xref: /linux/arch/arm64/kvm/hyp/nvhe/switch.c (revision e0c0ab04f6785abaa71b9b8dc252cb1a2072c225)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9 
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 
29 #include <nvhe/mem_protect.h>
30 
31 /* Non-VHE specific context */
32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
35 
36 struct fgt_masks hfgrtr_masks;
37 struct fgt_masks hfgwtr_masks;
38 struct fgt_masks hfgitr_masks;
39 struct fgt_masks hdfgrtr_masks;
40 struct fgt_masks hdfgwtr_masks;
41 struct fgt_masks hafgrtr_masks;
42 struct fgt_masks hfgrtr2_masks;
43 struct fgt_masks hfgwtr2_masks;
44 struct fgt_masks hfgitr2_masks;
45 struct fgt_masks hdfgrtr2_masks;
46 struct fgt_masks hdfgwtr2_masks;
47 
48 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
49 
50 static void __activate_cptr_traps(struct kvm_vcpu *vcpu)
51 {
52 	u64 val = CPTR_EL2_TAM;	/* Same bit irrespective of E2H */
53 
54 	if (!guest_owns_fp_regs())
55 		__activate_traps_fpsimd32(vcpu);
56 
57 	if (has_hvhe()) {
58 		val |= CPACR_EL1_TTA;
59 
60 		if (guest_owns_fp_regs()) {
61 			val |= CPACR_EL1_FPEN;
62 			if (vcpu_has_sve(vcpu))
63 				val |= CPACR_EL1_ZEN;
64 		}
65 
66 		write_sysreg(val, cpacr_el1);
67 	} else {
68 		val |= CPTR_EL2_TTA | CPTR_NVHE_EL2_RES1;
69 
70 		/*
71 		 * Always trap SME since it's not supported in KVM.
72 		 * TSM is RES1 if SME isn't implemented.
73 		 */
74 		val |= CPTR_EL2_TSM;
75 
76 		if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs())
77 			val |= CPTR_EL2_TZ;
78 
79 		if (!guest_owns_fp_regs())
80 			val |= CPTR_EL2_TFP;
81 
82 		write_sysreg(val, cptr_el2);
83 	}
84 }
85 
86 static void __deactivate_cptr_traps(struct kvm_vcpu *vcpu)
87 {
88 	if (has_hvhe()) {
89 		u64 val = CPACR_EL1_FPEN;
90 
91 		if (cpus_have_final_cap(ARM64_SVE))
92 			val |= CPACR_EL1_ZEN;
93 		if (cpus_have_final_cap(ARM64_SME))
94 			val |= CPACR_EL1_SMEN;
95 
96 		write_sysreg(val, cpacr_el1);
97 	} else {
98 		u64 val = CPTR_NVHE_EL2_RES1;
99 
100 		if (!cpus_have_final_cap(ARM64_SVE))
101 			val |= CPTR_EL2_TZ;
102 		if (!cpus_have_final_cap(ARM64_SME))
103 			val |= CPTR_EL2_TSM;
104 
105 		write_sysreg(val, cptr_el2);
106 	}
107 }
108 
109 static void __activate_traps(struct kvm_vcpu *vcpu)
110 {
111 	___activate_traps(vcpu, vcpu->arch.hcr_el2);
112 	__activate_traps_common(vcpu);
113 	__activate_cptr_traps(vcpu);
114 
115 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
116 
117 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
118 		struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
119 
120 		isb();
121 		/*
122 		 * At this stage, and thanks to the above isb(), S2 is
123 		 * configured and enabled. We can now restore the guest's S1
124 		 * configuration: SCTLR, and only then TCR.
125 		 */
126 		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
127 		isb();
128 		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
129 	}
130 }
131 
132 static void __deactivate_traps(struct kvm_vcpu *vcpu)
133 {
134 	extern char __kvm_hyp_host_vector[];
135 
136 	___deactivate_traps(vcpu);
137 
138 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
139 		u64 val;
140 
141 		/*
142 		 * Set the TCR and SCTLR registers in the exact opposite
143 		 * sequence as __activate_traps (first prevent walks,
144 		 * then force the MMU on). A generous sprinkling of isb()
145 		 * ensure that things happen in this exact order.
146 		 */
147 		val = read_sysreg_el1(SYS_TCR);
148 		write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
149 		isb();
150 		val = read_sysreg_el1(SYS_SCTLR);
151 		write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
152 		isb();
153 	}
154 
155 	__deactivate_traps_common(vcpu);
156 
157 	write_sysreg_hcr(this_cpu_ptr(&kvm_init_params)->hcr_el2);
158 
159 	__deactivate_cptr_traps(vcpu);
160 	write_sysreg(__kvm_hyp_host_vector, vbar_el2);
161 }
162 
163 /* Save VGICv3 state on non-VHE systems */
164 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
165 {
166 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
167 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
168 		__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
169 	}
170 }
171 
172 /* Restore VGICv3 state on non-VHE systems */
173 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
174 {
175 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
176 		__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
177 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
178 	}
179 }
180 
181 /*
182  * Disable host events, enable guest events
183  */
184 #ifdef CONFIG_HW_PERF_EVENTS
185 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
186 {
187 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
188 
189 	if (pmu->events_host)
190 		write_sysreg(pmu->events_host, pmcntenclr_el0);
191 
192 	if (pmu->events_guest)
193 		write_sysreg(pmu->events_guest, pmcntenset_el0);
194 
195 	return (pmu->events_host || pmu->events_guest);
196 }
197 
198 /*
199  * Disable guest events, enable host events
200  */
201 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
202 {
203 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
204 
205 	if (pmu->events_guest)
206 		write_sysreg(pmu->events_guest, pmcntenclr_el0);
207 
208 	if (pmu->events_host)
209 		write_sysreg(pmu->events_host, pmcntenset_el0);
210 }
211 #else
212 #define __pmu_switch_to_guest(v)	({ false; })
213 #define __pmu_switch_to_host(v)		do {} while (0)
214 #endif
215 
216 /*
217  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
218  *
219  * Returns true if the hypervisor has handled the exit, and control should go
220  * back to the guest, or false if it hasn't.
221  */
222 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
223 {
224 	/*
225 	 * Make sure we handle the exit for workarounds before the pKVM
226 	 * handling, as the latter could decide to UNDEF.
227 	 */
228 	return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
229 		kvm_handle_pvm_sysreg(vcpu, exit_code));
230 }
231 
232 static const exit_handler_fn hyp_exit_handlers[] = {
233 	[0 ... ESR_ELx_EC_MAX]		= NULL,
234 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
235 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg,
236 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
237 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
238 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
239 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
240 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
241 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
242 };
243 
244 static const exit_handler_fn pvm_exit_handlers[] = {
245 	[0 ... ESR_ELx_EC_MAX]		= NULL,
246 	[ESR_ELx_EC_SYS64]		= kvm_handle_pvm_sys64,
247 	[ESR_ELx_EC_SVE]		= kvm_handle_pvm_restricted,
248 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
249 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
250 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
251 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
252 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
253 };
254 
255 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
256 {
257 	if (unlikely(vcpu_is_protected(vcpu)))
258 		return pvm_exit_handlers;
259 
260 	return hyp_exit_handlers;
261 }
262 
263 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
264 {
265 	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
266 
267 	synchronize_vcpu_pstate(vcpu, exit_code);
268 
269 	/*
270 	 * Some guests (e.g., protected VMs) are not be allowed to run in
271 	 * AArch32.  The ARMv8 architecture does not give the hypervisor a
272 	 * mechanism to prevent a guest from dropping to AArch32 EL0 if
273 	 * implemented by the CPU. If the hypervisor spots a guest in such a
274 	 * state ensure it is handled, and don't trust the host to spot or fix
275 	 * it.  The check below is based on the one in
276 	 * kvm_arch_vcpu_ioctl_run().
277 	 */
278 	if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) {
279 		/*
280 		 * As we have caught the guest red-handed, decide that it isn't
281 		 * fit for purpose anymore by making the vcpu invalid. The VMM
282 		 * can try and fix it by re-initializing the vcpu with
283 		 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
284 		 * protected VMs.
285 		 */
286 		vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
287 		*exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
288 		*exit_code |= ARM_EXCEPTION_IL;
289 	}
290 
291 	return __fixup_guest_exit(vcpu, exit_code, handlers);
292 }
293 
294 /* Switch to the guest for legacy non-VHE systems */
295 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
296 {
297 	struct kvm_cpu_context *host_ctxt;
298 	struct kvm_cpu_context *guest_ctxt;
299 	struct kvm_s2_mmu *mmu;
300 	bool pmu_switch_needed;
301 	u64 exit_code;
302 
303 	/*
304 	 * Having IRQs masked via PMR when entering the guest means the GIC
305 	 * will not signal the CPU of interrupts of lower priority, and the
306 	 * only way to get out will be via guest exceptions.
307 	 * Naturally, we want to avoid this.
308 	 */
309 	if (system_uses_irq_prio_masking()) {
310 		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
311 		pmr_sync();
312 	}
313 
314 	host_ctxt = host_data_ptr(host_ctxt);
315 	host_ctxt->__hyp_running_vcpu = vcpu;
316 	guest_ctxt = &vcpu->arch.ctxt;
317 
318 	pmu_switch_needed = __pmu_switch_to_guest(vcpu);
319 
320 	__sysreg_save_state_nvhe(host_ctxt);
321 	/*
322 	 * We must flush and disable the SPE buffer for nVHE, as
323 	 * the translation regime(EL1&0) is going to be loaded with
324 	 * that of the guest. And we must do this before we change the
325 	 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
326 	 * before we load guest Stage1.
327 	 */
328 	__debug_save_host_buffers_nvhe(vcpu);
329 
330 	/*
331 	 * We're about to restore some new MMU state. Make sure
332 	 * ongoing page-table walks that have started before we
333 	 * trapped to EL2 have completed. This also synchronises the
334 	 * above disabling of SPE and TRBE.
335 	 *
336 	 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
337 	 * rule R_LFHQG and subsequent information statements.
338 	 */
339 	dsb(nsh);
340 
341 	__kvm_adjust_pc(vcpu);
342 
343 	/*
344 	 * We must restore the 32-bit state before the sysregs, thanks
345 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
346 	 *
347 	 * Also, and in order to be able to deal with erratum #1319537 (A57)
348 	 * and #1319367 (A72), we must ensure that all VM-related sysreg are
349 	 * restored before we enable S2 translation.
350 	 */
351 	__sysreg32_restore_state(vcpu);
352 	__sysreg_restore_state_nvhe(guest_ctxt);
353 
354 	mmu = kern_hyp_va(vcpu->arch.hw_mmu);
355 	__load_stage2(mmu, kern_hyp_va(mmu->arch));
356 	__activate_traps(vcpu);
357 
358 	__hyp_vgic_restore_state(vcpu);
359 	__timer_enable_traps(vcpu);
360 
361 	__debug_switch_to_guest(vcpu);
362 
363 	do {
364 		/* Jump in the fire! */
365 		exit_code = __guest_enter(vcpu);
366 
367 		/* And we're baaack! */
368 	} while (fixup_guest_exit(vcpu, &exit_code));
369 
370 	__sysreg_save_state_nvhe(guest_ctxt);
371 	__sysreg32_save_state(vcpu);
372 	__timer_disable_traps(vcpu);
373 	__hyp_vgic_save_state(vcpu);
374 
375 	/*
376 	 * Same thing as before the guest run: we're about to switch
377 	 * the MMU context, so let's make sure we don't have any
378 	 * ongoing EL1&0 translations.
379 	 */
380 	dsb(nsh);
381 
382 	__deactivate_traps(vcpu);
383 	__load_host_stage2();
384 
385 	__sysreg_restore_state_nvhe(host_ctxt);
386 
387 	if (guest_owns_fp_regs())
388 		__fpsimd_save_fpexc32(vcpu);
389 
390 	__debug_switch_to_host(vcpu);
391 	/*
392 	 * This must come after restoring the host sysregs, since a non-VHE
393 	 * system may enable SPE here and make use of the TTBRs.
394 	 */
395 	__debug_restore_host_buffers_nvhe(vcpu);
396 
397 	if (pmu_switch_needed)
398 		__pmu_switch_to_host(vcpu);
399 
400 	/* Returning to host will clear PSR.I, remask PMR if needed */
401 	if (system_uses_irq_prio_masking())
402 		gic_write_pmr(GIC_PRIO_IRQOFF);
403 
404 	host_ctxt->__hyp_running_vcpu = NULL;
405 
406 	return exit_code;
407 }
408 
409 asmlinkage void __noreturn hyp_panic(void)
410 {
411 	u64 spsr = read_sysreg_el2(SYS_SPSR);
412 	u64 elr = read_sysreg_el2(SYS_ELR);
413 	u64 par = read_sysreg_par();
414 	struct kvm_cpu_context *host_ctxt;
415 	struct kvm_vcpu *vcpu;
416 
417 	host_ctxt = host_data_ptr(host_ctxt);
418 	vcpu = host_ctxt->__hyp_running_vcpu;
419 
420 	if (vcpu) {
421 		__timer_disable_traps(vcpu);
422 		__deactivate_traps(vcpu);
423 		__load_host_stage2();
424 		__sysreg_restore_state_nvhe(host_ctxt);
425 	}
426 
427 	/* Prepare to dump kvm nvhe hyp stacktrace */
428 	kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
429 				   _THIS_IP_);
430 
431 	__hyp_do_panic(host_ctxt, spsr, elr, par);
432 	unreachable();
433 }
434 
435 asmlinkage void __noreturn hyp_panic_bad_stack(void)
436 {
437 	hyp_panic();
438 }
439 
440 asmlinkage void kvm_unexpected_el2_exception(void)
441 {
442 	__kvm_unexpected_el2_exception();
443 }
444