 836 * If FEAT_TLBIRANGE is implemented, defer the individual 837 * TLB invalidations until the entire walk is finished, and 838 * then use the range-based TLBI instructions to do the 839 * invalidations. Condition deferred TLB invalidation on the 840 * system supporting FWB as the optimization is entirely 841 * pointless when the unmap walker needs to perform CMOs. 842 */ 843 return system_supports_tlb_range() && stage2_has_fwb(pgt); 844 } 845 846 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx, 847 struct kvm_s2_mmu *mmu, 848 struct kvm_pgtable_mm_ops *mm_ops) 849 { 850 struct kvm_pgtable *pgt = ctx->arg; 851 852 /* 853 * Clear the existing PTE, and perform break-before-make if it was 854 * valid. Depending on the system support, defer the TLB maintenance 855 * for the same until the entire unmap walk is completed. 856 */ 857 if (kvm_pte_valid(ctx->old)) { 858 kvm_clear_pte(ctx->ptep); 859 860 if (kvm_pte_table(ctx->old, ctx->level)) { 861 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, 862 TLBI_TTL_UNKNOWN); 863 } else if (!stage2_unmap_defer_tlb_flush(pgt)) { 864 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, 865 ctx->level); 866 } 867 } 868 869 mm_ops->put_page(ctx->ptep); 870 } 871 872 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte) 873 { 874 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR; 875 return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL); 876 } 877 878 static bool stage2_pte_executable(kvm_pte_t pte) 879 { 880 return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN); 881 } 882 883 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx, 884 const struct stage2_map_data *data) 885 { 886 u64 phys = data->phys; 887 888 /* 889 * Stage-2 walks to update ownership data are communicated to the map 890 * walker using an invalid PA. Avoid offsetting an already invalid PA, 891 * which could overflow and make the address valid again. 892 */ 893 if (!kvm_phys_is_valid(phys)) 894 return phys; 895 896 /* 897 * Otherwise, work out the correct PA based on how far the walk has 898 * gotten. 899 */ 900 return phys + (ctx->addr - ctx->start); 901 } 902 903 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx, 904 struct stage2_map_data *data) 905 { 906 u64 phys = stage2_map_walker_phys_addr(ctx, data); 907 908 if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL) 909 return false; 910 911 return kvm_block_mapping_supported(ctx, phys); 912 } 913 914 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, 915 struct stage2_map_data *data) 916 { 917 kvm_pte_t new; 918 u64 phys = stage2_map_walker_phys_addr(ctx, data); 919 u64 granule = kvm_granule_size(ctx->level); 920 struct kvm_pgtable *pgt = data->mmu->pgt; 921 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 922 923 if (!stage2_leaf_mapping_allowed(ctx, data)) 924 return -E2BIG; 925 926 if (kvm_phys_is_valid(phys)) 927 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level); 928 else 929 new = kvm_init_invalid_leaf_owner(data->owner_id); 930 931 /* 932 * Skip updating the PTE if we are trying to recreate the exact 933 * same mapping or only change the access permissions. Instead, 934 * the vCPU will exit one more time from guest if still needed 935 * and then go through the path of relaxing permissions. 936 */ 937 if (!stage2_pte_needs_update(ctx->old, new)) 938 return -EAGAIN; 939 940 /* If we're only changing software bits, then store them and go! */ 941 if (!kvm_pgtable_walk_shared(ctx) && 942 !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) { 943 bool old_is_counted = stage2_pte_is_counted(ctx->old); 944 945 if (old_is_counted != stage2_pte_is_counted(new)) { 946 if (old_is_counted) 947 mm_ops->put_page(ctx->ptep); 948 else 949 mm_ops->get_page(ctx->ptep); 950 } 951 WARN_ON_ONCE(!stage2_try_set_pte(ctx, new)); 952 return 0; 953 } 954 955 if (!stage2_try_break_pte(ctx, data->mmu)) 956 return -EAGAIN; 957 958 /* Perform CMOs before installation of the guest stage-2 PTE */ 959 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc && 960 stage2_pte_cacheable(pgt, new)) 961 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops), 962 granule); 963 964 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou && 965 stage2_pte_executable(new)) 966 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule); 967 968 stage2_make_pte(ctx, new); 969 970 return 0; 971 } 972 973 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx, 974 struct stage2_map_data *data) 975 { 976 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 977 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops); 978 int ret; 979 980 if (!stage2_leaf_mapping_allowed(ctx, data)) 981 return 0; 982 983 ret = stage2_map_walker_try_leaf(ctx, data); 984 if (ret) 985 return ret; 986 987 mm_ops->free_unlinked_table(childp, ctx->level); 988 return 0; 989 } 990 991 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx, 992 struct stage2_map_data *data) 993 { 994 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 995 kvm_pte_t *childp, new; 996 int ret; 997 998 ret = stage2_map_walker_try_leaf(ctx, data); 999 if (ret != -E2BIG) 1000 return ret; 1001 1002 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL)) 1003 return -EINVAL; 1004 1005 if (!data->memcache) 1006 return -ENOMEM; 1007 1008 childp = mm_ops->zalloc_page(data->memcache); 1009 if (!childp) 1010 return -ENOMEM; 1011 1012 if (!stage2_try_break_pte(ctx, data->mmu)) { 1013 mm_ops->put_page(childp); 1014 return -EAGAIN; 1015 } 1016 1017 /* 1018 * If we've run into an existing block mapping then replace it with 1019 * a table. Accesses beyond 'end' that fall within the new table 1020 * will be mapped lazily. 1021 */ 1022 new = kvm_init_table_pte(childp, mm_ops); 1023 stage2_make_pte(ctx, new); 1024 1025 return 0; 1026 } 1027 1028 /* 1029 * The TABLE_PRE callback runs for table entries on the way down, looking 1030 * for table entries which we could conceivably replace with a block entry 1031 * for this mapping. If it finds one it replaces the entry and calls 1032 * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table. 1033 * 1034 * Otherwise, the LEAF callback performs the mapping at the existing leaves 1035 * instead. 1036 */ 1037 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx, 1038 enum kvm_pgtable_walk_flags visit) 1039 { 1040 struct stage2_map_data *data = ctx->arg; 1041 1042 switch (visit) { 1043 case KVM_PGTABLE_WALK_TABLE_PRE: 1044 return stage2_map_walk_table_pre(ctx, data); 1045 case KVM_PGTABLE_WALK_LEAF: 1046 return stage2_map_walk_leaf(ctx, data); 1047 default: 1048 return -EINVAL; 1049 } 1050 } 1051 1052 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, 1053 u64 phys, enum kvm_pgtable_prot prot, 1054 void *mc, enum kvm_pgtable_walk_flags flags) 1055 { 1056 int ret; 1057 struct stage2_map_data map_data = { 1058 .phys = ALIGN_DOWN(phys, PAGE_SIZE), 1059 .mmu = pgt->mmu, 1060 .memcache = mc, 1061 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot), 1062 }; 1063 struct kvm_pgtable_walker walker = { 1064 .cb = stage2_map_walker, 1065 .flags = flags | 1066 KVM_PGTABLE_WALK_TABLE_PRE | 1067 KVM_PGTABLE_WALK_LEAF, 1068 .arg = &map_data, 1069 }; 1070 1071 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys))) 1072 return -EINVAL; 1073 1074 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); 1075 if (ret) 1076 return ret; 1077 1078 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1079 dsb(ishst); 1080 return ret; 1081 } 1082 1083 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size, 1084 void *mc, u8 owner_id) 1085 { 1086 int ret; 1087 struct stage2_map_data map_data = { 1088 .phys = KVM_PHYS_INVALID, 1089 .mmu = pgt->mmu, 1090 .memcache = mc, 1091 .owner_id = owner_id, 1092 .force_pte = true, 1093 }; 1094 struct kvm_pgtable_walker walker = { 1095 .cb = stage2_map_walker, 1096 .flags = KVM_PGTABLE_WALK_TABLE_PRE | 1097 KVM_PGTABLE_WALK_LEAF, 1098 .arg = &map_data, 1099 }; 1100 1101 if (owner_id > KVM_MAX_OWNER_ID) 1102 return -EINVAL; 1103 1104 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1105 return ret; 1106 } 1107 1108 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx, 1109 enum kvm_pgtable_walk_flags visit) 1110 { 1111 struct kvm_pgtable *pgt = ctx->arg; 1112 struct kvm_s2_mmu *mmu = pgt->mmu; 1113 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1114 kvm_pte_t *childp = NULL; 1115 bool need_flush = false; 1116 1117 if (!kvm_pte_valid(ctx->old)) { 1118 if (stage2_pte_is_counted(ctx->old)) { 1119 kvm_clear_pte(ctx->ptep); 1120 mm_ops->put_page(ctx->ptep); 1121 } 1122 return 0; 1123 } 1124 1125 if (kvm_pte_table(ctx->old, ctx->level)) { 1126 childp = kvm_pte_follow(ctx->old, mm_ops); 1127 1128 if (mm_ops->page_count(childp) != 1) 1129 return 0; 1130 } else if (stage2_pte_cacheable(pgt, ctx->old)) { 1131 need_flush = !stage2_has_fwb(pgt); 1132 } 1133 1134 /* 1135 * This is similar to the map() path in that we unmap the entire 1136 * block entry and rely on the remaining portions being faulted 1137 * back lazily. 1138 */ 1139 stage2_unmap_put_pte(ctx, mmu, mm_ops); 1140 1141 if (need_flush && mm_ops->dcache_clean_inval_poc) 1142 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops), 1143 kvm_granule_size(ctx->level)); 1144 1145 if (childp) 1146 mm_ops->put_page(childp); 1147 1148 return 0; 1149 } 1150 1151 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) 1152 { 1153 int ret; 1154 struct kvm_pgtable_walker walker = { 1155 .cb = stage2_unmap_walker, 1156 .arg = pgt, 1157 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 1158 }; 1159 1160 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1161 if (stage2_unmap_defer_tlb_flush(pgt)) 1162 /* Perform the deferred TLB invalidations */ 1163 kvm_tlb_flush_vmid_range(pgt->mmu, addr, size); 1164 1165 return ret; 1166 } 1167 1168 struct stage2_attr_data { 1169 kvm_pte_t attr_set; 1170 kvm_pte_t attr_clr; 1171 kvm_pte_t pte; 1172 s8 level; 1173 }; 1174 1175 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx, 1176 enum kvm_pgtable_walk_flags visit) 1177 { 1178 kvm_pte_t pte = ctx->old; 1179 struct stage2_attr_data *data = ctx->arg; 1180 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1181 1182 if (!kvm_pte_valid(ctx->old)) 1183 return -EAGAIN; 1184 1185 data->level = ctx->level; 1186 data->pte = pte; 1187 pte &= ~data->attr_clr; 1188 pte |= data->attr_set; 1189 1190 /* 1191 * We may race with the CPU trying to set the access flag here, 1192 * but worst-case the access flag update gets lost and will be 1193 * set on the next access instead. 1194 */ 1195 if (data->pte != pte) { 1196 /* 1197 * Invalidate instruction cache before updating the guest 1198 * stage-2 PTE if we are going to add executable permission. 1199 */ 1200 if (mm_ops->icache_inval_pou && 1201 stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old)) 1202 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops), 1203 kvm_granule_size(ctx->level)); 1204 1205 if (!stage2_try_set_pte(ctx, pte)) 1206 return -EAGAIN; 1207 } 1208 1209 return 0; 1210 } 1211 1212 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr, 1213 u64 size, kvm_pte_t attr_set, 1214 kvm_pte_t attr_clr, kvm_pte_t *orig_pte, 1215 s8 *level, enum kvm_pgtable_walk_flags flags) 1216 { 1217 int ret; 1218 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI; 1219 struct stage2_attr_data data = { 1220 .attr_set = attr_set & attr_mask, 1221 .attr_clr = attr_clr & attr_mask, 1222 }; 1223 struct kvm_pgtable_walker walker = { 1224 .cb = stage2_attr_walker, 1225 .arg = &data, 1226 .flags = flags | KVM_PGTABLE_WALK_LEAF, 1227 }; 1228 1229 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1230 if (ret) 1231 return ret; 1232 1233 if (orig_pte) 1234 *orig_pte = data.pte; 1235 1236 if (level) 1237 *level = data.level; 1238 return 0; 1239 } 1240 1241 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size) 1242 { 1243 return stage2_update_leaf_attrs(pgt, addr, size, 0, 1244 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W, 1245 NULL, NULL, 0); 1246 } 1247 1248 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr) 1249 { 1250 kvm_pte_t pte = 0; 1251 int ret; 1252 1253 ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0, 1254 &pte, NULL, 1255 KVM_PGTABLE_WALK_HANDLE_FAULT | 1256 KVM_PGTABLE_WALK_SHARED); 1257 if (!ret) 1258 dsb(ishst); 1259 1260 return pte; 1261 } 1262 1263 struct stage2_age_data { 1264 bool mkold; 1265 bool young; 1266 }; 1267 1268 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx, 1269 enum kvm_pgtable_walk_flags visit) 1270 { 1271 kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF; 1272 struct stage2_age_data *data = ctx->arg; 1273 1274 if (!kvm_pte_valid(ctx->old) || new == ctx->old) 1275 return 0; 1276 1277 data->young = true; 1278 1279 /* 1280 * stage2_age_walker() is always called while holding the MMU lock for 1281 * write, so this will always succeed. Nonetheless, this deliberately 1282 * follows the race detection pattern of the other stage-2 walkers in 1283 * case the locking mechanics of the MMU notifiers is ever changed. 1284 */ 1285 if (data->mkold && !stage2_try_set_pte(ctx, new)) 1286 return -EAGAIN; 1287 1288 /* 1289 * "But where's the TLBI?!", you scream. 1290 * "Over in the core code", I sigh. 1291 * 1292 * See the '->clear_flush_young()' callback on the KVM mmu notifier. 1293 */ 1294 return 0; 1295 } 1296 1297 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr, 1298 u64 size, bool mkold) 1299 { 1300 struct stage2_age_data data = { 1301 .mkold = mkold, 1302 }; 1303 struct kvm_pgtable_walker walker = { 1304 .cb = stage2_age_walker, 1305 .arg = &data, 1306 .flags = KVM_PGTABLE_WALK_LEAF, 1307 }; 1308 1309 WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker)); 1310 return data.young; 1311 } 1312 1313 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, 1314 enum kvm_pgtable_prot prot) 1315 { 1316 int ret; 1317 s8 level; 1318 kvm_pte_t set = 0, clr = 0; 1319 1320 if (prot & KVM_PTE_LEAF_ATTR_HI_SW) 1321 return -EINVAL; 1322 1323 if (prot & KVM_PGTABLE_PROT_R) 1324 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; 1325 1326 if (prot & KVM_PGTABLE_PROT_W) 1327 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; 1328 1329 if (prot & KVM_PGTABLE_PROT_X) 1330 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; 1331 1332 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level, 1333 KVM_PGTABLE_WALK_HANDLE_FAULT | 1334 KVM_PGTABLE_WALK_SHARED); 1335 if (!ret || ret == -EAGAIN) 1336 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level); 1337 return ret; 1338 } 1339 1340 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx, 1341 enum kvm_pgtable_walk_flags visit) 1342 { 1343 struct kvm_pgtable *pgt = ctx->arg; 1344 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; 1345 1346 if (!stage2_pte_cacheable(pgt, ctx->old)) 1347 return 0; 1348 1349 if (mm_ops->dcache_clean_inval_poc) 1350 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops), 1351 kvm_granule_size(ctx->level)); 1352 return 0; 1353 } 1354 1355 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) 1356 { 1357 struct kvm_pgtable_walker walker = { 1358 .cb = stage2_flush_walker, 1359 .flags = KVM_PGTABLE_WALK_LEAF, 1360 .arg = pgt, 1361 }; 1362 1363 if (stage2_has_fwb(pgt)) 1364 return 0; 1365 1366 return kvm_pgtable_walk(pgt, addr, size, &walker); 1367 } 1368 1369 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt, 1370 u64 phys, s8 level, 1371 enum kvm_pgtable_prot prot, 1372 void *mc, bool force_pte) 1373 { 1374 struct stage2_map_data map_data = { 1375 .phys = phys, 1376 .mmu = pgt->mmu, 1377 .memcache = mc, 1378 .force_pte = force_pte, 1379 }; 1380 struct kvm_pgtable_walker walker = { 1381 .cb = stage2_map_walker, 1382 .flags = KVM_PGTABLE_WALK_LEAF | 1383 KVM_PGTABLE_WALK_SKIP_BBM_TLBI | 1384 KVM_PGTABLE_WALK_SKIP_CMO, 1385 .arg = &map_data, 1386 }; 1387 /* 1388 * The input address (.addr) is irrelevant for walking an 1389 * unlinked table. Construct an ambiguous IA range to map 1390 * kvm_granule_size(level) worth of memory. 1391 */ 1392 struct kvm_pgtable_walk_data data = { 1393 .walker = &walker, 1394 .addr = 0, 1395 .end = kvm_granule_size(level), 1396 }; 1397 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; 1398 kvm_pte_t *pgtable; 1399 int ret; 1400 1401 if (!IS_ALIGNED(phys, kvm_granule_size(level))) 1402 return ERR_PTR(-EINVAL); 1403 1404 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); 1405 if (ret) 1406 return ERR_PTR(ret); 1407 1408 pgtable = mm_ops->zalloc_page(mc); 1409 if (!pgtable) 1410 return ERR_PTR(-ENOMEM); 1411 1412 ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable, 1413 level + 1); 1414 if (ret) { 1415 kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level); 1416 return ERR_PTR(ret); 1417 } 1418 1419 return pgtable; 1420 } 1421 1422 /* 1423 * Get the number of page-tables needed to replace a block with a 1424 * fully populated tree up to the PTE entries. Note that @level is 1425 * interpreted as in "level @level entry". 1426 */ 1427 static int stage2_block_get_nr_page_tables(s8 level) 1428 { 1429 switch (level) { 1430 case 1: 1431 return PTRS_PER_PTE + 1; 1432 case 2: 1433 return 1; 1434 case 3: 1435 return 0; 1436 default: 1437 WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL || 1438 level > KVM_PGTABLE_LAST_LEVEL); 1439 return -EINVAL; 1440 }; 1441 } 1442 1443 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx, 1444 enum kvm_pgtable_walk_flags visit) 1445 { 1446 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1447 struct kvm_mmu_memory_cache *mc = ctx->arg; 1448 struct kvm_s2_mmu *mmu; 1449 kvm_pte_t pte = ctx->old, new, *childp; 1450 enum kvm_pgtable_prot prot; 1451 s8 level = ctx->level; 1452 bool force_pte; 1453 int nr_pages; 1454 u64 phys; 1455 1456 /* No huge-pages exist at the last level */ 1457 if (level == KVM_PGTABLE_LAST_LEVEL) 1458 return 0; 1459 1460 /* We only split valid block mappings */ 1461 if (!kvm_pte_valid(pte)) 1462 return 0; 1463 1464 nr_pages = stage2_block_get_nr_page_tables(level); 1465 if (nr_pages < 0) 1466 return nr_pages; 1467 1468 if (mc->nobjs >= nr_pages) { 1469 /* Build a tree mapped down to the PTE granularity. */ 1470 force_pte = true; 1471 } else { 1472 /* 1473 * Don't force PTEs, so create_unlinked() below does 1474 * not populate the tree up to the PTE level. The 1475 * consequence is that the call will require a single 1476 * page of level 2 entries at level 1, or a single 1477 * page of PTEs at level 2. If we are at level 1, the 1478 * PTEs will be created recursively. 1479 */ 1480 force_pte = false; 1481 nr_pages = 1; 1482 } 1483 1484 if (mc->nobjs < nr_pages) 1485 return -ENOMEM; 1486 1487 mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache); 1488 phys = kvm_pte_to_phys(pte); 1489 prot = kvm_pgtable_stage2_pte_prot(pte); 1490 1491 childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys, 1492 level, prot, mc, force_pte); 1493 if (IS_ERR(childp)) 1494 return PTR_ERR(childp); 1495 1496 if (!stage2_try_break_pte(ctx, mmu)) { 1497 kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level); 1498 return -EAGAIN; 1499 } 1500 1501 /* 1502 * Note, the contents of the page table are guaranteed to be made 1503 * visible before the new PTE is assigned because stage2_make_pte() 1504 * writes the PTE using smp_store_release(). 1505 */ 1506 new = kvm_init_table_pte(childp, mm_ops); 1507 stage2_make_pte(ctx, new); 1508 return 0; 1509 } 1510 1511 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size, 1512 struct kvm_mmu_memory_cache *mc) 1513 { 1514 struct kvm_pgtable_walker walker = { 1515 .cb = stage2_split_walker, 1516 .flags = KVM_PGTABLE_WALK_LEAF, 1517 .arg = mc, 1518 }; 1519 int ret; 1520 1521 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1522 dsb(ishst); 1523 return ret; 1524 } 1525 1526 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu, 1527 struct kvm_pgtable_mm_ops *mm_ops, 1528 enum kvm_pgtable_stage2_flags flags, 1529 kvm_pgtable_force_pte_cb_t force_pte_cb) 1530 { 1531 size_t pgd_sz; 1532 u64 vtcr = mmu->vtcr; 1533 u32 ia_bits = VTCR_EL2_IPA(vtcr); 1534 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); 1535 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; 1536 1537 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; 1538 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz); 1539 if (!pgt->pgd) 1540 return -ENOMEM; 1541 1542 pgt->ia_bits = ia_bits; 1543 pgt->start_level = start_level; 1544 pgt->mm_ops = mm_ops; 1545 pgt->mmu = mmu; 1546 pgt->flags = flags; 1547 pgt->force_pte_cb = force_pte_cb; 1548 1549 /* Ensure zeroed PGD pages are visible to the hardware walker */ 1550 dsb(ishst); 1551 return 0; 1552 } 1553 1554 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr) 1555 { 1556 u32 ia_bits = VTCR_EL2_IPA(vtcr); 1557 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); 1558 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; 1559 1560 return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; 1561 } 1562 1563 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx, 1564 enum kvm_pgtable_walk_flags visit) 1565 { 1566 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1567 1568 if (!stage2_pte_is_counted(ctx->old)) 1569 return 0; 1570 1571 mm_ops->put_page(ctx->ptep); 1572 1573 if (kvm_pte_table(ctx->old, ctx->level)) 1574 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops)); 1575 1576 return 0; 1577 } 1578 1579 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) 1580 { 1581 size_t pgd_sz; 1582 struct kvm_pgtable_walker walker = { 1583 .cb = stage2_free_walker, 1584 .flags = KVM_PGTABLE_WALK_LEAF | 1585 KVM_PGTABLE_WALK_TABLE_POST, 1586 }; 1587 1588 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); 1589 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE; 1590 pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz); 1591 pgt->pgd = NULL; 1592 } 1593 1594 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level) 1595 { 1596 kvm_pteref_t ptep = (kvm_pteref_t)pgtable; 1597 struct kvm_pgtable_walker walker = { 1598 .cb = stage2_free_walker, 1599 .flags = KVM_PGTABLE_WALK_LEAF | 1600 KVM_PGTABLE_WALK_TABLE_POST, 1601 }; 1602 struct kvm_pgtable_walk_data data = { 1603 .walker = &walker, 1604 1605 /* 1606 * At this point the IPA really doesn't matter, as the page 1607 * table being traversed has already been removed from the stage 1608 * 2. Set an appropriate range to cover the entire page table. 1609 */ 1610 .addr = 0, 1611 .end = kvm_granule_size(level), 1612 }; 1613 1614 WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1)); 1615 1616 WARN_ON(mm_ops->page_count(pgtable) != 1); 1617 mm_ops->put_page(pgtable); 1618 } 1619