xref: /linux/arch/arm64/kvm/hyp/nvhe/switch.c (revision e511e08a9f496948b13aac50610f2d17335f56c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9 
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 
29 #include <nvhe/fixed_config.h>
30 #include <nvhe/mem_protect.h>
31 
32 /* Non-VHE specific context */
33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
36 
37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
38 
39 static void __activate_traps(struct kvm_vcpu *vcpu)
40 {
41 	u64 val;
42 
43 	___activate_traps(vcpu, vcpu->arch.hcr_el2);
44 	__activate_traps_common(vcpu);
45 
46 	val = vcpu->arch.cptr_el2;
47 	val |= CPTR_EL2_TAM;	/* Same bit irrespective of E2H */
48 	val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA;
49 	if (cpus_have_final_cap(ARM64_SME)) {
50 		if (has_hvhe())
51 			val &= ~(CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN);
52 		else
53 			val |= CPTR_EL2_TSM;
54 	}
55 
56 	if (!guest_owns_fp_regs()) {
57 		if (has_hvhe())
58 			val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |
59 				 CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN);
60 		else
61 			val |= CPTR_EL2_TFP | CPTR_EL2_TZ;
62 
63 		__activate_traps_fpsimd32(vcpu);
64 	}
65 
66 	kvm_write_cptr_el2(val);
67 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
68 
69 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
70 		struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
71 
72 		isb();
73 		/*
74 		 * At this stage, and thanks to the above isb(), S2 is
75 		 * configured and enabled. We can now restore the guest's S1
76 		 * configuration: SCTLR, and only then TCR.
77 		 */
78 		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
79 		isb();
80 		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
81 	}
82 }
83 
84 static void __deactivate_traps(struct kvm_vcpu *vcpu)
85 {
86 	extern char __kvm_hyp_host_vector[];
87 
88 	___deactivate_traps(vcpu);
89 
90 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
91 		u64 val;
92 
93 		/*
94 		 * Set the TCR and SCTLR registers in the exact opposite
95 		 * sequence as __activate_traps (first prevent walks,
96 		 * then force the MMU on). A generous sprinkling of isb()
97 		 * ensure that things happen in this exact order.
98 		 */
99 		val = read_sysreg_el1(SYS_TCR);
100 		write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
101 		isb();
102 		val = read_sysreg_el1(SYS_SCTLR);
103 		write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
104 		isb();
105 	}
106 
107 	__deactivate_traps_common(vcpu);
108 
109 	write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
110 
111 	kvm_reset_cptr_el2(vcpu);
112 	write_sysreg(__kvm_hyp_host_vector, vbar_el2);
113 }
114 
115 /* Save VGICv3 state on non-VHE systems */
116 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
117 {
118 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
119 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
120 		__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
121 	}
122 }
123 
124 /* Restore VGICv3 state on non-VHE systems */
125 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
126 {
127 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
128 		__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
129 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
130 	}
131 }
132 
133 /*
134  * Disable host events, enable guest events
135  */
136 #ifdef CONFIG_HW_PERF_EVENTS
137 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
138 {
139 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
140 
141 	if (pmu->events_host)
142 		write_sysreg(pmu->events_host, pmcntenclr_el0);
143 
144 	if (pmu->events_guest)
145 		write_sysreg(pmu->events_guest, pmcntenset_el0);
146 
147 	return (pmu->events_host || pmu->events_guest);
148 }
149 
150 /*
151  * Disable guest events, enable host events
152  */
153 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
154 {
155 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
156 
157 	if (pmu->events_guest)
158 		write_sysreg(pmu->events_guest, pmcntenclr_el0);
159 
160 	if (pmu->events_host)
161 		write_sysreg(pmu->events_host, pmcntenset_el0);
162 }
163 #else
164 #define __pmu_switch_to_guest(v)	({ false; })
165 #define __pmu_switch_to_host(v)		do {} while (0)
166 #endif
167 
168 /*
169  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
170  *
171  * Returns true if the hypervisor has handled the exit, and control should go
172  * back to the guest, or false if it hasn't.
173  */
174 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
175 {
176 	/*
177 	 * Make sure we handle the exit for workarounds and ptrauth
178 	 * before the pKVM handling, as the latter could decide to
179 	 * UNDEF.
180 	 */
181 	return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
182 		kvm_handle_pvm_sysreg(vcpu, exit_code));
183 }
184 
185 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu)
186 {
187 	__fpsimd_save_state(*host_data_ptr(fpsimd_state));
188 }
189 
190 static const exit_handler_fn hyp_exit_handlers[] = {
191 	[0 ... ESR_ELx_EC_MAX]		= NULL,
192 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
193 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg,
194 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
195 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
196 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
197 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
198 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
199 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
200 };
201 
202 static const exit_handler_fn pvm_exit_handlers[] = {
203 	[0 ... ESR_ELx_EC_MAX]		= NULL,
204 	[ESR_ELx_EC_SYS64]		= kvm_handle_pvm_sys64,
205 	[ESR_ELx_EC_SVE]		= kvm_handle_pvm_restricted,
206 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
207 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
208 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
209 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
210 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
211 };
212 
213 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
214 {
215 	if (unlikely(vcpu_is_protected(vcpu)))
216 		return pvm_exit_handlers;
217 
218 	return hyp_exit_handlers;
219 }
220 
221 /*
222  * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
223  * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
224  * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
225  * hypervisor spots a guest in such a state ensure it is handled, and don't
226  * trust the host to spot or fix it.  The check below is based on the one in
227  * kvm_arch_vcpu_ioctl_run().
228  *
229  * Returns false if the guest ran in AArch32 when it shouldn't have, and
230  * thus should exit to the host, or true if a the guest run loop can continue.
231  */
232 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
233 {
234 	if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) {
235 		/*
236 		 * As we have caught the guest red-handed, decide that it isn't
237 		 * fit for purpose anymore by making the vcpu invalid. The VMM
238 		 * can try and fix it by re-initializing the vcpu with
239 		 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
240 		 * protected VMs.
241 		 */
242 		vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
243 		*exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
244 		*exit_code |= ARM_EXCEPTION_IL;
245 	}
246 }
247 
248 /* Switch to the guest for legacy non-VHE systems */
249 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
250 {
251 	struct kvm_cpu_context *host_ctxt;
252 	struct kvm_cpu_context *guest_ctxt;
253 	struct kvm_s2_mmu *mmu;
254 	bool pmu_switch_needed;
255 	u64 exit_code;
256 
257 	/*
258 	 * Having IRQs masked via PMR when entering the guest means the GIC
259 	 * will not signal the CPU of interrupts of lower priority, and the
260 	 * only way to get out will be via guest exceptions.
261 	 * Naturally, we want to avoid this.
262 	 */
263 	if (system_uses_irq_prio_masking()) {
264 		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
265 		pmr_sync();
266 	}
267 
268 	host_ctxt = host_data_ptr(host_ctxt);
269 	host_ctxt->__hyp_running_vcpu = vcpu;
270 	guest_ctxt = &vcpu->arch.ctxt;
271 
272 	pmu_switch_needed = __pmu_switch_to_guest(vcpu);
273 
274 	__sysreg_save_state_nvhe(host_ctxt);
275 	/*
276 	 * We must flush and disable the SPE buffer for nVHE, as
277 	 * the translation regime(EL1&0) is going to be loaded with
278 	 * that of the guest. And we must do this before we change the
279 	 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
280 	 * before we load guest Stage1.
281 	 */
282 	__debug_save_host_buffers_nvhe(vcpu);
283 
284 	/*
285 	 * We're about to restore some new MMU state. Make sure
286 	 * ongoing page-table walks that have started before we
287 	 * trapped to EL2 have completed. This also synchronises the
288 	 * above disabling of SPE and TRBE.
289 	 *
290 	 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
291 	 * rule R_LFHQG and subsequent information statements.
292 	 */
293 	dsb(nsh);
294 
295 	__kvm_adjust_pc(vcpu);
296 
297 	/*
298 	 * We must restore the 32-bit state before the sysregs, thanks
299 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
300 	 *
301 	 * Also, and in order to be able to deal with erratum #1319537 (A57)
302 	 * and #1319367 (A72), we must ensure that all VM-related sysreg are
303 	 * restored before we enable S2 translation.
304 	 */
305 	__sysreg32_restore_state(vcpu);
306 	__sysreg_restore_state_nvhe(guest_ctxt);
307 
308 	mmu = kern_hyp_va(vcpu->arch.hw_mmu);
309 	__load_stage2(mmu, kern_hyp_va(mmu->arch));
310 	__activate_traps(vcpu);
311 
312 	__hyp_vgic_restore_state(vcpu);
313 	__timer_enable_traps(vcpu);
314 
315 	__debug_switch_to_guest(vcpu);
316 
317 	do {
318 		/* Jump in the fire! */
319 		exit_code = __guest_enter(vcpu);
320 
321 		/* And we're baaack! */
322 	} while (fixup_guest_exit(vcpu, &exit_code));
323 
324 	__sysreg_save_state_nvhe(guest_ctxt);
325 	__sysreg32_save_state(vcpu);
326 	__timer_disable_traps(vcpu);
327 	__hyp_vgic_save_state(vcpu);
328 
329 	/*
330 	 * Same thing as before the guest run: we're about to switch
331 	 * the MMU context, so let's make sure we don't have any
332 	 * ongoing EL1&0 translations.
333 	 */
334 	dsb(nsh);
335 
336 	__deactivate_traps(vcpu);
337 	__load_host_stage2();
338 
339 	__sysreg_restore_state_nvhe(host_ctxt);
340 
341 	if (guest_owns_fp_regs())
342 		__fpsimd_save_fpexc32(vcpu);
343 
344 	__debug_switch_to_host(vcpu);
345 	/*
346 	 * This must come after restoring the host sysregs, since a non-VHE
347 	 * system may enable SPE here and make use of the TTBRs.
348 	 */
349 	__debug_restore_host_buffers_nvhe(vcpu);
350 
351 	if (pmu_switch_needed)
352 		__pmu_switch_to_host(vcpu);
353 
354 	/* Returning to host will clear PSR.I, remask PMR if needed */
355 	if (system_uses_irq_prio_masking())
356 		gic_write_pmr(GIC_PRIO_IRQOFF);
357 
358 	host_ctxt->__hyp_running_vcpu = NULL;
359 
360 	return exit_code;
361 }
362 
363 asmlinkage void __noreturn hyp_panic(void)
364 {
365 	u64 spsr = read_sysreg_el2(SYS_SPSR);
366 	u64 elr = read_sysreg_el2(SYS_ELR);
367 	u64 par = read_sysreg_par();
368 	struct kvm_cpu_context *host_ctxt;
369 	struct kvm_vcpu *vcpu;
370 
371 	host_ctxt = host_data_ptr(host_ctxt);
372 	vcpu = host_ctxt->__hyp_running_vcpu;
373 
374 	if (vcpu) {
375 		__timer_disable_traps(vcpu);
376 		__deactivate_traps(vcpu);
377 		__load_host_stage2();
378 		__sysreg_restore_state_nvhe(host_ctxt);
379 	}
380 
381 	/* Prepare to dump kvm nvhe hyp stacktrace */
382 	kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
383 				   _THIS_IP_);
384 
385 	__hyp_do_panic(host_ctxt, spsr, elr, par);
386 	unreachable();
387 }
388 
389 asmlinkage void __noreturn hyp_panic_bad_stack(void)
390 {
391 	hyp_panic();
392 }
393 
394 asmlinkage void kvm_unexpected_el2_exception(void)
395 {
396 	__kvm_unexpected_el2_exception();
397 }
398