1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <hyp/switch.h> 8 #include <hyp/sysreg-sr.h> 9 10 #include <linux/arm-smccc.h> 11 #include <linux/kvm_host.h> 12 #include <linux/types.h> 13 #include <linux/jump_label.h> 14 #include <uapi/linux/psci.h> 15 16 #include <kvm/arm_psci.h> 17 18 #include <asm/barrier.h> 19 #include <asm/cpufeature.h> 20 #include <asm/kprobes.h> 21 #include <asm/kvm_asm.h> 22 #include <asm/kvm_emulate.h> 23 #include <asm/kvm_hyp.h> 24 #include <asm/kvm_mmu.h> 25 #include <asm/fpsimd.h> 26 #include <asm/debug-monitors.h> 27 #include <asm/processor.h> 28 29 #include <nvhe/fixed_config.h> 30 #include <nvhe/mem_protect.h> 31 32 /* Non-VHE specific context */ 33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); 34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); 36 37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc); 38 39 static void __activate_traps(struct kvm_vcpu *vcpu) 40 { 41 u64 val; 42 43 ___activate_traps(vcpu); 44 __activate_traps_common(vcpu); 45 46 val = vcpu->arch.cptr_el2; 47 val |= CPTR_EL2_TAM; /* Same bit irrespective of E2H */ 48 val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA; 49 if (cpus_have_final_cap(ARM64_SME)) { 50 if (has_hvhe()) 51 val &= ~(CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN); 52 else 53 val |= CPTR_EL2_TSM; 54 } 55 56 if (!guest_owns_fp_regs(vcpu)) { 57 if (has_hvhe()) 58 val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN | 59 CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN); 60 else 61 val |= CPTR_EL2_TFP | CPTR_EL2_TZ; 62 63 __activate_traps_fpsimd32(vcpu); 64 } 65 66 kvm_write_cptr_el2(val); 67 write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2); 68 69 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { 70 struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; 71 72 isb(); 73 /* 74 * At this stage, and thanks to the above isb(), S2 is 75 * configured and enabled. We can now restore the guest's S1 76 * configuration: SCTLR, and only then TCR. 77 */ 78 write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); 79 isb(); 80 write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); 81 } 82 } 83 84 static void __deactivate_traps(struct kvm_vcpu *vcpu) 85 { 86 extern char __kvm_hyp_host_vector[]; 87 88 ___deactivate_traps(vcpu); 89 90 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { 91 u64 val; 92 93 /* 94 * Set the TCR and SCTLR registers in the exact opposite 95 * sequence as __activate_traps (first prevent walks, 96 * then force the MMU on). A generous sprinkling of isb() 97 * ensure that things happen in this exact order. 98 */ 99 val = read_sysreg_el1(SYS_TCR); 100 write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR); 101 isb(); 102 val = read_sysreg_el1(SYS_SCTLR); 103 write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR); 104 isb(); 105 } 106 107 __deactivate_traps_common(vcpu); 108 109 write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2); 110 111 kvm_reset_cptr_el2(vcpu); 112 write_sysreg(__kvm_hyp_host_vector, vbar_el2); 113 } 114 115 /* Save VGICv3 state on non-VHE systems */ 116 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu) 117 { 118 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { 119 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); 120 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3); 121 } 122 } 123 124 /* Restore VGICv3 state on non-VHE systems */ 125 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) 126 { 127 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { 128 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3); 129 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); 130 } 131 } 132 133 /* 134 * Disable host events, enable guest events 135 */ 136 #ifdef CONFIG_HW_PERF_EVENTS 137 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu) 138 { 139 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; 140 141 if (pmu->events_host) 142 write_sysreg(pmu->events_host, pmcntenclr_el0); 143 144 if (pmu->events_guest) 145 write_sysreg(pmu->events_guest, pmcntenset_el0); 146 147 return (pmu->events_host || pmu->events_guest); 148 } 149 150 /* 151 * Disable guest events, enable host events 152 */ 153 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu) 154 { 155 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; 156 157 if (pmu->events_guest) 158 write_sysreg(pmu->events_guest, pmcntenclr_el0); 159 160 if (pmu->events_host) 161 write_sysreg(pmu->events_host, pmcntenset_el0); 162 } 163 #else 164 #define __pmu_switch_to_guest(v) ({ false; }) 165 #define __pmu_switch_to_host(v) do {} while (0) 166 #endif 167 168 /* 169 * Handler for protected VM MSR, MRS or System instruction execution in AArch64. 170 * 171 * Returns true if the hypervisor has handled the exit, and control should go 172 * back to the guest, or false if it hasn't. 173 */ 174 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code) 175 { 176 /* 177 * Make sure we handle the exit for workarounds and ptrauth 178 * before the pKVM handling, as the latter could decide to 179 * UNDEF. 180 */ 181 return (kvm_hyp_handle_sysreg(vcpu, exit_code) || 182 kvm_handle_pvm_sysreg(vcpu, exit_code)); 183 } 184 185 static const exit_handler_fn hyp_exit_handlers[] = { 186 [0 ... ESR_ELx_EC_MAX] = NULL, 187 [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, 188 [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg, 189 [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, 190 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, 191 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, 192 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, 193 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, 194 [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth, 195 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, 196 }; 197 198 static const exit_handler_fn pvm_exit_handlers[] = { 199 [0 ... ESR_ELx_EC_MAX] = NULL, 200 [ESR_ELx_EC_SYS64] = kvm_handle_pvm_sys64, 201 [ESR_ELx_EC_SVE] = kvm_handle_pvm_restricted, 202 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, 203 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, 204 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, 205 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, 206 [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth, 207 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, 208 }; 209 210 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) 211 { 212 if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm)))) 213 return pvm_exit_handlers; 214 215 return hyp_exit_handlers; 216 } 217 218 /* 219 * Some guests (e.g., protected VMs) are not be allowed to run in AArch32. 220 * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a 221 * guest from dropping to AArch32 EL0 if implemented by the CPU. If the 222 * hypervisor spots a guest in such a state ensure it is handled, and don't 223 * trust the host to spot or fix it. The check below is based on the one in 224 * kvm_arch_vcpu_ioctl_run(). 225 * 226 * Returns false if the guest ran in AArch32 when it shouldn't have, and 227 * thus should exit to the host, or true if a the guest run loop can continue. 228 */ 229 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code) 230 { 231 struct kvm *kvm = kern_hyp_va(vcpu->kvm); 232 233 if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) { 234 /* 235 * As we have caught the guest red-handed, decide that it isn't 236 * fit for purpose anymore by making the vcpu invalid. The VMM 237 * can try and fix it by re-initializing the vcpu with 238 * KVM_ARM_VCPU_INIT, however, this is likely not possible for 239 * protected VMs. 240 */ 241 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 242 *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT); 243 *exit_code |= ARM_EXCEPTION_IL; 244 } 245 } 246 247 /* Switch to the guest for legacy non-VHE systems */ 248 int __kvm_vcpu_run(struct kvm_vcpu *vcpu) 249 { 250 struct kvm_cpu_context *host_ctxt; 251 struct kvm_cpu_context *guest_ctxt; 252 struct kvm_s2_mmu *mmu; 253 bool pmu_switch_needed; 254 u64 exit_code; 255 256 /* 257 * Having IRQs masked via PMR when entering the guest means the GIC 258 * will not signal the CPU of interrupts of lower priority, and the 259 * only way to get out will be via guest exceptions. 260 * Naturally, we want to avoid this. 261 */ 262 if (system_uses_irq_prio_masking()) { 263 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 264 pmr_sync(); 265 } 266 267 host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; 268 host_ctxt->__hyp_running_vcpu = vcpu; 269 guest_ctxt = &vcpu->arch.ctxt; 270 271 pmu_switch_needed = __pmu_switch_to_guest(vcpu); 272 273 __sysreg_save_state_nvhe(host_ctxt); 274 /* 275 * We must flush and disable the SPE buffer for nVHE, as 276 * the translation regime(EL1&0) is going to be loaded with 277 * that of the guest. And we must do this before we change the 278 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and 279 * before we load guest Stage1. 280 */ 281 __debug_save_host_buffers_nvhe(vcpu); 282 283 /* 284 * We're about to restore some new MMU state. Make sure 285 * ongoing page-table walks that have started before we 286 * trapped to EL2 have completed. This also synchronises the 287 * above disabling of SPE and TRBE. 288 * 289 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes", 290 * rule R_LFHQG and subsequent information statements. 291 */ 292 dsb(nsh); 293 294 __kvm_adjust_pc(vcpu); 295 296 /* 297 * We must restore the 32-bit state before the sysregs, thanks 298 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). 299 * 300 * Also, and in order to be able to deal with erratum #1319537 (A57) 301 * and #1319367 (A72), we must ensure that all VM-related sysreg are 302 * restored before we enable S2 translation. 303 */ 304 __sysreg32_restore_state(vcpu); 305 __sysreg_restore_state_nvhe(guest_ctxt); 306 307 mmu = kern_hyp_va(vcpu->arch.hw_mmu); 308 __load_stage2(mmu, kern_hyp_va(mmu->arch)); 309 __activate_traps(vcpu); 310 311 __hyp_vgic_restore_state(vcpu); 312 __timer_enable_traps(vcpu); 313 314 __debug_switch_to_guest(vcpu); 315 316 do { 317 /* Jump in the fire! */ 318 exit_code = __guest_enter(vcpu); 319 320 /* And we're baaack! */ 321 } while (fixup_guest_exit(vcpu, &exit_code)); 322 323 __sysreg_save_state_nvhe(guest_ctxt); 324 __sysreg32_save_state(vcpu); 325 __timer_disable_traps(vcpu); 326 __hyp_vgic_save_state(vcpu); 327 328 /* 329 * Same thing as before the guest run: we're about to switch 330 * the MMU context, so let's make sure we don't have any 331 * ongoing EL1&0 translations. 332 */ 333 dsb(nsh); 334 335 __deactivate_traps(vcpu); 336 __load_host_stage2(); 337 338 __sysreg_restore_state_nvhe(host_ctxt); 339 340 if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) 341 __fpsimd_save_fpexc32(vcpu); 342 343 __debug_switch_to_host(vcpu); 344 /* 345 * This must come after restoring the host sysregs, since a non-VHE 346 * system may enable SPE here and make use of the TTBRs. 347 */ 348 __debug_restore_host_buffers_nvhe(vcpu); 349 350 if (pmu_switch_needed) 351 __pmu_switch_to_host(vcpu); 352 353 /* Returning to host will clear PSR.I, remask PMR if needed */ 354 if (system_uses_irq_prio_masking()) 355 gic_write_pmr(GIC_PRIO_IRQOFF); 356 357 host_ctxt->__hyp_running_vcpu = NULL; 358 359 return exit_code; 360 } 361 362 asmlinkage void __noreturn hyp_panic(void) 363 { 364 u64 spsr = read_sysreg_el2(SYS_SPSR); 365 u64 elr = read_sysreg_el2(SYS_ELR); 366 u64 par = read_sysreg_par(); 367 struct kvm_cpu_context *host_ctxt; 368 struct kvm_vcpu *vcpu; 369 370 host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; 371 vcpu = host_ctxt->__hyp_running_vcpu; 372 373 if (vcpu) { 374 __timer_disable_traps(vcpu); 375 __deactivate_traps(vcpu); 376 __load_host_stage2(); 377 __sysreg_restore_state_nvhe(host_ctxt); 378 } 379 380 /* Prepare to dump kvm nvhe hyp stacktrace */ 381 kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0), 382 _THIS_IP_); 383 384 __hyp_do_panic(host_ctxt, spsr, elr, par); 385 unreachable(); 386 } 387 388 asmlinkage void __noreturn hyp_panic_bad_stack(void) 389 { 390 hyp_panic(); 391 } 392 393 asmlinkage void kvm_unexpected_el2_exception(void) 394 { 395 __kvm_unexpected_el2_exception(); 396 } 397