1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <hyp/switch.h> 8 #include <hyp/sysreg-sr.h> 9 10 #include <linux/arm-smccc.h> 11 #include <linux/kvm_host.h> 12 #include <linux/types.h> 13 #include <linux/jump_label.h> 14 #include <uapi/linux/psci.h> 15 16 #include <kvm/arm_psci.h> 17 18 #include <asm/barrier.h> 19 #include <asm/cpufeature.h> 20 #include <asm/kprobes.h> 21 #include <asm/kvm_asm.h> 22 #include <asm/kvm_emulate.h> 23 #include <asm/kvm_hyp.h> 24 #include <asm/kvm_mmu.h> 25 #include <asm/fpsimd.h> 26 #include <asm/debug-monitors.h> 27 #include <asm/processor.h> 28 29 #include <nvhe/fixed_config.h> 30 #include <nvhe/mem_protect.h> 31 32 /* Non-VHE specific context */ 33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); 34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); 36 37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc); 38 39 static void __activate_traps(struct kvm_vcpu *vcpu) 40 { 41 u64 val; 42 43 ___activate_traps(vcpu, vcpu->arch.hcr_el2); 44 __activate_traps_common(vcpu); 45 46 val = vcpu->arch.cptr_el2; 47 val |= CPTR_EL2_TAM; /* Same bit irrespective of E2H */ 48 val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA; 49 if (cpus_have_final_cap(ARM64_SME)) { 50 if (has_hvhe()) 51 val &= ~(CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN); 52 else 53 val |= CPTR_EL2_TSM; 54 } 55 56 if (!guest_owns_fp_regs()) { 57 if (has_hvhe()) 58 val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN | 59 CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN); 60 else 61 val |= CPTR_EL2_TFP | CPTR_EL2_TZ; 62 63 __activate_traps_fpsimd32(vcpu); 64 } 65 66 kvm_write_cptr_el2(val); 67 write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2); 68 69 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { 70 struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; 71 72 isb(); 73 /* 74 * At this stage, and thanks to the above isb(), S2 is 75 * configured and enabled. We can now restore the guest's S1 76 * configuration: SCTLR, and only then TCR. 77 */ 78 write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); 79 isb(); 80 write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); 81 } 82 } 83 84 static void __deactivate_traps(struct kvm_vcpu *vcpu) 85 { 86 extern char __kvm_hyp_host_vector[]; 87 88 ___deactivate_traps(vcpu); 89 90 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { 91 u64 val; 92 93 /* 94 * Set the TCR and SCTLR registers in the exact opposite 95 * sequence as __activate_traps (first prevent walks, 96 * then force the MMU on). A generous sprinkling of isb() 97 * ensure that things happen in this exact order. 98 */ 99 val = read_sysreg_el1(SYS_TCR); 100 write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR); 101 isb(); 102 val = read_sysreg_el1(SYS_SCTLR); 103 write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR); 104 isb(); 105 } 106 107 __deactivate_traps_common(vcpu); 108 109 write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2); 110 111 kvm_reset_cptr_el2(vcpu); 112 write_sysreg(__kvm_hyp_host_vector, vbar_el2); 113 } 114 115 /* Save VGICv3 state on non-VHE systems */ 116 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu) 117 { 118 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { 119 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); 120 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3); 121 } 122 } 123 124 /* Restore VGICv3 state on non-VHE systems */ 125 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) 126 { 127 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { 128 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3); 129 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); 130 } 131 } 132 133 /* 134 * Disable host events, enable guest events 135 */ 136 #ifdef CONFIG_HW_PERF_EVENTS 137 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu) 138 { 139 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; 140 141 if (pmu->events_host) 142 write_sysreg(pmu->events_host, pmcntenclr_el0); 143 144 if (pmu->events_guest) 145 write_sysreg(pmu->events_guest, pmcntenset_el0); 146 147 return (pmu->events_host || pmu->events_guest); 148 } 149 150 /* 151 * Disable guest events, enable host events 152 */ 153 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu) 154 { 155 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; 156 157 if (pmu->events_guest) 158 write_sysreg(pmu->events_guest, pmcntenclr_el0); 159 160 if (pmu->events_host) 161 write_sysreg(pmu->events_host, pmcntenset_el0); 162 } 163 #else 164 #define __pmu_switch_to_guest(v) ({ false; }) 165 #define __pmu_switch_to_host(v) do {} while (0) 166 #endif 167 168 /* 169 * Handler for protected VM MSR, MRS or System instruction execution in AArch64. 170 * 171 * Returns true if the hypervisor has handled the exit, and control should go 172 * back to the guest, or false if it hasn't. 173 */ 174 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code) 175 { 176 /* 177 * Make sure we handle the exit for workarounds and ptrauth 178 * before the pKVM handling, as the latter could decide to 179 * UNDEF. 180 */ 181 return (kvm_hyp_handle_sysreg(vcpu, exit_code) || 182 kvm_handle_pvm_sysreg(vcpu, exit_code)); 183 } 184 185 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu) 186 { 187 __fpsimd_save_state(*host_data_ptr(fpsimd_state)); 188 } 189 190 static const exit_handler_fn hyp_exit_handlers[] = { 191 [0 ... ESR_ELx_EC_MAX] = NULL, 192 [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, 193 [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg, 194 [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, 195 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, 196 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, 197 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, 198 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, 199 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, 200 }; 201 202 static const exit_handler_fn pvm_exit_handlers[] = { 203 [0 ... ESR_ELx_EC_MAX] = NULL, 204 [ESR_ELx_EC_SYS64] = kvm_handle_pvm_sys64, 205 [ESR_ELx_EC_SVE] = kvm_handle_pvm_restricted, 206 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, 207 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, 208 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, 209 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, 210 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, 211 }; 212 213 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) 214 { 215 if (unlikely(vcpu_is_protected(vcpu))) 216 return pvm_exit_handlers; 217 218 return hyp_exit_handlers; 219 } 220 221 /* 222 * Some guests (e.g., protected VMs) are not be allowed to run in AArch32. 223 * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a 224 * guest from dropping to AArch32 EL0 if implemented by the CPU. If the 225 * hypervisor spots a guest in such a state ensure it is handled, and don't 226 * trust the host to spot or fix it. The check below is based on the one in 227 * kvm_arch_vcpu_ioctl_run(). 228 * 229 * Returns false if the guest ran in AArch32 when it shouldn't have, and 230 * thus should exit to the host, or true if a the guest run loop can continue. 231 */ 232 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code) 233 { 234 if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) { 235 /* 236 * As we have caught the guest red-handed, decide that it isn't 237 * fit for purpose anymore by making the vcpu invalid. The VMM 238 * can try and fix it by re-initializing the vcpu with 239 * KVM_ARM_VCPU_INIT, however, this is likely not possible for 240 * protected VMs. 241 */ 242 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 243 *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT); 244 *exit_code |= ARM_EXCEPTION_IL; 245 } 246 } 247 248 /* Switch to the guest for legacy non-VHE systems */ 249 int __kvm_vcpu_run(struct kvm_vcpu *vcpu) 250 { 251 struct kvm_cpu_context *host_ctxt; 252 struct kvm_cpu_context *guest_ctxt; 253 struct kvm_s2_mmu *mmu; 254 bool pmu_switch_needed; 255 u64 exit_code; 256 257 /* 258 * Having IRQs masked via PMR when entering the guest means the GIC 259 * will not signal the CPU of interrupts of lower priority, and the 260 * only way to get out will be via guest exceptions. 261 * Naturally, we want to avoid this. 262 */ 263 if (system_uses_irq_prio_masking()) { 264 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 265 pmr_sync(); 266 } 267 268 host_ctxt = host_data_ptr(host_ctxt); 269 host_ctxt->__hyp_running_vcpu = vcpu; 270 guest_ctxt = &vcpu->arch.ctxt; 271 272 pmu_switch_needed = __pmu_switch_to_guest(vcpu); 273 274 __sysreg_save_state_nvhe(host_ctxt); 275 /* 276 * We must flush and disable the SPE buffer for nVHE, as 277 * the translation regime(EL1&0) is going to be loaded with 278 * that of the guest. And we must do this before we change the 279 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and 280 * before we load guest Stage1. 281 */ 282 __debug_save_host_buffers_nvhe(vcpu); 283 284 /* 285 * We're about to restore some new MMU state. Make sure 286 * ongoing page-table walks that have started before we 287 * trapped to EL2 have completed. This also synchronises the 288 * above disabling of SPE and TRBE. 289 * 290 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes", 291 * rule R_LFHQG and subsequent information statements. 292 */ 293 dsb(nsh); 294 295 __kvm_adjust_pc(vcpu); 296 297 /* 298 * We must restore the 32-bit state before the sysregs, thanks 299 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). 300 * 301 * Also, and in order to be able to deal with erratum #1319537 (A57) 302 * and #1319367 (A72), we must ensure that all VM-related sysreg are 303 * restored before we enable S2 translation. 304 */ 305 __sysreg32_restore_state(vcpu); 306 __sysreg_restore_state_nvhe(guest_ctxt); 307 308 mmu = kern_hyp_va(vcpu->arch.hw_mmu); 309 __load_stage2(mmu, kern_hyp_va(mmu->arch)); 310 __activate_traps(vcpu); 311 312 __hyp_vgic_restore_state(vcpu); 313 __timer_enable_traps(vcpu); 314 315 __debug_switch_to_guest(vcpu); 316 317 do { 318 /* Jump in the fire! */ 319 exit_code = __guest_enter(vcpu); 320 321 /* And we're baaack! */ 322 } while (fixup_guest_exit(vcpu, &exit_code)); 323 324 __sysreg_save_state_nvhe(guest_ctxt); 325 __sysreg32_save_state(vcpu); 326 __timer_disable_traps(vcpu); 327 __hyp_vgic_save_state(vcpu); 328 329 /* 330 * Same thing as before the guest run: we're about to switch 331 * the MMU context, so let's make sure we don't have any 332 * ongoing EL1&0 translations. 333 */ 334 dsb(nsh); 335 336 __deactivate_traps(vcpu); 337 __load_host_stage2(); 338 339 __sysreg_restore_state_nvhe(host_ctxt); 340 341 if (guest_owns_fp_regs()) 342 __fpsimd_save_fpexc32(vcpu); 343 344 __debug_switch_to_host(vcpu); 345 /* 346 * This must come after restoring the host sysregs, since a non-VHE 347 * system may enable SPE here and make use of the TTBRs. 348 */ 349 __debug_restore_host_buffers_nvhe(vcpu); 350 351 if (pmu_switch_needed) 352 __pmu_switch_to_host(vcpu); 353 354 /* Returning to host will clear PSR.I, remask PMR if needed */ 355 if (system_uses_irq_prio_masking()) 356 gic_write_pmr(GIC_PRIO_IRQOFF); 357 358 host_ctxt->__hyp_running_vcpu = NULL; 359 360 return exit_code; 361 } 362 363 asmlinkage void __noreturn hyp_panic(void) 364 { 365 u64 spsr = read_sysreg_el2(SYS_SPSR); 366 u64 elr = read_sysreg_el2(SYS_ELR); 367 u64 par = read_sysreg_par(); 368 struct kvm_cpu_context *host_ctxt; 369 struct kvm_vcpu *vcpu; 370 371 host_ctxt = host_data_ptr(host_ctxt); 372 vcpu = host_ctxt->__hyp_running_vcpu; 373 374 if (vcpu) { 375 __timer_disable_traps(vcpu); 376 __deactivate_traps(vcpu); 377 __load_host_stage2(); 378 __sysreg_restore_state_nvhe(host_ctxt); 379 } 380 381 /* Prepare to dump kvm nvhe hyp stacktrace */ 382 kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0), 383 _THIS_IP_); 384 385 __hyp_do_panic(host_ctxt, spsr, elr, par); 386 unreachable(); 387 } 388 389 asmlinkage void __noreturn hyp_panic_bad_stack(void) 390 { 391 hyp_panic(); 392 } 393 394 asmlinkage void kvm_unexpected_el2_exception(void) 395 { 396 __kvm_unexpected_el2_exception(); 397 } 398