xref: /linux/arch/arm64/kvm/hyp/nvhe/setup.c (revision 09f4933a4fd9ebe333726dd139bd330843d40f28)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_hyp.h>
9 #include <asm/kvm_mmu.h>
10 #include <asm/kvm_pgtable.h>
11 #include <asm/kvm_pkvm.h>
12 
13 #include <nvhe/early_alloc.h>
14 #include <nvhe/fixed_config.h>
15 #include <nvhe/gfp.h>
16 #include <nvhe/memory.h>
17 #include <nvhe/mem_protect.h>
18 #include <nvhe/mm.h>
19 #include <nvhe/trap_handler.h>
20 
21 unsigned long hyp_nr_cpus;
22 
23 #define hyp_percpu_size ((unsigned long)__per_cpu_end - \
24 			 (unsigned long)__per_cpu_start)
25 
26 static void *vmemmap_base;
27 static void *hyp_pgt_base;
28 static void *host_s2_pgt_base;
29 static struct kvm_pgtable_mm_ops pkvm_pgtable_mm_ops;
30 static struct hyp_pool hpool;
31 
32 static int divide_memory_pool(void *virt, unsigned long size)
33 {
34 	unsigned long vstart, vend, nr_pages;
35 
36 	hyp_early_alloc_init(virt, size);
37 
38 	hyp_vmemmap_range(__hyp_pa(virt), size, &vstart, &vend);
39 	nr_pages = (vend - vstart) >> PAGE_SHIFT;
40 	vmemmap_base = hyp_early_alloc_contig(nr_pages);
41 	if (!vmemmap_base)
42 		return -ENOMEM;
43 
44 	nr_pages = hyp_s1_pgtable_pages();
45 	hyp_pgt_base = hyp_early_alloc_contig(nr_pages);
46 	if (!hyp_pgt_base)
47 		return -ENOMEM;
48 
49 	nr_pages = host_s2_pgtable_pages();
50 	host_s2_pgt_base = hyp_early_alloc_contig(nr_pages);
51 	if (!host_s2_pgt_base)
52 		return -ENOMEM;
53 
54 	return 0;
55 }
56 
57 static int recreate_hyp_mappings(phys_addr_t phys, unsigned long size,
58 				 unsigned long *per_cpu_base,
59 				 u32 hyp_va_bits)
60 {
61 	void *start, *end, *virt = hyp_phys_to_virt(phys);
62 	unsigned long pgt_size = hyp_s1_pgtable_pages() << PAGE_SHIFT;
63 	enum kvm_pgtable_prot prot;
64 	int ret, i;
65 
66 	/* Recreate the hyp page-table using the early page allocator */
67 	hyp_early_alloc_init(hyp_pgt_base, pgt_size);
68 	ret = kvm_pgtable_hyp_init(&pkvm_pgtable, hyp_va_bits,
69 				   &hyp_early_alloc_mm_ops);
70 	if (ret)
71 		return ret;
72 
73 	ret = hyp_create_idmap(hyp_va_bits);
74 	if (ret)
75 		return ret;
76 
77 	ret = hyp_map_vectors();
78 	if (ret)
79 		return ret;
80 
81 	ret = hyp_back_vmemmap(phys, size, hyp_virt_to_phys(vmemmap_base));
82 	if (ret)
83 		return ret;
84 
85 	ret = pkvm_create_mappings(__hyp_text_start, __hyp_text_end, PAGE_HYP_EXEC);
86 	if (ret)
87 		return ret;
88 
89 	ret = pkvm_create_mappings(__hyp_rodata_start, __hyp_rodata_end, PAGE_HYP_RO);
90 	if (ret)
91 		return ret;
92 
93 	ret = pkvm_create_mappings(__hyp_bss_start, __hyp_bss_end, PAGE_HYP);
94 	if (ret)
95 		return ret;
96 
97 	ret = pkvm_create_mappings(virt, virt + size, PAGE_HYP);
98 	if (ret)
99 		return ret;
100 
101 	for (i = 0; i < hyp_nr_cpus; i++) {
102 		struct kvm_nvhe_init_params *params = per_cpu_ptr(&kvm_init_params, i);
103 		unsigned long hyp_addr;
104 
105 		start = (void *)kern_hyp_va(per_cpu_base[i]);
106 		end = start + PAGE_ALIGN(hyp_percpu_size);
107 		ret = pkvm_create_mappings(start, end, PAGE_HYP);
108 		if (ret)
109 			return ret;
110 
111 		/*
112 		 * Allocate a contiguous HYP private VA range for the stack
113 		 * and guard page. The allocation is also aligned based on
114 		 * the order of its size.
115 		 */
116 		ret = pkvm_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
117 		if (ret)
118 			return ret;
119 
120 		/*
121 		 * Since the stack grows downwards, map the stack to the page
122 		 * at the higher address and leave the lower guard page
123 		 * unbacked.
124 		 *
125 		 * Any valid stack address now has the PAGE_SHIFT bit as 1
126 		 * and addresses corresponding to the guard page have the
127 		 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
128 		 */
129 		hyp_spin_lock(&pkvm_pgd_lock);
130 		ret = kvm_pgtable_hyp_map(&pkvm_pgtable, hyp_addr + PAGE_SIZE,
131 					PAGE_SIZE, params->stack_pa, PAGE_HYP);
132 		hyp_spin_unlock(&pkvm_pgd_lock);
133 		if (ret)
134 			return ret;
135 
136 		/* Update stack_hyp_va to end of the stack's private VA range */
137 		params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
138 	}
139 
140 	/*
141 	 * Map the host's .bss and .rodata sections RO in the hypervisor, but
142 	 * transfer the ownership from the host to the hypervisor itself to
143 	 * make sure it can't be donated or shared with another entity.
144 	 *
145 	 * The ownership transition requires matching changes in the host
146 	 * stage-2. This will be done later (see finalize_host_mappings()) once
147 	 * the hyp_vmemmap is addressable.
148 	 */
149 	prot = pkvm_mkstate(PAGE_HYP_RO, PKVM_PAGE_SHARED_OWNED);
150 	ret = pkvm_create_mappings(__start_rodata, __end_rodata, prot);
151 	if (ret)
152 		return ret;
153 
154 	ret = pkvm_create_mappings(__hyp_bss_end, __bss_stop, prot);
155 	if (ret)
156 		return ret;
157 
158 	return 0;
159 }
160 
161 static void update_nvhe_init_params(void)
162 {
163 	struct kvm_nvhe_init_params *params;
164 	unsigned long i;
165 
166 	for (i = 0; i < hyp_nr_cpus; i++) {
167 		params = per_cpu_ptr(&kvm_init_params, i);
168 		params->pgd_pa = __hyp_pa(pkvm_pgtable.pgd);
169 		dcache_clean_inval_poc((unsigned long)params,
170 				    (unsigned long)params + sizeof(*params));
171 	}
172 }
173 
174 static void *hyp_zalloc_hyp_page(void *arg)
175 {
176 	return hyp_alloc_pages(&hpool, 0);
177 }
178 
179 static void hpool_get_page(void *addr)
180 {
181 	hyp_get_page(&hpool, addr);
182 }
183 
184 static void hpool_put_page(void *addr)
185 {
186 	hyp_put_page(&hpool, addr);
187 }
188 
189 static int finalize_host_mappings_walker(u64 addr, u64 end, u32 level,
190 					 kvm_pte_t *ptep,
191 					 enum kvm_pgtable_walk_flags flag,
192 					 void * const arg)
193 {
194 	struct kvm_pgtable_mm_ops *mm_ops = arg;
195 	enum kvm_pgtable_prot prot;
196 	enum pkvm_page_state state;
197 	kvm_pte_t pte = *ptep;
198 	phys_addr_t phys;
199 
200 	if (!kvm_pte_valid(pte))
201 		return 0;
202 
203 	/*
204 	 * Fix-up the refcount for the page-table pages as the early allocator
205 	 * was unable to access the hyp_vmemmap and so the buddy allocator has
206 	 * initialised the refcount to '1'.
207 	 */
208 	mm_ops->get_page(ptep);
209 	if (flag != KVM_PGTABLE_WALK_LEAF)
210 		return 0;
211 
212 	if (level != (KVM_PGTABLE_MAX_LEVELS - 1))
213 		return -EINVAL;
214 
215 	phys = kvm_pte_to_phys(pte);
216 	if (!addr_is_memory(phys))
217 		return -EINVAL;
218 
219 	/*
220 	 * Adjust the host stage-2 mappings to match the ownership attributes
221 	 * configured in the hypervisor stage-1.
222 	 */
223 	state = pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte));
224 	switch (state) {
225 	case PKVM_PAGE_OWNED:
226 		return host_stage2_set_owner_locked(phys, PAGE_SIZE, pkvm_hyp_id);
227 	case PKVM_PAGE_SHARED_OWNED:
228 		prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, PKVM_PAGE_SHARED_BORROWED);
229 		break;
230 	case PKVM_PAGE_SHARED_BORROWED:
231 		prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, PKVM_PAGE_SHARED_OWNED);
232 		break;
233 	default:
234 		return -EINVAL;
235 	}
236 
237 	return host_stage2_idmap_locked(phys, PAGE_SIZE, prot);
238 }
239 
240 static int finalize_host_mappings(void)
241 {
242 	struct kvm_pgtable_walker walker = {
243 		.cb	= finalize_host_mappings_walker,
244 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
245 		.arg	= pkvm_pgtable.mm_ops,
246 	};
247 	int i, ret;
248 
249 	for (i = 0; i < hyp_memblock_nr; i++) {
250 		struct memblock_region *reg = &hyp_memory[i];
251 		u64 start = (u64)hyp_phys_to_virt(reg->base);
252 
253 		ret = kvm_pgtable_walk(&pkvm_pgtable, start, reg->size, &walker);
254 		if (ret)
255 			return ret;
256 	}
257 
258 	return 0;
259 }
260 
261 void __noreturn __pkvm_init_finalise(void)
262 {
263 	struct kvm_host_data *host_data = this_cpu_ptr(&kvm_host_data);
264 	struct kvm_cpu_context *host_ctxt = &host_data->host_ctxt;
265 	unsigned long nr_pages, reserved_pages, pfn;
266 	int ret;
267 
268 	/* Now that the vmemmap is backed, install the full-fledged allocator */
269 	pfn = hyp_virt_to_pfn(hyp_pgt_base);
270 	nr_pages = hyp_s1_pgtable_pages();
271 	reserved_pages = hyp_early_alloc_nr_used_pages();
272 	ret = hyp_pool_init(&hpool, pfn, nr_pages, reserved_pages);
273 	if (ret)
274 		goto out;
275 
276 	ret = kvm_host_prepare_stage2(host_s2_pgt_base);
277 	if (ret)
278 		goto out;
279 
280 	pkvm_pgtable_mm_ops = (struct kvm_pgtable_mm_ops) {
281 		.zalloc_page = hyp_zalloc_hyp_page,
282 		.phys_to_virt = hyp_phys_to_virt,
283 		.virt_to_phys = hyp_virt_to_phys,
284 		.get_page = hpool_get_page,
285 		.put_page = hpool_put_page,
286 		.page_count = hyp_page_count,
287 	};
288 	pkvm_pgtable.mm_ops = &pkvm_pgtable_mm_ops;
289 
290 	ret = finalize_host_mappings();
291 	if (ret)
292 		goto out;
293 
294 out:
295 	/*
296 	 * We tail-called to here from handle___pkvm_init() and will not return,
297 	 * so make sure to propagate the return value to the host.
298 	 */
299 	cpu_reg(host_ctxt, 1) = ret;
300 
301 	__host_enter(host_ctxt);
302 }
303 
304 int __pkvm_init(phys_addr_t phys, unsigned long size, unsigned long nr_cpus,
305 		unsigned long *per_cpu_base, u32 hyp_va_bits)
306 {
307 	struct kvm_nvhe_init_params *params;
308 	void *virt = hyp_phys_to_virt(phys);
309 	void (*fn)(phys_addr_t params_pa, void *finalize_fn_va);
310 	int ret;
311 
312 	BUG_ON(kvm_check_pvm_sysreg_table());
313 
314 	if (!PAGE_ALIGNED(phys) || !PAGE_ALIGNED(size))
315 		return -EINVAL;
316 
317 	hyp_spin_lock_init(&pkvm_pgd_lock);
318 	hyp_nr_cpus = nr_cpus;
319 
320 	ret = divide_memory_pool(virt, size);
321 	if (ret)
322 		return ret;
323 
324 	ret = recreate_hyp_mappings(phys, size, per_cpu_base, hyp_va_bits);
325 	if (ret)
326 		return ret;
327 
328 	update_nvhe_init_params();
329 
330 	/* Jump in the idmap page to switch to the new page-tables */
331 	params = this_cpu_ptr(&kvm_init_params);
332 	fn = (typeof(fn))__hyp_pa(__pkvm_init_switch_pgd);
333 	fn(__hyp_pa(params), __pkvm_init_finalise);
334 
335 	unreachable();
336 }
337