xref: /linux/arch/arm64/kvm/hyp/nvhe/switch.c (revision 1b30456150e57a79e300b82eb2efac40c25a162e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9 
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 
29 #include <nvhe/mem_protect.h>
30 
31 /* Non-VHE specific context */
32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
35 
36 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
37 
38 static void __activate_cptr_traps(struct kvm_vcpu *vcpu)
39 {
40 	u64 val = CPTR_EL2_TAM;	/* Same bit irrespective of E2H */
41 
42 	if (has_hvhe()) {
43 		val |= CPACR_EL1_TTA;
44 
45 		if (guest_owns_fp_regs()) {
46 			val |= CPACR_EL1_FPEN;
47 			if (vcpu_has_sve(vcpu))
48 				val |= CPACR_EL1_ZEN;
49 		}
50 	} else {
51 		val |= CPTR_EL2_TTA | CPTR_NVHE_EL2_RES1;
52 
53 		/*
54 		 * Always trap SME since it's not supported in KVM.
55 		 * TSM is RES1 if SME isn't implemented.
56 		 */
57 		val |= CPTR_EL2_TSM;
58 
59 		if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs())
60 			val |= CPTR_EL2_TZ;
61 
62 		if (!guest_owns_fp_regs())
63 			val |= CPTR_EL2_TFP;
64 	}
65 
66 	if (!guest_owns_fp_regs())
67 		__activate_traps_fpsimd32(vcpu);
68 
69 	kvm_write_cptr_el2(val);
70 }
71 
72 static void __activate_traps(struct kvm_vcpu *vcpu)
73 {
74 	___activate_traps(vcpu, vcpu->arch.hcr_el2);
75 	__activate_traps_common(vcpu);
76 	__activate_cptr_traps(vcpu);
77 
78 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
79 
80 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
81 		struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
82 
83 		isb();
84 		/*
85 		 * At this stage, and thanks to the above isb(), S2 is
86 		 * configured and enabled. We can now restore the guest's S1
87 		 * configuration: SCTLR, and only then TCR.
88 		 */
89 		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
90 		isb();
91 		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
92 	}
93 }
94 
95 static void __deactivate_traps(struct kvm_vcpu *vcpu)
96 {
97 	extern char __kvm_hyp_host_vector[];
98 
99 	___deactivate_traps(vcpu);
100 
101 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
102 		u64 val;
103 
104 		/*
105 		 * Set the TCR and SCTLR registers in the exact opposite
106 		 * sequence as __activate_traps (first prevent walks,
107 		 * then force the MMU on). A generous sprinkling of isb()
108 		 * ensure that things happen in this exact order.
109 		 */
110 		val = read_sysreg_el1(SYS_TCR);
111 		write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
112 		isb();
113 		val = read_sysreg_el1(SYS_SCTLR);
114 		write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
115 		isb();
116 	}
117 
118 	__deactivate_traps_common(vcpu);
119 
120 	write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
121 
122 	kvm_reset_cptr_el2(vcpu);
123 	write_sysreg(__kvm_hyp_host_vector, vbar_el2);
124 }
125 
126 /* Save VGICv3 state on non-VHE systems */
127 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
128 {
129 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
130 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
131 		__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
132 	}
133 }
134 
135 /* Restore VGICv3 state on non-VHE systems */
136 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
137 {
138 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
139 		__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
140 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
141 	}
142 }
143 
144 /*
145  * Disable host events, enable guest events
146  */
147 #ifdef CONFIG_HW_PERF_EVENTS
148 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
149 {
150 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
151 
152 	if (pmu->events_host)
153 		write_sysreg(pmu->events_host, pmcntenclr_el0);
154 
155 	if (pmu->events_guest)
156 		write_sysreg(pmu->events_guest, pmcntenset_el0);
157 
158 	return (pmu->events_host || pmu->events_guest);
159 }
160 
161 /*
162  * Disable guest events, enable host events
163  */
164 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
165 {
166 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
167 
168 	if (pmu->events_guest)
169 		write_sysreg(pmu->events_guest, pmcntenclr_el0);
170 
171 	if (pmu->events_host)
172 		write_sysreg(pmu->events_host, pmcntenset_el0);
173 }
174 #else
175 #define __pmu_switch_to_guest(v)	({ false; })
176 #define __pmu_switch_to_host(v)		do {} while (0)
177 #endif
178 
179 /*
180  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
181  *
182  * Returns true if the hypervisor has handled the exit, and control should go
183  * back to the guest, or false if it hasn't.
184  */
185 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
186 {
187 	/*
188 	 * Make sure we handle the exit for workarounds before the pKVM
189 	 * handling, as the latter could decide to UNDEF.
190 	 */
191 	return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
192 		kvm_handle_pvm_sysreg(vcpu, exit_code));
193 }
194 
195 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu)
196 {
197 	/*
198 	 * Non-protected kvm relies on the host restoring its sve state.
199 	 * Protected kvm restores the host's sve state as not to reveal that
200 	 * fpsimd was used by a guest nor leak upper sve bits.
201 	 */
202 	if (unlikely(is_protected_kvm_enabled() && system_supports_sve())) {
203 		__hyp_sve_save_host();
204 
205 		/* Re-enable SVE traps if not supported for the guest vcpu. */
206 		if (!vcpu_has_sve(vcpu))
207 			cpacr_clear_set(CPACR_EL1_ZEN, 0);
208 
209 	} else {
210 		__fpsimd_save_state(*host_data_ptr(fpsimd_state));
211 	}
212 
213 	if (kvm_has_fpmr(kern_hyp_va(vcpu->kvm))) {
214 		u64 val = read_sysreg_s(SYS_FPMR);
215 
216 		if (unlikely(is_protected_kvm_enabled()))
217 			*host_data_ptr(fpmr) = val;
218 		else
219 			**host_data_ptr(fpmr_ptr) = val;
220 	}
221 }
222 
223 static const exit_handler_fn hyp_exit_handlers[] = {
224 	[0 ... ESR_ELx_EC_MAX]		= NULL,
225 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
226 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg,
227 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
228 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
229 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
230 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
231 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
232 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
233 };
234 
235 static const exit_handler_fn pvm_exit_handlers[] = {
236 	[0 ... ESR_ELx_EC_MAX]		= NULL,
237 	[ESR_ELx_EC_SYS64]		= kvm_handle_pvm_sys64,
238 	[ESR_ELx_EC_SVE]		= kvm_handle_pvm_restricted,
239 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
240 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
241 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
242 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
243 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
244 };
245 
246 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
247 {
248 	if (unlikely(vcpu_is_protected(vcpu)))
249 		return pvm_exit_handlers;
250 
251 	return hyp_exit_handlers;
252 }
253 
254 /*
255  * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
256  * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
257  * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
258  * hypervisor spots a guest in such a state ensure it is handled, and don't
259  * trust the host to spot or fix it.  The check below is based on the one in
260  * kvm_arch_vcpu_ioctl_run().
261  *
262  * Returns false if the guest ran in AArch32 when it shouldn't have, and
263  * thus should exit to the host, or true if a the guest run loop can continue.
264  */
265 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
266 {
267 	if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) {
268 		/*
269 		 * As we have caught the guest red-handed, decide that it isn't
270 		 * fit for purpose anymore by making the vcpu invalid. The VMM
271 		 * can try and fix it by re-initializing the vcpu with
272 		 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
273 		 * protected VMs.
274 		 */
275 		vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
276 		*exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
277 		*exit_code |= ARM_EXCEPTION_IL;
278 	}
279 }
280 
281 /* Switch to the guest for legacy non-VHE systems */
282 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
283 {
284 	struct kvm_cpu_context *host_ctxt;
285 	struct kvm_cpu_context *guest_ctxt;
286 	struct kvm_s2_mmu *mmu;
287 	bool pmu_switch_needed;
288 	u64 exit_code;
289 
290 	/*
291 	 * Having IRQs masked via PMR when entering the guest means the GIC
292 	 * will not signal the CPU of interrupts of lower priority, and the
293 	 * only way to get out will be via guest exceptions.
294 	 * Naturally, we want to avoid this.
295 	 */
296 	if (system_uses_irq_prio_masking()) {
297 		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
298 		pmr_sync();
299 	}
300 
301 	host_ctxt = host_data_ptr(host_ctxt);
302 	host_ctxt->__hyp_running_vcpu = vcpu;
303 	guest_ctxt = &vcpu->arch.ctxt;
304 
305 	pmu_switch_needed = __pmu_switch_to_guest(vcpu);
306 
307 	__sysreg_save_state_nvhe(host_ctxt);
308 	/*
309 	 * We must flush and disable the SPE buffer for nVHE, as
310 	 * the translation regime(EL1&0) is going to be loaded with
311 	 * that of the guest. And we must do this before we change the
312 	 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
313 	 * before we load guest Stage1.
314 	 */
315 	__debug_save_host_buffers_nvhe(vcpu);
316 
317 	/*
318 	 * We're about to restore some new MMU state. Make sure
319 	 * ongoing page-table walks that have started before we
320 	 * trapped to EL2 have completed. This also synchronises the
321 	 * above disabling of SPE and TRBE.
322 	 *
323 	 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
324 	 * rule R_LFHQG and subsequent information statements.
325 	 */
326 	dsb(nsh);
327 
328 	__kvm_adjust_pc(vcpu);
329 
330 	/*
331 	 * We must restore the 32-bit state before the sysregs, thanks
332 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
333 	 *
334 	 * Also, and in order to be able to deal with erratum #1319537 (A57)
335 	 * and #1319367 (A72), we must ensure that all VM-related sysreg are
336 	 * restored before we enable S2 translation.
337 	 */
338 	__sysreg32_restore_state(vcpu);
339 	__sysreg_restore_state_nvhe(guest_ctxt);
340 
341 	mmu = kern_hyp_va(vcpu->arch.hw_mmu);
342 	__load_stage2(mmu, kern_hyp_va(mmu->arch));
343 	__activate_traps(vcpu);
344 
345 	__hyp_vgic_restore_state(vcpu);
346 	__timer_enable_traps(vcpu);
347 
348 	__debug_switch_to_guest(vcpu);
349 
350 	do {
351 		/* Jump in the fire! */
352 		exit_code = __guest_enter(vcpu);
353 
354 		/* And we're baaack! */
355 	} while (fixup_guest_exit(vcpu, &exit_code));
356 
357 	__sysreg_save_state_nvhe(guest_ctxt);
358 	__sysreg32_save_state(vcpu);
359 	__timer_disable_traps(vcpu);
360 	__hyp_vgic_save_state(vcpu);
361 
362 	/*
363 	 * Same thing as before the guest run: we're about to switch
364 	 * the MMU context, so let's make sure we don't have any
365 	 * ongoing EL1&0 translations.
366 	 */
367 	dsb(nsh);
368 
369 	__deactivate_traps(vcpu);
370 	__load_host_stage2();
371 
372 	__sysreg_restore_state_nvhe(host_ctxt);
373 
374 	if (guest_owns_fp_regs())
375 		__fpsimd_save_fpexc32(vcpu);
376 
377 	__debug_switch_to_host(vcpu);
378 	/*
379 	 * This must come after restoring the host sysregs, since a non-VHE
380 	 * system may enable SPE here and make use of the TTBRs.
381 	 */
382 	__debug_restore_host_buffers_nvhe(vcpu);
383 
384 	if (pmu_switch_needed)
385 		__pmu_switch_to_host(vcpu);
386 
387 	/* Returning to host will clear PSR.I, remask PMR if needed */
388 	if (system_uses_irq_prio_masking())
389 		gic_write_pmr(GIC_PRIO_IRQOFF);
390 
391 	host_ctxt->__hyp_running_vcpu = NULL;
392 
393 	return exit_code;
394 }
395 
396 asmlinkage void __noreturn hyp_panic(void)
397 {
398 	u64 spsr = read_sysreg_el2(SYS_SPSR);
399 	u64 elr = read_sysreg_el2(SYS_ELR);
400 	u64 par = read_sysreg_par();
401 	struct kvm_cpu_context *host_ctxt;
402 	struct kvm_vcpu *vcpu;
403 
404 	host_ctxt = host_data_ptr(host_ctxt);
405 	vcpu = host_ctxt->__hyp_running_vcpu;
406 
407 	if (vcpu) {
408 		__timer_disable_traps(vcpu);
409 		__deactivate_traps(vcpu);
410 		__load_host_stage2();
411 		__sysreg_restore_state_nvhe(host_ctxt);
412 	}
413 
414 	/* Prepare to dump kvm nvhe hyp stacktrace */
415 	kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
416 				   _THIS_IP_);
417 
418 	__hyp_do_panic(host_ctxt, spsr, elr, par);
419 	unreachable();
420 }
421 
422 asmlinkage void __noreturn hyp_panic_bad_stack(void)
423 {
424 	hyp_panic();
425 }
426 
427 asmlinkage void kvm_unexpected_el2_exception(void)
428 {
429 	__kvm_unexpected_el2_exception();
430 }
431