1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <hyp/switch.h> 8 #include <hyp/sysreg-sr.h> 9 10 #include <linux/arm-smccc.h> 11 #include <linux/kvm_host.h> 12 #include <linux/types.h> 13 #include <linux/jump_label.h> 14 #include <uapi/linux/psci.h> 15 16 #include <kvm/arm_psci.h> 17 18 #include <asm/barrier.h> 19 #include <asm/cpufeature.h> 20 #include <asm/kprobes.h> 21 #include <asm/kvm_asm.h> 22 #include <asm/kvm_emulate.h> 23 #include <asm/kvm_hyp.h> 24 #include <asm/kvm_mmu.h> 25 #include <asm/fpsimd.h> 26 #include <asm/debug-monitors.h> 27 #include <asm/processor.h> 28 29 #include <nvhe/mem_protect.h> 30 31 /* Non-VHE specific context */ 32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); 33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); 35 36 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc); 37 38 static void __activate_cptr_traps(struct kvm_vcpu *vcpu) 39 { 40 u64 val = CPTR_EL2_TAM; /* Same bit irrespective of E2H */ 41 42 if (!guest_owns_fp_regs()) 43 __activate_traps_fpsimd32(vcpu); 44 45 if (has_hvhe()) { 46 val |= CPACR_EL1_TTA; 47 48 if (guest_owns_fp_regs()) { 49 val |= CPACR_EL1_FPEN; 50 if (vcpu_has_sve(vcpu)) 51 val |= CPACR_EL1_ZEN; 52 } 53 54 write_sysreg(val, cpacr_el1); 55 } else { 56 val |= CPTR_EL2_TTA | CPTR_NVHE_EL2_RES1; 57 58 /* 59 * Always trap SME since it's not supported in KVM. 60 * TSM is RES1 if SME isn't implemented. 61 */ 62 val |= CPTR_EL2_TSM; 63 64 if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs()) 65 val |= CPTR_EL2_TZ; 66 67 if (!guest_owns_fp_regs()) 68 val |= CPTR_EL2_TFP; 69 70 write_sysreg(val, cptr_el2); 71 } 72 } 73 74 static void __deactivate_cptr_traps(struct kvm_vcpu *vcpu) 75 { 76 if (has_hvhe()) { 77 u64 val = CPACR_EL1_FPEN; 78 79 if (cpus_have_final_cap(ARM64_SVE)) 80 val |= CPACR_EL1_ZEN; 81 if (cpus_have_final_cap(ARM64_SME)) 82 val |= CPACR_EL1_SMEN; 83 84 write_sysreg(val, cpacr_el1); 85 } else { 86 u64 val = CPTR_NVHE_EL2_RES1; 87 88 if (!cpus_have_final_cap(ARM64_SVE)) 89 val |= CPTR_EL2_TZ; 90 if (!cpus_have_final_cap(ARM64_SME)) 91 val |= CPTR_EL2_TSM; 92 93 write_sysreg(val, cptr_el2); 94 } 95 } 96 97 static void __activate_traps(struct kvm_vcpu *vcpu) 98 { 99 ___activate_traps(vcpu, vcpu->arch.hcr_el2); 100 __activate_traps_common(vcpu); 101 __activate_cptr_traps(vcpu); 102 103 write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2); 104 105 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { 106 struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; 107 108 isb(); 109 /* 110 * At this stage, and thanks to the above isb(), S2 is 111 * configured and enabled. We can now restore the guest's S1 112 * configuration: SCTLR, and only then TCR. 113 */ 114 write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); 115 isb(); 116 write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); 117 } 118 } 119 120 static void __deactivate_traps(struct kvm_vcpu *vcpu) 121 { 122 extern char __kvm_hyp_host_vector[]; 123 124 ___deactivate_traps(vcpu); 125 126 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { 127 u64 val; 128 129 /* 130 * Set the TCR and SCTLR registers in the exact opposite 131 * sequence as __activate_traps (first prevent walks, 132 * then force the MMU on). A generous sprinkling of isb() 133 * ensure that things happen in this exact order. 134 */ 135 val = read_sysreg_el1(SYS_TCR); 136 write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR); 137 isb(); 138 val = read_sysreg_el1(SYS_SCTLR); 139 write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR); 140 isb(); 141 } 142 143 __deactivate_traps_common(vcpu); 144 145 write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2); 146 147 __deactivate_cptr_traps(vcpu); 148 write_sysreg(__kvm_hyp_host_vector, vbar_el2); 149 } 150 151 /* Save VGICv3 state on non-VHE systems */ 152 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu) 153 { 154 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { 155 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); 156 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3); 157 } 158 } 159 160 /* Restore VGICv3 state on non-VHE systems */ 161 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) 162 { 163 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { 164 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3); 165 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); 166 } 167 } 168 169 /* 170 * Disable host events, enable guest events 171 */ 172 #ifdef CONFIG_HW_PERF_EVENTS 173 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu) 174 { 175 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; 176 177 if (pmu->events_host) 178 write_sysreg(pmu->events_host, pmcntenclr_el0); 179 180 if (pmu->events_guest) 181 write_sysreg(pmu->events_guest, pmcntenset_el0); 182 183 return (pmu->events_host || pmu->events_guest); 184 } 185 186 /* 187 * Disable guest events, enable host events 188 */ 189 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu) 190 { 191 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; 192 193 if (pmu->events_guest) 194 write_sysreg(pmu->events_guest, pmcntenclr_el0); 195 196 if (pmu->events_host) 197 write_sysreg(pmu->events_host, pmcntenset_el0); 198 } 199 #else 200 #define __pmu_switch_to_guest(v) ({ false; }) 201 #define __pmu_switch_to_host(v) do {} while (0) 202 #endif 203 204 /* 205 * Handler for protected VM MSR, MRS or System instruction execution in AArch64. 206 * 207 * Returns true if the hypervisor has handled the exit, and control should go 208 * back to the guest, or false if it hasn't. 209 */ 210 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code) 211 { 212 /* 213 * Make sure we handle the exit for workarounds before the pKVM 214 * handling, as the latter could decide to UNDEF. 215 */ 216 return (kvm_hyp_handle_sysreg(vcpu, exit_code) || 217 kvm_handle_pvm_sysreg(vcpu, exit_code)); 218 } 219 220 static const exit_handler_fn hyp_exit_handlers[] = { 221 [0 ... ESR_ELx_EC_MAX] = NULL, 222 [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, 223 [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg, 224 [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, 225 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, 226 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, 227 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, 228 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, 229 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, 230 }; 231 232 static const exit_handler_fn pvm_exit_handlers[] = { 233 [0 ... ESR_ELx_EC_MAX] = NULL, 234 [ESR_ELx_EC_SYS64] = kvm_handle_pvm_sys64, 235 [ESR_ELx_EC_SVE] = kvm_handle_pvm_restricted, 236 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, 237 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, 238 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, 239 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, 240 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, 241 }; 242 243 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) 244 { 245 if (unlikely(vcpu_is_protected(vcpu))) 246 return pvm_exit_handlers; 247 248 return hyp_exit_handlers; 249 } 250 251 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) 252 { 253 const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu); 254 255 synchronize_vcpu_pstate(vcpu, exit_code); 256 257 /* 258 * Some guests (e.g., protected VMs) are not be allowed to run in 259 * AArch32. The ARMv8 architecture does not give the hypervisor a 260 * mechanism to prevent a guest from dropping to AArch32 EL0 if 261 * implemented by the CPU. If the hypervisor spots a guest in such a 262 * state ensure it is handled, and don't trust the host to spot or fix 263 * it. The check below is based on the one in 264 * kvm_arch_vcpu_ioctl_run(). 265 */ 266 if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) { 267 /* 268 * As we have caught the guest red-handed, decide that it isn't 269 * fit for purpose anymore by making the vcpu invalid. The VMM 270 * can try and fix it by re-initializing the vcpu with 271 * KVM_ARM_VCPU_INIT, however, this is likely not possible for 272 * protected VMs. 273 */ 274 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 275 *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT); 276 *exit_code |= ARM_EXCEPTION_IL; 277 } 278 279 return __fixup_guest_exit(vcpu, exit_code, handlers); 280 } 281 282 /* Switch to the guest for legacy non-VHE systems */ 283 int __kvm_vcpu_run(struct kvm_vcpu *vcpu) 284 { 285 struct kvm_cpu_context *host_ctxt; 286 struct kvm_cpu_context *guest_ctxt; 287 struct kvm_s2_mmu *mmu; 288 bool pmu_switch_needed; 289 u64 exit_code; 290 291 /* 292 * Having IRQs masked via PMR when entering the guest means the GIC 293 * will not signal the CPU of interrupts of lower priority, and the 294 * only way to get out will be via guest exceptions. 295 * Naturally, we want to avoid this. 296 */ 297 if (system_uses_irq_prio_masking()) { 298 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 299 pmr_sync(); 300 } 301 302 host_ctxt = host_data_ptr(host_ctxt); 303 host_ctxt->__hyp_running_vcpu = vcpu; 304 guest_ctxt = &vcpu->arch.ctxt; 305 306 pmu_switch_needed = __pmu_switch_to_guest(vcpu); 307 308 __sysreg_save_state_nvhe(host_ctxt); 309 /* 310 * We must flush and disable the SPE buffer for nVHE, as 311 * the translation regime(EL1&0) is going to be loaded with 312 * that of the guest. And we must do this before we change the 313 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and 314 * before we load guest Stage1. 315 */ 316 __debug_save_host_buffers_nvhe(vcpu); 317 318 /* 319 * We're about to restore some new MMU state. Make sure 320 * ongoing page-table walks that have started before we 321 * trapped to EL2 have completed. This also synchronises the 322 * above disabling of SPE and TRBE. 323 * 324 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes", 325 * rule R_LFHQG and subsequent information statements. 326 */ 327 dsb(nsh); 328 329 __kvm_adjust_pc(vcpu); 330 331 /* 332 * We must restore the 32-bit state before the sysregs, thanks 333 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). 334 * 335 * Also, and in order to be able to deal with erratum #1319537 (A57) 336 * and #1319367 (A72), we must ensure that all VM-related sysreg are 337 * restored before we enable S2 translation. 338 */ 339 __sysreg32_restore_state(vcpu); 340 __sysreg_restore_state_nvhe(guest_ctxt); 341 342 mmu = kern_hyp_va(vcpu->arch.hw_mmu); 343 __load_stage2(mmu, kern_hyp_va(mmu->arch)); 344 __activate_traps(vcpu); 345 346 __hyp_vgic_restore_state(vcpu); 347 __timer_enable_traps(vcpu); 348 349 __debug_switch_to_guest(vcpu); 350 351 do { 352 /* Jump in the fire! */ 353 exit_code = __guest_enter(vcpu); 354 355 /* And we're baaack! */ 356 } while (fixup_guest_exit(vcpu, &exit_code)); 357 358 __sysreg_save_state_nvhe(guest_ctxt); 359 __sysreg32_save_state(vcpu); 360 __timer_disable_traps(vcpu); 361 __hyp_vgic_save_state(vcpu); 362 363 /* 364 * Same thing as before the guest run: we're about to switch 365 * the MMU context, so let's make sure we don't have any 366 * ongoing EL1&0 translations. 367 */ 368 dsb(nsh); 369 370 __deactivate_traps(vcpu); 371 __load_host_stage2(); 372 373 __sysreg_restore_state_nvhe(host_ctxt); 374 375 if (guest_owns_fp_regs()) 376 __fpsimd_save_fpexc32(vcpu); 377 378 __debug_switch_to_host(vcpu); 379 /* 380 * This must come after restoring the host sysregs, since a non-VHE 381 * system may enable SPE here and make use of the TTBRs. 382 */ 383 __debug_restore_host_buffers_nvhe(vcpu); 384 385 if (pmu_switch_needed) 386 __pmu_switch_to_host(vcpu); 387 388 /* Returning to host will clear PSR.I, remask PMR if needed */ 389 if (system_uses_irq_prio_masking()) 390 gic_write_pmr(GIC_PRIO_IRQOFF); 391 392 host_ctxt->__hyp_running_vcpu = NULL; 393 394 return exit_code; 395 } 396 397 asmlinkage void __noreturn hyp_panic(void) 398 { 399 u64 spsr = read_sysreg_el2(SYS_SPSR); 400 u64 elr = read_sysreg_el2(SYS_ELR); 401 u64 par = read_sysreg_par(); 402 struct kvm_cpu_context *host_ctxt; 403 struct kvm_vcpu *vcpu; 404 405 host_ctxt = host_data_ptr(host_ctxt); 406 vcpu = host_ctxt->__hyp_running_vcpu; 407 408 if (vcpu) { 409 __timer_disable_traps(vcpu); 410 __deactivate_traps(vcpu); 411 __load_host_stage2(); 412 __sysreg_restore_state_nvhe(host_ctxt); 413 } 414 415 /* Prepare to dump kvm nvhe hyp stacktrace */ 416 kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0), 417 _THIS_IP_); 418 419 __hyp_do_panic(host_ctxt, spsr, elr, par); 420 unreachable(); 421 } 422 423 asmlinkage void __noreturn hyp_panic_bad_stack(void) 424 { 425 hyp_panic(); 426 } 427 428 asmlinkage void kvm_unexpected_el2_exception(void) 429 { 430 __kvm_unexpected_el2_exception(); 431 } 432