xref: /linux/arch/arm64/kvm/hyp/nvhe/page_alloc.c (revision 34f7c6e7d4396090692a09789db231e12cb4762b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <asm/kvm_hyp.h>
8 #include <nvhe/gfp.h>
9 
10 u64 __hyp_vmemmap;
11 
12 /*
13  * Index the hyp_vmemmap to find a potential buddy page, but make no assumption
14  * about its current state.
15  *
16  * Example buddy-tree for a 4-pages physically contiguous pool:
17  *
18  *                 o : Page 3
19  *                /
20  *               o-o : Page 2
21  *              /
22  *             /   o : Page 1
23  *            /   /
24  *           o---o-o : Page 0
25  *    Order  2   1 0
26  *
27  * Example of requests on this pool:
28  *   __find_buddy_nocheck(pool, page 0, order 0) => page 1
29  *   __find_buddy_nocheck(pool, page 0, order 1) => page 2
30  *   __find_buddy_nocheck(pool, page 1, order 0) => page 0
31  *   __find_buddy_nocheck(pool, page 2, order 0) => page 3
32  */
33 static struct hyp_page *__find_buddy_nocheck(struct hyp_pool *pool,
34 					     struct hyp_page *p,
35 					     unsigned short order)
36 {
37 	phys_addr_t addr = hyp_page_to_phys(p);
38 
39 	addr ^= (PAGE_SIZE << order);
40 
41 	/*
42 	 * Don't return a page outside the pool range -- it belongs to
43 	 * something else and may not be mapped in hyp_vmemmap.
44 	 */
45 	if (addr < pool->range_start || addr >= pool->range_end)
46 		return NULL;
47 
48 	return hyp_phys_to_page(addr);
49 }
50 
51 /* Find a buddy page currently available for allocation */
52 static struct hyp_page *__find_buddy_avail(struct hyp_pool *pool,
53 					   struct hyp_page *p,
54 					   unsigned short order)
55 {
56 	struct hyp_page *buddy = __find_buddy_nocheck(pool, p, order);
57 
58 	if (!buddy || buddy->order != order || buddy->refcount)
59 		return NULL;
60 
61 	return buddy;
62 
63 }
64 
65 /*
66  * Pages that are available for allocation are tracked in free-lists, so we use
67  * the pages themselves to store the list nodes to avoid wasting space. As the
68  * allocator always returns zeroed pages (which are zeroed on the hyp_put_page()
69  * path to optimize allocation speed), we also need to clean-up the list node in
70  * each page when we take it out of the list.
71  */
72 static inline void page_remove_from_list(struct hyp_page *p)
73 {
74 	struct list_head *node = hyp_page_to_virt(p);
75 
76 	__list_del_entry(node);
77 	memset(node, 0, sizeof(*node));
78 }
79 
80 static inline void page_add_to_list(struct hyp_page *p, struct list_head *head)
81 {
82 	struct list_head *node = hyp_page_to_virt(p);
83 
84 	INIT_LIST_HEAD(node);
85 	list_add_tail(node, head);
86 }
87 
88 static inline struct hyp_page *node_to_page(struct list_head *node)
89 {
90 	return hyp_virt_to_page(node);
91 }
92 
93 static void __hyp_attach_page(struct hyp_pool *pool,
94 			      struct hyp_page *p)
95 {
96 	unsigned short order = p->order;
97 	struct hyp_page *buddy;
98 
99 	memset(hyp_page_to_virt(p), 0, PAGE_SIZE << p->order);
100 
101 	/*
102 	 * Only the first struct hyp_page of a high-order page (otherwise known
103 	 * as the 'head') should have p->order set. The non-head pages should
104 	 * have p->order = HYP_NO_ORDER. Here @p may no longer be the head
105 	 * after coalescing, so make sure to mark it HYP_NO_ORDER proactively.
106 	 */
107 	p->order = HYP_NO_ORDER;
108 	for (; (order + 1) < pool->max_order; order++) {
109 		buddy = __find_buddy_avail(pool, p, order);
110 		if (!buddy)
111 			break;
112 
113 		/* Take the buddy out of its list, and coalesce with @p */
114 		page_remove_from_list(buddy);
115 		buddy->order = HYP_NO_ORDER;
116 		p = min(p, buddy);
117 	}
118 
119 	/* Mark the new head, and insert it */
120 	p->order = order;
121 	page_add_to_list(p, &pool->free_area[order]);
122 }
123 
124 static struct hyp_page *__hyp_extract_page(struct hyp_pool *pool,
125 					   struct hyp_page *p,
126 					   unsigned short order)
127 {
128 	struct hyp_page *buddy;
129 
130 	page_remove_from_list(p);
131 	while (p->order > order) {
132 		/*
133 		 * The buddy of order n - 1 currently has HYP_NO_ORDER as it
134 		 * is covered by a higher-level page (whose head is @p). Use
135 		 * __find_buddy_nocheck() to find it and inject it in the
136 		 * free_list[n - 1], effectively splitting @p in half.
137 		 */
138 		p->order--;
139 		buddy = __find_buddy_nocheck(pool, p, p->order);
140 		buddy->order = p->order;
141 		page_add_to_list(buddy, &pool->free_area[buddy->order]);
142 	}
143 
144 	return p;
145 }
146 
147 static inline void hyp_page_ref_inc(struct hyp_page *p)
148 {
149 	BUG_ON(p->refcount == USHRT_MAX);
150 	p->refcount++;
151 }
152 
153 static inline int hyp_page_ref_dec_and_test(struct hyp_page *p)
154 {
155 	BUG_ON(!p->refcount);
156 	p->refcount--;
157 	return (p->refcount == 0);
158 }
159 
160 static inline void hyp_set_page_refcounted(struct hyp_page *p)
161 {
162 	BUG_ON(p->refcount);
163 	p->refcount = 1;
164 }
165 
166 static void __hyp_put_page(struct hyp_pool *pool, struct hyp_page *p)
167 {
168 	if (hyp_page_ref_dec_and_test(p))
169 		__hyp_attach_page(pool, p);
170 }
171 
172 /*
173  * Changes to the buddy tree and page refcounts must be done with the hyp_pool
174  * lock held. If a refcount change requires an update to the buddy tree (e.g.
175  * hyp_put_page()), both operations must be done within the same critical
176  * section to guarantee transient states (e.g. a page with null refcount but
177  * not yet attached to a free list) can't be observed by well-behaved readers.
178  */
179 void hyp_put_page(struct hyp_pool *pool, void *addr)
180 {
181 	struct hyp_page *p = hyp_virt_to_page(addr);
182 
183 	hyp_spin_lock(&pool->lock);
184 	__hyp_put_page(pool, p);
185 	hyp_spin_unlock(&pool->lock);
186 }
187 
188 void hyp_get_page(struct hyp_pool *pool, void *addr)
189 {
190 	struct hyp_page *p = hyp_virt_to_page(addr);
191 
192 	hyp_spin_lock(&pool->lock);
193 	hyp_page_ref_inc(p);
194 	hyp_spin_unlock(&pool->lock);
195 }
196 
197 void hyp_split_page(struct hyp_page *p)
198 {
199 	unsigned short order = p->order;
200 	unsigned int i;
201 
202 	p->order = 0;
203 	for (i = 1; i < (1 << order); i++) {
204 		struct hyp_page *tail = p + i;
205 
206 		tail->order = 0;
207 		hyp_set_page_refcounted(tail);
208 	}
209 }
210 
211 void *hyp_alloc_pages(struct hyp_pool *pool, unsigned short order)
212 {
213 	unsigned short i = order;
214 	struct hyp_page *p;
215 
216 	hyp_spin_lock(&pool->lock);
217 
218 	/* Look for a high-enough-order page */
219 	while (i < pool->max_order && list_empty(&pool->free_area[i]))
220 		i++;
221 	if (i >= pool->max_order) {
222 		hyp_spin_unlock(&pool->lock);
223 		return NULL;
224 	}
225 
226 	/* Extract it from the tree at the right order */
227 	p = node_to_page(pool->free_area[i].next);
228 	p = __hyp_extract_page(pool, p, order);
229 
230 	hyp_set_page_refcounted(p);
231 	hyp_spin_unlock(&pool->lock);
232 
233 	return hyp_page_to_virt(p);
234 }
235 
236 int hyp_pool_init(struct hyp_pool *pool, u64 pfn, unsigned int nr_pages,
237 		  unsigned int reserved_pages)
238 {
239 	phys_addr_t phys = hyp_pfn_to_phys(pfn);
240 	struct hyp_page *p;
241 	int i;
242 
243 	hyp_spin_lock_init(&pool->lock);
244 	pool->max_order = min(MAX_ORDER, get_order((nr_pages + 1) << PAGE_SHIFT));
245 	for (i = 0; i < pool->max_order; i++)
246 		INIT_LIST_HEAD(&pool->free_area[i]);
247 	pool->range_start = phys;
248 	pool->range_end = phys + (nr_pages << PAGE_SHIFT);
249 
250 	/* Init the vmemmap portion */
251 	p = hyp_phys_to_page(phys);
252 	for (i = 0; i < nr_pages; i++) {
253 		p[i].order = 0;
254 		hyp_set_page_refcounted(&p[i]);
255 	}
256 
257 	/* Attach the unused pages to the buddy tree */
258 	for (i = reserved_pages; i < nr_pages; i++)
259 		__hyp_put_page(pool, &p[i]);
260 
261 	return 0;
262 }
263