xref: /linux/arch/arm64/kvm/hyp/nvhe/switch.c (revision b1992c3772e69a6fd0e3fc81cd4d2820c8b6eca0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9 
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 
29 #include <nvhe/fixed_config.h>
30 #include <nvhe/mem_protect.h>
31 
32 /* Non-VHE specific context */
33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
36 
37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
38 
39 static void __activate_traps(struct kvm_vcpu *vcpu)
40 {
41 	u64 val;
42 
43 	___activate_traps(vcpu);
44 	__activate_traps_common(vcpu);
45 
46 	val = vcpu->arch.cptr_el2;
47 	val |= CPTR_EL2_TAM;	/* Same bit irrespective of E2H */
48 	val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA;
49 	if (cpus_have_final_cap(ARM64_SME)) {
50 		if (has_hvhe())
51 			val &= ~(CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN);
52 		else
53 			val |= CPTR_EL2_TSM;
54 	}
55 
56 	if (!guest_owns_fp_regs(vcpu)) {
57 		if (has_hvhe())
58 			val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |
59 				 CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN);
60 		else
61 			val |= CPTR_EL2_TFP | CPTR_EL2_TZ;
62 
63 		__activate_traps_fpsimd32(vcpu);
64 	}
65 
66 	kvm_write_cptr_el2(val);
67 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
68 
69 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
70 		struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
71 
72 		isb();
73 		/*
74 		 * At this stage, and thanks to the above isb(), S2 is
75 		 * configured and enabled. We can now restore the guest's S1
76 		 * configuration: SCTLR, and only then TCR.
77 		 */
78 		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
79 		isb();
80 		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
81 	}
82 }
83 
84 static void __deactivate_traps(struct kvm_vcpu *vcpu)
85 {
86 	extern char __kvm_hyp_host_vector[];
87 
88 	___deactivate_traps(vcpu);
89 
90 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
91 		u64 val;
92 
93 		/*
94 		 * Set the TCR and SCTLR registers in the exact opposite
95 		 * sequence as __activate_traps (first prevent walks,
96 		 * then force the MMU on). A generous sprinkling of isb()
97 		 * ensure that things happen in this exact order.
98 		 */
99 		val = read_sysreg_el1(SYS_TCR);
100 		write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
101 		isb();
102 		val = read_sysreg_el1(SYS_SCTLR);
103 		write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
104 		isb();
105 	}
106 
107 	__deactivate_traps_common(vcpu);
108 
109 	write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
110 
111 	kvm_reset_cptr_el2(vcpu);
112 	write_sysreg(__kvm_hyp_host_vector, vbar_el2);
113 }
114 
115 /* Save VGICv3 state on non-VHE systems */
116 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
117 {
118 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
119 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
120 		__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
121 	}
122 }
123 
124 /* Restore VGICv3 state on non-VHE systems */
125 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
126 {
127 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
128 		__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
129 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
130 	}
131 }
132 
133 /*
134  * Disable host events, enable guest events
135  */
136 #ifdef CONFIG_HW_PERF_EVENTS
137 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
138 {
139 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
140 
141 	if (pmu->events_host)
142 		write_sysreg(pmu->events_host, pmcntenclr_el0);
143 
144 	if (pmu->events_guest)
145 		write_sysreg(pmu->events_guest, pmcntenset_el0);
146 
147 	return (pmu->events_host || pmu->events_guest);
148 }
149 
150 /*
151  * Disable guest events, enable host events
152  */
153 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
154 {
155 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
156 
157 	if (pmu->events_guest)
158 		write_sysreg(pmu->events_guest, pmcntenclr_el0);
159 
160 	if (pmu->events_host)
161 		write_sysreg(pmu->events_host, pmcntenset_el0);
162 }
163 #else
164 #define __pmu_switch_to_guest(v)	({ false; })
165 #define __pmu_switch_to_host(v)		do {} while (0)
166 #endif
167 
168 /*
169  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
170  *
171  * Returns true if the hypervisor has handled the exit, and control should go
172  * back to the guest, or false if it hasn't.
173  */
174 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
175 {
176 	/*
177 	 * Make sure we handle the exit for workarounds and ptrauth
178 	 * before the pKVM handling, as the latter could decide to
179 	 * UNDEF.
180 	 */
181 	return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
182 		kvm_handle_pvm_sysreg(vcpu, exit_code));
183 }
184 
185 static const exit_handler_fn hyp_exit_handlers[] = {
186 	[0 ... ESR_ELx_EC_MAX]		= NULL,
187 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
188 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg,
189 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
190 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
191 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
192 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
193 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
194 	[ESR_ELx_EC_PAC]		= kvm_hyp_handle_ptrauth,
195 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
196 };
197 
198 static const exit_handler_fn pvm_exit_handlers[] = {
199 	[0 ... ESR_ELx_EC_MAX]		= NULL,
200 	[ESR_ELx_EC_SYS64]		= kvm_handle_pvm_sys64,
201 	[ESR_ELx_EC_SVE]		= kvm_handle_pvm_restricted,
202 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
203 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
204 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
205 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
206 	[ESR_ELx_EC_PAC]		= kvm_hyp_handle_ptrauth,
207 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
208 };
209 
210 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
211 {
212 	if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm))))
213 		return pvm_exit_handlers;
214 
215 	return hyp_exit_handlers;
216 }
217 
218 /*
219  * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
220  * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
221  * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
222  * hypervisor spots a guest in such a state ensure it is handled, and don't
223  * trust the host to spot or fix it.  The check below is based on the one in
224  * kvm_arch_vcpu_ioctl_run().
225  *
226  * Returns false if the guest ran in AArch32 when it shouldn't have, and
227  * thus should exit to the host, or true if a the guest run loop can continue.
228  */
229 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
230 {
231 	struct kvm *kvm = kern_hyp_va(vcpu->kvm);
232 
233 	if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) {
234 		/*
235 		 * As we have caught the guest red-handed, decide that it isn't
236 		 * fit for purpose anymore by making the vcpu invalid. The VMM
237 		 * can try and fix it by re-initializing the vcpu with
238 		 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
239 		 * protected VMs.
240 		 */
241 		vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
242 		*exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
243 		*exit_code |= ARM_EXCEPTION_IL;
244 	}
245 }
246 
247 /* Switch to the guest for legacy non-VHE systems */
248 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
249 {
250 	struct kvm_cpu_context *host_ctxt;
251 	struct kvm_cpu_context *guest_ctxt;
252 	struct kvm_s2_mmu *mmu;
253 	bool pmu_switch_needed;
254 	u64 exit_code;
255 
256 	/*
257 	 * Having IRQs masked via PMR when entering the guest means the GIC
258 	 * will not signal the CPU of interrupts of lower priority, and the
259 	 * only way to get out will be via guest exceptions.
260 	 * Naturally, we want to avoid this.
261 	 */
262 	if (system_uses_irq_prio_masking()) {
263 		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
264 		pmr_sync();
265 	}
266 
267 	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
268 	host_ctxt->__hyp_running_vcpu = vcpu;
269 	guest_ctxt = &vcpu->arch.ctxt;
270 
271 	pmu_switch_needed = __pmu_switch_to_guest(vcpu);
272 
273 	__sysreg_save_state_nvhe(host_ctxt);
274 	/*
275 	 * We must flush and disable the SPE buffer for nVHE, as
276 	 * the translation regime(EL1&0) is going to be loaded with
277 	 * that of the guest. And we must do this before we change the
278 	 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
279 	 * before we load guest Stage1.
280 	 */
281 	__debug_save_host_buffers_nvhe(vcpu);
282 
283 	/*
284 	 * We're about to restore some new MMU state. Make sure
285 	 * ongoing page-table walks that have started before we
286 	 * trapped to EL2 have completed. This also synchronises the
287 	 * above disabling of SPE and TRBE.
288 	 *
289 	 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
290 	 * rule R_LFHQG and subsequent information statements.
291 	 */
292 	dsb(nsh);
293 
294 	__kvm_adjust_pc(vcpu);
295 
296 	/*
297 	 * We must restore the 32-bit state before the sysregs, thanks
298 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
299 	 *
300 	 * Also, and in order to be able to deal with erratum #1319537 (A57)
301 	 * and #1319367 (A72), we must ensure that all VM-related sysreg are
302 	 * restored before we enable S2 translation.
303 	 */
304 	__sysreg32_restore_state(vcpu);
305 	__sysreg_restore_state_nvhe(guest_ctxt);
306 
307 	mmu = kern_hyp_va(vcpu->arch.hw_mmu);
308 	__load_stage2(mmu, kern_hyp_va(mmu->arch));
309 	__activate_traps(vcpu);
310 
311 	__hyp_vgic_restore_state(vcpu);
312 	__timer_enable_traps(vcpu);
313 
314 	__debug_switch_to_guest(vcpu);
315 
316 	do {
317 		/* Jump in the fire! */
318 		exit_code = __guest_enter(vcpu);
319 
320 		/* And we're baaack! */
321 	} while (fixup_guest_exit(vcpu, &exit_code));
322 
323 	__sysreg_save_state_nvhe(guest_ctxt);
324 	__sysreg32_save_state(vcpu);
325 	__timer_disable_traps(vcpu);
326 	__hyp_vgic_save_state(vcpu);
327 
328 	/*
329 	 * Same thing as before the guest run: we're about to switch
330 	 * the MMU context, so let's make sure we don't have any
331 	 * ongoing EL1&0 translations.
332 	 */
333 	dsb(nsh);
334 
335 	__deactivate_traps(vcpu);
336 	__load_host_stage2();
337 
338 	__sysreg_restore_state_nvhe(host_ctxt);
339 
340 	if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)
341 		__fpsimd_save_fpexc32(vcpu);
342 
343 	__debug_switch_to_host(vcpu);
344 	/*
345 	 * This must come after restoring the host sysregs, since a non-VHE
346 	 * system may enable SPE here and make use of the TTBRs.
347 	 */
348 	__debug_restore_host_buffers_nvhe(vcpu);
349 
350 	if (pmu_switch_needed)
351 		__pmu_switch_to_host(vcpu);
352 
353 	/* Returning to host will clear PSR.I, remask PMR if needed */
354 	if (system_uses_irq_prio_masking())
355 		gic_write_pmr(GIC_PRIO_IRQOFF);
356 
357 	host_ctxt->__hyp_running_vcpu = NULL;
358 
359 	return exit_code;
360 }
361 
362 asmlinkage void __noreturn hyp_panic(void)
363 {
364 	u64 spsr = read_sysreg_el2(SYS_SPSR);
365 	u64 elr = read_sysreg_el2(SYS_ELR);
366 	u64 par = read_sysreg_par();
367 	struct kvm_cpu_context *host_ctxt;
368 	struct kvm_vcpu *vcpu;
369 
370 	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
371 	vcpu = host_ctxt->__hyp_running_vcpu;
372 
373 	if (vcpu) {
374 		__timer_disable_traps(vcpu);
375 		__deactivate_traps(vcpu);
376 		__load_host_stage2();
377 		__sysreg_restore_state_nvhe(host_ctxt);
378 	}
379 
380 	/* Prepare to dump kvm nvhe hyp stacktrace */
381 	kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
382 				   _THIS_IP_);
383 
384 	__hyp_do_panic(host_ctxt, spsr, elr, par);
385 	unreachable();
386 }
387 
388 asmlinkage void __noreturn hyp_panic_bad_stack(void)
389 {
390 	hyp_panic();
391 }
392 
393 asmlinkage void kvm_unexpected_el2_exception(void)
394 {
395 	__kvm_unexpected_el2_exception();
396 }
397