1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2. 4 * No bombay mix was harmed in the writing of this file. 5 * 6 * Copyright (C) 2020 Google LLC 7 * Author: Will Deacon <will@kernel.org> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <asm/kvm_pgtable.h> 12 #include <asm/stage2_pgtable.h> 13 14 struct kvm_pgtable_walk_data { 15 struct kvm_pgtable_walker *walker; 16 17 const u64 start; 18 u64 addr; 19 const u64 end; 20 }; 21 22 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx) 23 { 24 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI); 25 } 26 27 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx) 28 { 29 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO); 30 } 31 32 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys) 33 { 34 u64 granule = kvm_granule_size(ctx->level); 35 36 if (!kvm_level_supports_block_mapping(ctx->level)) 37 return false; 38 39 if (granule > (ctx->end - ctx->addr)) 40 return false; 41 42 if (!IS_ALIGNED(phys, granule)) 43 return false; 44 45 return IS_ALIGNED(ctx->addr, granule); 46 } 47 48 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level) 49 { 50 u64 shift = kvm_granule_shift(level); 51 u64 mask = BIT(PAGE_SHIFT - 3) - 1; 52 53 return (data->addr >> shift) & mask; 54 } 55 56 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr) 57 { 58 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */ 59 u64 mask = BIT(pgt->ia_bits) - 1; 60 61 return (addr & mask) >> shift; 62 } 63 64 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level) 65 { 66 struct kvm_pgtable pgt = { 67 .ia_bits = ia_bits, 68 .start_level = start_level, 69 }; 70 71 return kvm_pgd_page_idx(&pgt, -1ULL) + 1; 72 } 73 74 static bool kvm_pte_table(kvm_pte_t pte, s8 level) 75 { 76 if (level == KVM_PGTABLE_LAST_LEVEL) 77 return false; 78 79 if (!kvm_pte_valid(pte)) 80 return false; 81 82 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE; 83 } 84 85 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops) 86 { 87 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte)); 88 } 89 90 static void kvm_clear_pte(kvm_pte_t *ptep) 91 { 92 WRITE_ONCE(*ptep, 0); 93 } 94 95 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops) 96 { 97 kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp)); 98 99 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE); 100 pte |= KVM_PTE_VALID; 101 return pte; 102 } 103 104 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level) 105 { 106 kvm_pte_t pte = kvm_phys_to_pte(pa); 107 u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE : 108 KVM_PTE_TYPE_BLOCK; 109 110 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI); 111 pte |= FIELD_PREP(KVM_PTE_TYPE, type); 112 pte |= KVM_PTE_VALID; 113 114 return pte; 115 } 116 117 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id) 118 { 119 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id); 120 } 121 122 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, 123 const struct kvm_pgtable_visit_ctx *ctx, 124 enum kvm_pgtable_walk_flags visit) 125 { 126 struct kvm_pgtable_walker *walker = data->walker; 127 128 /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */ 129 WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held()); 130 return walker->cb(ctx, visit); 131 } 132 133 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker, 134 int r) 135 { 136 /* 137 * Visitor callbacks return EAGAIN when the conditions that led to a 138 * fault are no longer reflected in the page tables due to a race to 139 * update a PTE. In the context of a fault handler this is interpreted 140 * as a signal to retry guest execution. 141 * 142 * Ignore the return code altogether for walkers outside a fault handler 143 * (e.g. write protecting a range of memory) and chug along with the 144 * page table walk. 145 */ 146 if (r == -EAGAIN) 147 return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT); 148 149 return !r; 150 } 151 152 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, 153 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level); 154 155 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, 156 struct kvm_pgtable_mm_ops *mm_ops, 157 kvm_pteref_t pteref, s8 level) 158 { 159 enum kvm_pgtable_walk_flags flags = data->walker->flags; 160 kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref); 161 struct kvm_pgtable_visit_ctx ctx = { 162 .ptep = ptep, 163 .old = READ_ONCE(*ptep), 164 .arg = data->walker->arg, 165 .mm_ops = mm_ops, 166 .start = data->start, 167 .addr = data->addr, 168 .end = data->end, 169 .level = level, 170 .flags = flags, 171 }; 172 int ret = 0; 173 bool reload = false; 174 kvm_pteref_t childp; 175 bool table = kvm_pte_table(ctx.old, level); 176 177 if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) { 178 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE); 179 reload = true; 180 } 181 182 if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) { 183 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF); 184 reload = true; 185 } 186 187 /* 188 * Reload the page table after invoking the walker callback for leaf 189 * entries or after pre-order traversal, to allow the walker to descend 190 * into a newly installed or replaced table. 191 */ 192 if (reload) { 193 ctx.old = READ_ONCE(*ptep); 194 table = kvm_pte_table(ctx.old, level); 195 } 196 197 if (!kvm_pgtable_walk_continue(data->walker, ret)) 198 goto out; 199 200 if (!table) { 201 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level)); 202 data->addr += kvm_granule_size(level); 203 goto out; 204 } 205 206 childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops); 207 ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1); 208 if (!kvm_pgtable_walk_continue(data->walker, ret)) 209 goto out; 210 211 if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST) 212 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST); 213 214 out: 215 if (kvm_pgtable_walk_continue(data->walker, ret)) 216 return 0; 217 218 return ret; 219 } 220 221 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, 222 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level) 223 { 224 u32 idx; 225 int ret = 0; 226 227 if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL || 228 level > KVM_PGTABLE_LAST_LEVEL)) 229 return -EINVAL; 230 231 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) { 232 kvm_pteref_t pteref = &pgtable[idx]; 233 234 if (data->addr >= data->end) 235 break; 236 237 ret = __kvm_pgtable_visit(data, mm_ops, pteref, level); 238 if (ret) 239 break; 240 } 241 242 return ret; 243 } 244 245 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data) 246 { 247 u32 idx; 248 int ret = 0; 249 u64 limit = BIT(pgt->ia_bits); 250 251 if (data->addr > limit || data->end > limit) 252 return -ERANGE; 253 254 if (!pgt->pgd) 255 return -EINVAL; 256 257 for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) { 258 kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE]; 259 260 ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level); 261 if (ret) 262 break; 263 } 264 265 return ret; 266 } 267 268 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, 269 struct kvm_pgtable_walker *walker) 270 { 271 struct kvm_pgtable_walk_data walk_data = { 272 .start = ALIGN_DOWN(addr, PAGE_SIZE), 273 .addr = ALIGN_DOWN(addr, PAGE_SIZE), 274 .end = PAGE_ALIGN(walk_data.addr + size), 275 .walker = walker, 276 }; 277 int r; 278 279 r = kvm_pgtable_walk_begin(walker); 280 if (r) 281 return r; 282 283 r = _kvm_pgtable_walk(pgt, &walk_data); 284 kvm_pgtable_walk_end(walker); 285 286 return r; 287 } 288 289 struct leaf_walk_data { 290 kvm_pte_t pte; 291 s8 level; 292 }; 293 294 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx, 295 enum kvm_pgtable_walk_flags visit) 296 { 297 struct leaf_walk_data *data = ctx->arg; 298 299 data->pte = ctx->old; 300 data->level = ctx->level; 301 302 return 0; 303 } 304 305 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr, 306 kvm_pte_t *ptep, s8 *level) 307 { 308 struct leaf_walk_data data; 309 struct kvm_pgtable_walker walker = { 310 .cb = leaf_walker, 311 .flags = KVM_PGTABLE_WALK_LEAF, 312 .arg = &data, 313 }; 314 int ret; 315 316 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE), 317 PAGE_SIZE, &walker); 318 if (!ret) { 319 if (ptep) 320 *ptep = data.pte; 321 if (level) 322 *level = data.level; 323 } 324 325 return ret; 326 } 327 328 struct hyp_map_data { 329 const u64 phys; 330 kvm_pte_t attr; 331 }; 332 333 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep) 334 { 335 bool device = prot & KVM_PGTABLE_PROT_DEVICE; 336 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL; 337 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype); 338 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS; 339 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW : 340 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO; 341 342 if (!(prot & KVM_PGTABLE_PROT_R)) 343 return -EINVAL; 344 345 if (prot & KVM_PGTABLE_PROT_X) { 346 if (prot & KVM_PGTABLE_PROT_W) 347 return -EINVAL; 348 349 if (device) 350 return -EINVAL; 351 352 if (system_supports_bti_kernel()) 353 attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP; 354 } else { 355 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; 356 } 357 358 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap); 359 if (!kvm_lpa2_is_enabled()) 360 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh); 361 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF; 362 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; 363 *ptep = attr; 364 365 return 0; 366 } 367 368 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte) 369 { 370 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; 371 u32 ap; 372 373 if (!kvm_pte_valid(pte)) 374 return prot; 375 376 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN)) 377 prot |= KVM_PGTABLE_PROT_X; 378 379 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte); 380 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO) 381 prot |= KVM_PGTABLE_PROT_R; 382 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW) 383 prot |= KVM_PGTABLE_PROT_RW; 384 385 return prot; 386 } 387 388 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, 389 struct hyp_map_data *data) 390 { 391 u64 phys = data->phys + (ctx->addr - ctx->start); 392 kvm_pte_t new; 393 394 if (!kvm_block_mapping_supported(ctx, phys)) 395 return false; 396 397 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level); 398 if (ctx->old == new) 399 return true; 400 if (!kvm_pte_valid(ctx->old)) 401 ctx->mm_ops->get_page(ctx->ptep); 402 else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) 403 return false; 404 405 smp_store_release(ctx->ptep, new); 406 return true; 407 } 408 409 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx, 410 enum kvm_pgtable_walk_flags visit) 411 { 412 kvm_pte_t *childp, new; 413 struct hyp_map_data *data = ctx->arg; 414 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 415 416 if (hyp_map_walker_try_leaf(ctx, data)) 417 return 0; 418 419 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL)) 420 return -EINVAL; 421 422 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL); 423 if (!childp) 424 return -ENOMEM; 425 426 new = kvm_init_table_pte(childp, mm_ops); 427 mm_ops->get_page(ctx->ptep); 428 smp_store_release(ctx->ptep, new); 429 430 return 0; 431 } 432 433 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, 434 enum kvm_pgtable_prot prot) 435 { 436 int ret; 437 struct hyp_map_data map_data = { 438 .phys = ALIGN_DOWN(phys, PAGE_SIZE), 439 }; 440 struct kvm_pgtable_walker walker = { 441 .cb = hyp_map_walker, 442 .flags = KVM_PGTABLE_WALK_LEAF, 443 .arg = &map_data, 444 }; 445 446 ret = hyp_set_prot_attr(prot, &map_data.attr); 447 if (ret) 448 return ret; 449 450 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 451 dsb(ishst); 452 isb(); 453 return ret; 454 } 455 456 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx, 457 enum kvm_pgtable_walk_flags visit) 458 { 459 kvm_pte_t *childp = NULL; 460 u64 granule = kvm_granule_size(ctx->level); 461 u64 *unmapped = ctx->arg; 462 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 463 464 if (!kvm_pte_valid(ctx->old)) 465 return -EINVAL; 466 467 if (kvm_pte_table(ctx->old, ctx->level)) { 468 childp = kvm_pte_follow(ctx->old, mm_ops); 469 470 if (mm_ops->page_count(childp) != 1) 471 return 0; 472 473 kvm_clear_pte(ctx->ptep); 474 dsb(ishst); 475 __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN); 476 } else { 477 if (ctx->end - ctx->addr < granule) 478 return -EINVAL; 479 480 kvm_clear_pte(ctx->ptep); 481 dsb(ishst); 482 __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level); 483 *unmapped += granule; 484 } 485 486 dsb(ish); 487 isb(); 488 mm_ops->put_page(ctx->ptep); 489 490 if (childp) 491 mm_ops->put_page(childp); 492 493 return 0; 494 } 495 496 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) 497 { 498 u64 unmapped = 0; 499 struct kvm_pgtable_walker walker = { 500 .cb = hyp_unmap_walker, 501 .arg = &unmapped, 502 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 503 }; 504 505 if (!pgt->mm_ops->page_count) 506 return 0; 507 508 kvm_pgtable_walk(pgt, addr, size, &walker); 509 return unmapped; 510 } 511 512 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits, 513 struct kvm_pgtable_mm_ops *mm_ops) 514 { 515 s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 - 516 ARM64_HW_PGTABLE_LEVELS(va_bits); 517 518 if (start_level < KVM_PGTABLE_FIRST_LEVEL || 519 start_level > KVM_PGTABLE_LAST_LEVEL) 520 return -EINVAL; 521 522 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL); 523 if (!pgt->pgd) 524 return -ENOMEM; 525 526 pgt->ia_bits = va_bits; 527 pgt->start_level = start_level; 528 pgt->mm_ops = mm_ops; 529 pgt->mmu = NULL; 530 pgt->force_pte_cb = NULL; 531 532 return 0; 533 } 534 535 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx, 536 enum kvm_pgtable_walk_flags visit) 537 { 538 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 539 540 if (!kvm_pte_valid(ctx->old)) 541 return 0; 542 543 mm_ops->put_page(ctx->ptep); 544 545 if (kvm_pte_table(ctx->old, ctx->level)) 546 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops)); 547 548 return 0; 549 } 550 551 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) 552 { 553 struct kvm_pgtable_walker walker = { 554 .cb = hyp_free_walker, 555 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 556 }; 557 558 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); 559 pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd)); 560 pgt->pgd = NULL; 561 } 562 563 struct stage2_map_data { 564 const u64 phys; 565 kvm_pte_t attr; 566 u8 owner_id; 567 568 kvm_pte_t *anchor; 569 kvm_pte_t *childp; 570 571 struct kvm_s2_mmu *mmu; 572 void *memcache; 573 574 /* Force mappings to page granularity */ 575 bool force_pte; 576 577 /* Walk should update owner_id only */ 578 bool annotation; 579 }; 580 581 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift) 582 { 583 u64 vtcr = VTCR_EL2_FLAGS; 584 s8 lvls; 585 586 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT; 587 vtcr |= VTCR_EL2_T0SZ(phys_shift); 588 /* 589 * Use a minimum 2 level page table to prevent splitting 590 * host PMD huge pages at stage2. 591 */ 592 lvls = stage2_pgtable_levels(phys_shift); 593 if (lvls < 2) 594 lvls = 2; 595 596 /* 597 * When LPA2 is enabled, the HW supports an extra level of translation 598 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2 599 * to as an addition to SL0 to enable encoding this extra start level. 600 * However, since we always use concatenated pages for the first level 601 * lookup, we will never need this extra level and therefore do not need 602 * to touch SL2. 603 */ 604 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls); 605 606 #ifdef CONFIG_ARM64_HW_AFDBM 607 /* 608 * Enable the Hardware Access Flag management, unconditionally 609 * on all CPUs. In systems that have asymmetric support for the feature 610 * this allows KVM to leverage hardware support on the subset of cores 611 * that implement the feature. 612 * 613 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by 614 * hardware) on implementations that do not advertise support for the 615 * feature. As such, setting HA unconditionally is safe, unless you 616 * happen to be running on a design that has unadvertised support for 617 * HAFDBS. Here be dragons. 618 */ 619 if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) 620 vtcr |= VTCR_EL2_HA; 621 #endif /* CONFIG_ARM64_HW_AFDBM */ 622 623 if (kvm_lpa2_is_enabled()) 624 vtcr |= VTCR_EL2_DS; 625 626 /* Set the vmid bits */ 627 vtcr |= (get_vmid_bits(mmfr1) == 16) ? 628 VTCR_EL2_VS_16BIT : 629 VTCR_EL2_VS_8BIT; 630 631 return vtcr; 632 } 633 634 static bool stage2_has_fwb(struct kvm_pgtable *pgt) 635 { 636 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 637 return false; 638 639 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB); 640 } 641 642 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu, 643 phys_addr_t addr, size_t size) 644 { 645 unsigned long pages, inval_pages; 646 647 if (!system_supports_tlb_range()) { 648 kvm_call_hyp(__kvm_tlb_flush_vmid, mmu); 649 return; 650 } 651 652 pages = size >> PAGE_SHIFT; 653 while (pages > 0) { 654 inval_pages = min(pages, MAX_TLBI_RANGE_PAGES); 655 kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages); 656 657 addr += inval_pages << PAGE_SHIFT; 658 pages -= inval_pages; 659 } 660 } 661 662 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt)) 663 664 static int stage2_set_xn_attr(enum kvm_pgtable_prot prot, kvm_pte_t *attr) 665 { 666 bool px, ux; 667 u8 xn; 668 669 px = prot & KVM_PGTABLE_PROT_PX; 670 ux = prot & KVM_PGTABLE_PROT_UX; 671 672 if (!cpus_have_final_cap(ARM64_HAS_XNX) && px != ux) 673 return -EINVAL; 674 675 if (px && ux) 676 xn = 0b00; 677 else if (!px && ux) 678 xn = 0b01; 679 else if (!px && !ux) 680 xn = 0b10; 681 else 682 xn = 0b11; 683 684 *attr &= ~KVM_PTE_LEAF_ATTR_HI_S2_XN; 685 *attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_HI_S2_XN, xn); 686 return 0; 687 } 688 689 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot, 690 kvm_pte_t *ptep) 691 { 692 kvm_pte_t attr; 693 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; 694 int r; 695 696 switch (prot & (KVM_PGTABLE_PROT_DEVICE | 697 KVM_PGTABLE_PROT_NORMAL_NC)) { 698 case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC: 699 return -EINVAL; 700 case KVM_PGTABLE_PROT_DEVICE: 701 if (prot & KVM_PGTABLE_PROT_X) 702 return -EINVAL; 703 attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE); 704 break; 705 case KVM_PGTABLE_PROT_NORMAL_NC: 706 if (prot & KVM_PGTABLE_PROT_X) 707 return -EINVAL; 708 attr = KVM_S2_MEMATTR(pgt, NORMAL_NC); 709 break; 710 default: 711 attr = KVM_S2_MEMATTR(pgt, NORMAL); 712 } 713 714 r = stage2_set_xn_attr(prot, &attr); 715 if (r) 716 return r; 717 718 if (prot & KVM_PGTABLE_PROT_R) 719 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; 720 721 if (prot & KVM_PGTABLE_PROT_W) 722 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; 723 724 if (!kvm_lpa2_is_enabled()) 725 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); 726 727 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; 728 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; 729 *ptep = attr; 730 731 return 0; 732 } 733 734 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte) 735 { 736 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; 737 738 if (!kvm_pte_valid(pte)) 739 return prot; 740 741 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R) 742 prot |= KVM_PGTABLE_PROT_R; 743 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W) 744 prot |= KVM_PGTABLE_PROT_W; 745 746 switch (FIELD_GET(KVM_PTE_LEAF_ATTR_HI_S2_XN, pte)) { 747 case 0b00: 748 prot |= KVM_PGTABLE_PROT_PX | KVM_PGTABLE_PROT_UX; 749 break; 750 case 0b01: 751 prot |= KVM_PGTABLE_PROT_UX; 752 break; 753 case 0b11: 754 prot |= KVM_PGTABLE_PROT_PX; 755 break; 756 default: 757 break; 758 } 759 760 return prot; 761 } 762 763 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new) 764 { 765 if (!kvm_pte_valid(old) || !kvm_pte_valid(new)) 766 return true; 767 768 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS)); 769 } 770 771 static bool stage2_pte_is_counted(kvm_pte_t pte) 772 { 773 /* 774 * The refcount tracks valid entries as well as invalid entries if they 775 * encode ownership of a page to another entity than the page-table 776 * owner, whose id is 0. 777 */ 778 return !!pte; 779 } 780 781 static bool stage2_pte_is_locked(kvm_pte_t pte) 782 { 783 return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED); 784 } 785 786 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new) 787 { 788 if (!kvm_pgtable_walk_shared(ctx)) { 789 WRITE_ONCE(*ctx->ptep, new); 790 return true; 791 } 792 793 return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old; 794 } 795 796 /** 797 * stage2_try_break_pte() - Invalidates a pte according to the 798 * 'break-before-make' requirements of the 799 * architecture. 800 * 801 * @ctx: context of the visited pte. 802 * @mmu: stage-2 mmu 803 * 804 * Returns: true if the pte was successfully broken. 805 * 806 * If the removed pte was valid, performs the necessary serialization and TLB 807 * invalidation for the old value. For counted ptes, drops the reference count 808 * on the containing table page. 809 */ 810 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx, 811 struct kvm_s2_mmu *mmu) 812 { 813 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 814 815 if (stage2_pte_is_locked(ctx->old)) { 816 /* 817 * Should never occur if this walker has exclusive access to the 818 * page tables. 819 */ 820 WARN_ON(!kvm_pgtable_walk_shared(ctx)); 821 return false; 822 } 823 824 if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED)) 825 return false; 826 827 if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) { 828 /* 829 * Perform the appropriate TLB invalidation based on the 830 * evicted pte value (if any). 831 */ 832 if (kvm_pte_table(ctx->old, ctx->level)) { 833 u64 size = kvm_granule_size(ctx->level); 834 u64 addr = ALIGN_DOWN(ctx->addr, size); 835 836 kvm_tlb_flush_vmid_range(mmu, addr, size); 837 } else if (kvm_pte_valid(ctx->old)) { 838 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, 839 ctx->addr, ctx->level); 840 } 841 } 842 843 if (stage2_pte_is_counted(ctx->old)) 844 mm_ops->put_page(ctx->ptep); 845 846 return true; 847 } 848 849 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new) 850 { 851 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 852 853 WARN_ON(!stage2_pte_is_locked(*ctx->ptep)); 854 855 if (stage2_pte_is_counted(new)) 856 mm_ops->get_page(ctx->ptep); 857 858 smp_store_release(ctx->ptep, new); 859 } 860 861 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt) 862 { 863 /* 864 * If FEAT_TLBIRANGE is implemented, defer the individual 865 * TLB invalidations until the entire walk is finished, and 866 * then use the range-based TLBI instructions to do the 867 * invalidations. Condition deferred TLB invalidation on the 868 * system supporting FWB as the optimization is entirely 869 * pointless when the unmap walker needs to perform CMOs. 870 */ 871 return system_supports_tlb_range() && stage2_has_fwb(pgt); 872 } 873 874 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx, 875 struct kvm_s2_mmu *mmu, 876 struct kvm_pgtable_mm_ops *mm_ops) 877 { 878 struct kvm_pgtable *pgt = ctx->arg; 879 880 /* 881 * Clear the existing PTE, and perform break-before-make if it was 882 * valid. Depending on the system support, defer the TLB maintenance 883 * for the same until the entire unmap walk is completed. 884 */ 885 if (kvm_pte_valid(ctx->old)) { 886 kvm_clear_pte(ctx->ptep); 887 888 if (kvm_pte_table(ctx->old, ctx->level)) { 889 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, 890 TLBI_TTL_UNKNOWN); 891 } else if (!stage2_unmap_defer_tlb_flush(pgt)) { 892 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, 893 ctx->level); 894 } 895 } 896 897 mm_ops->put_page(ctx->ptep); 898 } 899 900 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte) 901 { 902 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR; 903 return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL); 904 } 905 906 static bool stage2_pte_executable(kvm_pte_t pte) 907 { 908 return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN); 909 } 910 911 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx, 912 const struct stage2_map_data *data) 913 { 914 u64 phys = data->phys; 915 916 /* Work out the correct PA based on how far the walk has gotten */ 917 return phys + (ctx->addr - ctx->start); 918 } 919 920 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx, 921 struct stage2_map_data *data) 922 { 923 u64 phys = stage2_map_walker_phys_addr(ctx, data); 924 925 if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL) 926 return false; 927 928 if (data->annotation) 929 return true; 930 931 return kvm_block_mapping_supported(ctx, phys); 932 } 933 934 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, 935 struct stage2_map_data *data) 936 { 937 kvm_pte_t new; 938 u64 phys = stage2_map_walker_phys_addr(ctx, data); 939 u64 granule = kvm_granule_size(ctx->level); 940 struct kvm_pgtable *pgt = data->mmu->pgt; 941 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 942 943 if (!stage2_leaf_mapping_allowed(ctx, data)) 944 return -E2BIG; 945 946 if (!data->annotation) 947 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level); 948 else 949 new = kvm_init_invalid_leaf_owner(data->owner_id); 950 951 /* 952 * Skip updating the PTE if we are trying to recreate the exact 953 * same mapping or only change the access permissions. Instead, 954 * the vCPU will exit one more time from guest if still needed 955 * and then go through the path of relaxing permissions. 956 */ 957 if (!stage2_pte_needs_update(ctx->old, new)) 958 return -EAGAIN; 959 960 /* If we're only changing software bits, then store them and go! */ 961 if (!kvm_pgtable_walk_shared(ctx) && 962 !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) { 963 bool old_is_counted = stage2_pte_is_counted(ctx->old); 964 965 if (old_is_counted != stage2_pte_is_counted(new)) { 966 if (old_is_counted) 967 mm_ops->put_page(ctx->ptep); 968 else 969 mm_ops->get_page(ctx->ptep); 970 } 971 WARN_ON_ONCE(!stage2_try_set_pte(ctx, new)); 972 return 0; 973 } 974 975 if (!stage2_try_break_pte(ctx, data->mmu)) 976 return -EAGAIN; 977 978 /* Perform CMOs before installation of the guest stage-2 PTE */ 979 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc && 980 stage2_pte_cacheable(pgt, new)) 981 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops), 982 granule); 983 984 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou && 985 stage2_pte_executable(new)) 986 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule); 987 988 stage2_make_pte(ctx, new); 989 990 return 0; 991 } 992 993 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx, 994 struct stage2_map_data *data) 995 { 996 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 997 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops); 998 int ret; 999 1000 if (!stage2_leaf_mapping_allowed(ctx, data)) 1001 return 0; 1002 1003 ret = stage2_map_walker_try_leaf(ctx, data); 1004 if (ret) 1005 return ret; 1006 1007 mm_ops->free_unlinked_table(childp, ctx->level); 1008 return 0; 1009 } 1010 1011 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx, 1012 struct stage2_map_data *data) 1013 { 1014 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1015 kvm_pte_t *childp, new; 1016 int ret; 1017 1018 ret = stage2_map_walker_try_leaf(ctx, data); 1019 if (ret != -E2BIG) 1020 return ret; 1021 1022 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL)) 1023 return -EINVAL; 1024 1025 if (!data->memcache) 1026 return -ENOMEM; 1027 1028 childp = mm_ops->zalloc_page(data->memcache); 1029 if (!childp) 1030 return -ENOMEM; 1031 1032 if (!stage2_try_break_pte(ctx, data->mmu)) { 1033 mm_ops->put_page(childp); 1034 return -EAGAIN; 1035 } 1036 1037 /* 1038 * If we've run into an existing block mapping then replace it with 1039 * a table. Accesses beyond 'end' that fall within the new table 1040 * will be mapped lazily. 1041 */ 1042 new = kvm_init_table_pte(childp, mm_ops); 1043 stage2_make_pte(ctx, new); 1044 1045 return 0; 1046 } 1047 1048 /* 1049 * The TABLE_PRE callback runs for table entries on the way down, looking 1050 * for table entries which we could conceivably replace with a block entry 1051 * for this mapping. If it finds one it replaces the entry and calls 1052 * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table. 1053 * 1054 * Otherwise, the LEAF callback performs the mapping at the existing leaves 1055 * instead. 1056 */ 1057 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx, 1058 enum kvm_pgtable_walk_flags visit) 1059 { 1060 struct stage2_map_data *data = ctx->arg; 1061 1062 switch (visit) { 1063 case KVM_PGTABLE_WALK_TABLE_PRE: 1064 return stage2_map_walk_table_pre(ctx, data); 1065 case KVM_PGTABLE_WALK_LEAF: 1066 return stage2_map_walk_leaf(ctx, data); 1067 default: 1068 return -EINVAL; 1069 } 1070 } 1071 1072 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, 1073 u64 phys, enum kvm_pgtable_prot prot, 1074 void *mc, enum kvm_pgtable_walk_flags flags) 1075 { 1076 int ret; 1077 struct stage2_map_data map_data = { 1078 .phys = ALIGN_DOWN(phys, PAGE_SIZE), 1079 .mmu = pgt->mmu, 1080 .memcache = mc, 1081 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot), 1082 }; 1083 struct kvm_pgtable_walker walker = { 1084 .cb = stage2_map_walker, 1085 .flags = flags | 1086 KVM_PGTABLE_WALK_TABLE_PRE | 1087 KVM_PGTABLE_WALK_LEAF, 1088 .arg = &map_data, 1089 }; 1090 1091 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys))) 1092 return -EINVAL; 1093 1094 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); 1095 if (ret) 1096 return ret; 1097 1098 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1099 dsb(ishst); 1100 return ret; 1101 } 1102 1103 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size, 1104 void *mc, u8 owner_id) 1105 { 1106 int ret; 1107 struct stage2_map_data map_data = { 1108 .mmu = pgt->mmu, 1109 .memcache = mc, 1110 .owner_id = owner_id, 1111 .force_pte = true, 1112 .annotation = true, 1113 }; 1114 struct kvm_pgtable_walker walker = { 1115 .cb = stage2_map_walker, 1116 .flags = KVM_PGTABLE_WALK_TABLE_PRE | 1117 KVM_PGTABLE_WALK_LEAF, 1118 .arg = &map_data, 1119 }; 1120 1121 if (owner_id > KVM_MAX_OWNER_ID) 1122 return -EINVAL; 1123 1124 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1125 return ret; 1126 } 1127 1128 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx, 1129 enum kvm_pgtable_walk_flags visit) 1130 { 1131 struct kvm_pgtable *pgt = ctx->arg; 1132 struct kvm_s2_mmu *mmu = pgt->mmu; 1133 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1134 kvm_pte_t *childp = NULL; 1135 bool need_flush = false; 1136 1137 if (!kvm_pte_valid(ctx->old)) { 1138 if (stage2_pte_is_counted(ctx->old)) { 1139 kvm_clear_pte(ctx->ptep); 1140 mm_ops->put_page(ctx->ptep); 1141 } 1142 return 0; 1143 } 1144 1145 if (kvm_pte_table(ctx->old, ctx->level)) { 1146 childp = kvm_pte_follow(ctx->old, mm_ops); 1147 1148 if (mm_ops->page_count(childp) != 1) 1149 return 0; 1150 } else if (stage2_pte_cacheable(pgt, ctx->old)) { 1151 need_flush = !stage2_has_fwb(pgt); 1152 } 1153 1154 /* 1155 * This is similar to the map() path in that we unmap the entire 1156 * block entry and rely on the remaining portions being faulted 1157 * back lazily. 1158 */ 1159 stage2_unmap_put_pte(ctx, mmu, mm_ops); 1160 1161 if (need_flush && mm_ops->dcache_clean_inval_poc) 1162 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops), 1163 kvm_granule_size(ctx->level)); 1164 1165 if (childp) 1166 mm_ops->put_page(childp); 1167 1168 return 0; 1169 } 1170 1171 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) 1172 { 1173 int ret; 1174 struct kvm_pgtable_walker walker = { 1175 .cb = stage2_unmap_walker, 1176 .arg = pgt, 1177 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 1178 }; 1179 1180 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1181 if (stage2_unmap_defer_tlb_flush(pgt)) 1182 /* Perform the deferred TLB invalidations */ 1183 kvm_tlb_flush_vmid_range(pgt->mmu, addr, size); 1184 1185 return ret; 1186 } 1187 1188 struct stage2_attr_data { 1189 kvm_pte_t attr_set; 1190 kvm_pte_t attr_clr; 1191 kvm_pte_t pte; 1192 s8 level; 1193 }; 1194 1195 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx, 1196 enum kvm_pgtable_walk_flags visit) 1197 { 1198 kvm_pte_t pte = ctx->old; 1199 struct stage2_attr_data *data = ctx->arg; 1200 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1201 1202 if (!kvm_pte_valid(ctx->old)) 1203 return -EAGAIN; 1204 1205 data->level = ctx->level; 1206 data->pte = pte; 1207 pte &= ~data->attr_clr; 1208 pte |= data->attr_set; 1209 1210 /* 1211 * We may race with the CPU trying to set the access flag here, 1212 * but worst-case the access flag update gets lost and will be 1213 * set on the next access instead. 1214 */ 1215 if (data->pte != pte) { 1216 /* 1217 * Invalidate instruction cache before updating the guest 1218 * stage-2 PTE if we are going to add executable permission. 1219 */ 1220 if (mm_ops->icache_inval_pou && 1221 stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old)) 1222 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops), 1223 kvm_granule_size(ctx->level)); 1224 1225 if (!stage2_try_set_pte(ctx, pte)) 1226 return -EAGAIN; 1227 } 1228 1229 return 0; 1230 } 1231 1232 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr, 1233 u64 size, kvm_pte_t attr_set, 1234 kvm_pte_t attr_clr, kvm_pte_t *orig_pte, 1235 s8 *level, enum kvm_pgtable_walk_flags flags) 1236 { 1237 int ret; 1238 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI; 1239 struct stage2_attr_data data = { 1240 .attr_set = attr_set & attr_mask, 1241 .attr_clr = attr_clr & attr_mask, 1242 }; 1243 struct kvm_pgtable_walker walker = { 1244 .cb = stage2_attr_walker, 1245 .arg = &data, 1246 .flags = flags | KVM_PGTABLE_WALK_LEAF, 1247 }; 1248 1249 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1250 if (ret) 1251 return ret; 1252 1253 if (orig_pte) 1254 *orig_pte = data.pte; 1255 1256 if (level) 1257 *level = data.level; 1258 return 0; 1259 } 1260 1261 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size) 1262 { 1263 return stage2_update_leaf_attrs(pgt, addr, size, 0, 1264 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W, 1265 NULL, NULL, 0); 1266 } 1267 1268 void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr, 1269 enum kvm_pgtable_walk_flags flags) 1270 { 1271 int ret; 1272 1273 ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0, 1274 NULL, NULL, flags); 1275 if (!ret) 1276 dsb(ishst); 1277 } 1278 1279 struct stage2_age_data { 1280 bool mkold; 1281 bool young; 1282 }; 1283 1284 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx, 1285 enum kvm_pgtable_walk_flags visit) 1286 { 1287 kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF; 1288 struct stage2_age_data *data = ctx->arg; 1289 1290 if (!kvm_pte_valid(ctx->old) || new == ctx->old) 1291 return 0; 1292 1293 data->young = true; 1294 1295 /* 1296 * stage2_age_walker() is always called while holding the MMU lock for 1297 * write, so this will always succeed. Nonetheless, this deliberately 1298 * follows the race detection pattern of the other stage-2 walkers in 1299 * case the locking mechanics of the MMU notifiers is ever changed. 1300 */ 1301 if (data->mkold && !stage2_try_set_pte(ctx, new)) 1302 return -EAGAIN; 1303 1304 /* 1305 * "But where's the TLBI?!", you scream. 1306 * "Over in the core code", I sigh. 1307 * 1308 * See the '->clear_flush_young()' callback on the KVM mmu notifier. 1309 */ 1310 return 0; 1311 } 1312 1313 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr, 1314 u64 size, bool mkold) 1315 { 1316 struct stage2_age_data data = { 1317 .mkold = mkold, 1318 }; 1319 struct kvm_pgtable_walker walker = { 1320 .cb = stage2_age_walker, 1321 .arg = &data, 1322 .flags = KVM_PGTABLE_WALK_LEAF, 1323 }; 1324 1325 WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker)); 1326 return data.young; 1327 } 1328 1329 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, 1330 enum kvm_pgtable_prot prot, enum kvm_pgtable_walk_flags flags) 1331 { 1332 kvm_pte_t xn = 0, set = 0, clr = 0; 1333 s8 level; 1334 int ret; 1335 1336 if (prot & KVM_PTE_LEAF_ATTR_HI_SW) 1337 return -EINVAL; 1338 1339 if (prot & KVM_PGTABLE_PROT_R) 1340 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; 1341 1342 if (prot & KVM_PGTABLE_PROT_W) 1343 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; 1344 1345 ret = stage2_set_xn_attr(prot, &xn); 1346 if (ret) 1347 return ret; 1348 1349 set |= xn & KVM_PTE_LEAF_ATTR_HI_S2_XN; 1350 clr |= ~xn & KVM_PTE_LEAF_ATTR_HI_S2_XN; 1351 1352 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level, flags); 1353 if (!ret || ret == -EAGAIN) 1354 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level); 1355 return ret; 1356 } 1357 1358 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx, 1359 enum kvm_pgtable_walk_flags visit) 1360 { 1361 struct kvm_pgtable *pgt = ctx->arg; 1362 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; 1363 1364 if (!stage2_pte_cacheable(pgt, ctx->old)) 1365 return 0; 1366 1367 if (mm_ops->dcache_clean_inval_poc) 1368 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops), 1369 kvm_granule_size(ctx->level)); 1370 return 0; 1371 } 1372 1373 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) 1374 { 1375 struct kvm_pgtable_walker walker = { 1376 .cb = stage2_flush_walker, 1377 .flags = KVM_PGTABLE_WALK_LEAF, 1378 .arg = pgt, 1379 }; 1380 1381 if (stage2_has_fwb(pgt)) 1382 return 0; 1383 1384 return kvm_pgtable_walk(pgt, addr, size, &walker); 1385 } 1386 1387 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt, 1388 u64 phys, s8 level, 1389 enum kvm_pgtable_prot prot, 1390 void *mc, bool force_pte) 1391 { 1392 struct stage2_map_data map_data = { 1393 .phys = phys, 1394 .mmu = pgt->mmu, 1395 .memcache = mc, 1396 .force_pte = force_pte, 1397 }; 1398 struct kvm_pgtable_walker walker = { 1399 .cb = stage2_map_walker, 1400 .flags = KVM_PGTABLE_WALK_LEAF | 1401 KVM_PGTABLE_WALK_SKIP_BBM_TLBI | 1402 KVM_PGTABLE_WALK_SKIP_CMO, 1403 .arg = &map_data, 1404 }; 1405 /* 1406 * The input address (.addr) is irrelevant for walking an 1407 * unlinked table. Construct an ambiguous IA range to map 1408 * kvm_granule_size(level) worth of memory. 1409 */ 1410 struct kvm_pgtable_walk_data data = { 1411 .walker = &walker, 1412 .addr = 0, 1413 .end = kvm_granule_size(level), 1414 }; 1415 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; 1416 kvm_pte_t *pgtable; 1417 int ret; 1418 1419 if (!IS_ALIGNED(phys, kvm_granule_size(level))) 1420 return ERR_PTR(-EINVAL); 1421 1422 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); 1423 if (ret) 1424 return ERR_PTR(ret); 1425 1426 pgtable = mm_ops->zalloc_page(mc); 1427 if (!pgtable) 1428 return ERR_PTR(-ENOMEM); 1429 1430 ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable, 1431 level + 1); 1432 if (ret) { 1433 kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level); 1434 return ERR_PTR(ret); 1435 } 1436 1437 return pgtable; 1438 } 1439 1440 /* 1441 * Get the number of page-tables needed to replace a block with a 1442 * fully populated tree up to the PTE entries. Note that @level is 1443 * interpreted as in "level @level entry". 1444 */ 1445 static int stage2_block_get_nr_page_tables(s8 level) 1446 { 1447 switch (level) { 1448 case 1: 1449 return PTRS_PER_PTE + 1; 1450 case 2: 1451 return 1; 1452 case 3: 1453 return 0; 1454 default: 1455 WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL || 1456 level > KVM_PGTABLE_LAST_LEVEL); 1457 return -EINVAL; 1458 }; 1459 } 1460 1461 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx, 1462 enum kvm_pgtable_walk_flags visit) 1463 { 1464 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1465 struct kvm_mmu_memory_cache *mc = ctx->arg; 1466 struct kvm_s2_mmu *mmu; 1467 kvm_pte_t pte = ctx->old, new, *childp; 1468 enum kvm_pgtable_prot prot; 1469 s8 level = ctx->level; 1470 bool force_pte; 1471 int nr_pages; 1472 u64 phys; 1473 1474 /* No huge-pages exist at the last level */ 1475 if (level == KVM_PGTABLE_LAST_LEVEL) 1476 return 0; 1477 1478 /* We only split valid block mappings */ 1479 if (!kvm_pte_valid(pte)) 1480 return 0; 1481 1482 nr_pages = stage2_block_get_nr_page_tables(level); 1483 if (nr_pages < 0) 1484 return nr_pages; 1485 1486 if (mc->nobjs >= nr_pages) { 1487 /* Build a tree mapped down to the PTE granularity. */ 1488 force_pte = true; 1489 } else { 1490 /* 1491 * Don't force PTEs, so create_unlinked() below does 1492 * not populate the tree up to the PTE level. The 1493 * consequence is that the call will require a single 1494 * page of level 2 entries at level 1, or a single 1495 * page of PTEs at level 2. If we are at level 1, the 1496 * PTEs will be created recursively. 1497 */ 1498 force_pte = false; 1499 nr_pages = 1; 1500 } 1501 1502 if (mc->nobjs < nr_pages) 1503 return -ENOMEM; 1504 1505 mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache); 1506 phys = kvm_pte_to_phys(pte); 1507 prot = kvm_pgtable_stage2_pte_prot(pte); 1508 1509 childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys, 1510 level, prot, mc, force_pte); 1511 if (IS_ERR(childp)) 1512 return PTR_ERR(childp); 1513 1514 if (!stage2_try_break_pte(ctx, mmu)) { 1515 kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level); 1516 return -EAGAIN; 1517 } 1518 1519 /* 1520 * Note, the contents of the page table are guaranteed to be made 1521 * visible before the new PTE is assigned because stage2_make_pte() 1522 * writes the PTE using smp_store_release(). 1523 */ 1524 new = kvm_init_table_pte(childp, mm_ops); 1525 stage2_make_pte(ctx, new); 1526 return 0; 1527 } 1528 1529 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size, 1530 struct kvm_mmu_memory_cache *mc) 1531 { 1532 struct kvm_pgtable_walker walker = { 1533 .cb = stage2_split_walker, 1534 .flags = KVM_PGTABLE_WALK_LEAF, 1535 .arg = mc, 1536 }; 1537 int ret; 1538 1539 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1540 dsb(ishst); 1541 return ret; 1542 } 1543 1544 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu, 1545 struct kvm_pgtable_mm_ops *mm_ops, 1546 enum kvm_pgtable_stage2_flags flags, 1547 kvm_pgtable_force_pte_cb_t force_pte_cb) 1548 { 1549 size_t pgd_sz; 1550 u64 vtcr = mmu->vtcr; 1551 u32 ia_bits = VTCR_EL2_IPA(vtcr); 1552 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); 1553 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; 1554 1555 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; 1556 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz); 1557 if (!pgt->pgd) 1558 return -ENOMEM; 1559 1560 pgt->ia_bits = ia_bits; 1561 pgt->start_level = start_level; 1562 pgt->mm_ops = mm_ops; 1563 pgt->mmu = mmu; 1564 pgt->flags = flags; 1565 pgt->force_pte_cb = force_pte_cb; 1566 1567 /* Ensure zeroed PGD pages are visible to the hardware walker */ 1568 dsb(ishst); 1569 return 0; 1570 } 1571 1572 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr) 1573 { 1574 u32 ia_bits = VTCR_EL2_IPA(vtcr); 1575 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); 1576 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; 1577 1578 return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; 1579 } 1580 1581 static int stage2_free_leaf(const struct kvm_pgtable_visit_ctx *ctx) 1582 { 1583 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1584 1585 mm_ops->put_page(ctx->ptep); 1586 return 0; 1587 } 1588 1589 static int stage2_free_table_post(const struct kvm_pgtable_visit_ctx *ctx) 1590 { 1591 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; 1592 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops); 1593 1594 if (mm_ops->page_count(childp) != 1) 1595 return 0; 1596 1597 /* 1598 * Drop references and clear the now stale PTE to avoid rewalking the 1599 * freed page table. 1600 */ 1601 mm_ops->put_page(ctx->ptep); 1602 mm_ops->put_page(childp); 1603 kvm_clear_pte(ctx->ptep); 1604 return 0; 1605 } 1606 1607 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx, 1608 enum kvm_pgtable_walk_flags visit) 1609 { 1610 if (!stage2_pte_is_counted(ctx->old)) 1611 return 0; 1612 1613 switch (visit) { 1614 case KVM_PGTABLE_WALK_LEAF: 1615 return stage2_free_leaf(ctx); 1616 case KVM_PGTABLE_WALK_TABLE_POST: 1617 return stage2_free_table_post(ctx); 1618 default: 1619 return -EINVAL; 1620 } 1621 } 1622 1623 void kvm_pgtable_stage2_destroy_range(struct kvm_pgtable *pgt, 1624 u64 addr, u64 size) 1625 { 1626 struct kvm_pgtable_walker walker = { 1627 .cb = stage2_free_walker, 1628 .flags = KVM_PGTABLE_WALK_LEAF | 1629 KVM_PGTABLE_WALK_TABLE_POST, 1630 }; 1631 1632 WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker)); 1633 } 1634 1635 void kvm_pgtable_stage2_destroy_pgd(struct kvm_pgtable *pgt) 1636 { 1637 size_t pgd_sz; 1638 1639 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE; 1640 1641 /* 1642 * Since the pgtable is unlinked at this point, and not shared with 1643 * other walkers, safely deference pgd with kvm_dereference_pteref_raw() 1644 */ 1645 pgt->mm_ops->free_pages_exact(kvm_dereference_pteref_raw(pgt->pgd), pgd_sz); 1646 pgt->pgd = NULL; 1647 } 1648 1649 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) 1650 { 1651 kvm_pgtable_stage2_destroy_range(pgt, 0, BIT(pgt->ia_bits)); 1652 kvm_pgtable_stage2_destroy_pgd(pgt); 1653 } 1654 1655 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level) 1656 { 1657 kvm_pteref_t ptep = (kvm_pteref_t)pgtable; 1658 struct kvm_pgtable_walker walker = { 1659 .cb = stage2_free_walker, 1660 .flags = KVM_PGTABLE_WALK_LEAF | 1661 KVM_PGTABLE_WALK_TABLE_POST, 1662 }; 1663 struct kvm_pgtable_walk_data data = { 1664 .walker = &walker, 1665 1666 /* 1667 * At this point the IPA really doesn't matter, as the page 1668 * table being traversed has already been removed from the stage 1669 * 2. Set an appropriate range to cover the entire page table. 1670 */ 1671 .addr = 0, 1672 .end = kvm_granule_size(level), 1673 }; 1674 1675 WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1)); 1676 1677 WARN_ON(mm_ops->page_count(pgtable) != 1); 1678 mm_ops->put_page(pgtable); 1679 } 1680