1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2020 Google LLC
4 * Author: Quentin Perret <qperret@google.com>
5 */
6
7 #include <asm/kvm_hyp.h>
8 #include <nvhe/gfp.h>
9
10 u64 __hyp_vmemmap;
11
12 /*
13 * Index the hyp_vmemmap to find a potential buddy page, but make no assumption
14 * about its current state.
15 *
16 * Example buddy-tree for a 4-pages physically contiguous pool:
17 *
18 * o : Page 3
19 * /
20 * o-o : Page 2
21 * /
22 * / o : Page 1
23 * / /
24 * o---o-o : Page 0
25 * Order 2 1 0
26 *
27 * Example of requests on this pool:
28 * __find_buddy_nocheck(pool, page 0, order 0) => page 1
29 * __find_buddy_nocheck(pool, page 0, order 1) => page 2
30 * __find_buddy_nocheck(pool, page 1, order 0) => page 0
31 * __find_buddy_nocheck(pool, page 2, order 0) => page 3
32 */
__find_buddy_nocheck(struct hyp_pool * pool,struct hyp_page * p,unsigned short order)33 static struct hyp_page *__find_buddy_nocheck(struct hyp_pool *pool,
34 struct hyp_page *p,
35 unsigned short order)
36 {
37 phys_addr_t addr = hyp_page_to_phys(p);
38
39 addr ^= (PAGE_SIZE << order);
40
41 /*
42 * Don't return a page outside the pool range -- it belongs to
43 * something else and may not be mapped in hyp_vmemmap.
44 */
45 if (addr < pool->range_start || addr >= pool->range_end)
46 return NULL;
47
48 return hyp_phys_to_page(addr);
49 }
50
51 /* Find a buddy page currently available for allocation */
__find_buddy_avail(struct hyp_pool * pool,struct hyp_page * p,unsigned short order)52 static struct hyp_page *__find_buddy_avail(struct hyp_pool *pool,
53 struct hyp_page *p,
54 unsigned short order)
55 {
56 struct hyp_page *buddy = __find_buddy_nocheck(pool, p, order);
57
58 if (!buddy || buddy->order != order || buddy->refcount)
59 return NULL;
60
61 return buddy;
62
63 }
64
65 /*
66 * Pages that are available for allocation are tracked in free-lists, so we use
67 * the pages themselves to store the list nodes to avoid wasting space. As the
68 * allocator always returns zeroed pages (which are zeroed on the hyp_put_page()
69 * path to optimize allocation speed), we also need to clean-up the list node in
70 * each page when we take it out of the list.
71 */
page_remove_from_list(struct hyp_page * p)72 static inline void page_remove_from_list(struct hyp_page *p)
73 {
74 struct list_head *node = hyp_page_to_virt(p);
75
76 __list_del_entry(node);
77 memset(node, 0, sizeof(*node));
78 }
79
page_add_to_list(struct hyp_page * p,struct list_head * head)80 static inline void page_add_to_list(struct hyp_page *p, struct list_head *head)
81 {
82 struct list_head *node = hyp_page_to_virt(p);
83
84 INIT_LIST_HEAD(node);
85 list_add_tail(node, head);
86 }
87
node_to_page(struct list_head * node)88 static inline struct hyp_page *node_to_page(struct list_head *node)
89 {
90 return hyp_virt_to_page(node);
91 }
92
__hyp_attach_page(struct hyp_pool * pool,struct hyp_page * p)93 static void __hyp_attach_page(struct hyp_pool *pool,
94 struct hyp_page *p)
95 {
96 phys_addr_t phys = hyp_page_to_phys(p);
97 unsigned short order = p->order;
98 struct hyp_page *buddy;
99
100 memset(hyp_page_to_virt(p), 0, PAGE_SIZE << p->order);
101
102 /* Skip coalescing for 'external' pages being freed into the pool. */
103 if (phys < pool->range_start || phys >= pool->range_end)
104 goto insert;
105
106 /*
107 * Only the first struct hyp_page of a high-order page (otherwise known
108 * as the 'head') should have p->order set. The non-head pages should
109 * have p->order = HYP_NO_ORDER. Here @p may no longer be the head
110 * after coalescing, so make sure to mark it HYP_NO_ORDER proactively.
111 */
112 p->order = HYP_NO_ORDER;
113 for (; (order + 1) <= pool->max_order; order++) {
114 buddy = __find_buddy_avail(pool, p, order);
115 if (!buddy)
116 break;
117
118 /* Take the buddy out of its list, and coalesce with @p */
119 page_remove_from_list(buddy);
120 buddy->order = HYP_NO_ORDER;
121 p = min(p, buddy);
122 }
123
124 insert:
125 /* Mark the new head, and insert it */
126 p->order = order;
127 page_add_to_list(p, &pool->free_area[order]);
128 }
129
__hyp_extract_page(struct hyp_pool * pool,struct hyp_page * p,unsigned short order)130 static struct hyp_page *__hyp_extract_page(struct hyp_pool *pool,
131 struct hyp_page *p,
132 unsigned short order)
133 {
134 struct hyp_page *buddy;
135
136 page_remove_from_list(p);
137 while (p->order > order) {
138 /*
139 * The buddy of order n - 1 currently has HYP_NO_ORDER as it
140 * is covered by a higher-level page (whose head is @p). Use
141 * __find_buddy_nocheck() to find it and inject it in the
142 * free_list[n - 1], effectively splitting @p in half.
143 */
144 p->order--;
145 buddy = __find_buddy_nocheck(pool, p, p->order);
146 buddy->order = p->order;
147 page_add_to_list(buddy, &pool->free_area[buddy->order]);
148 }
149
150 return p;
151 }
152
__hyp_put_page(struct hyp_pool * pool,struct hyp_page * p)153 static void __hyp_put_page(struct hyp_pool *pool, struct hyp_page *p)
154 {
155 if (hyp_page_ref_dec_and_test(p))
156 __hyp_attach_page(pool, p);
157 }
158
159 /*
160 * Changes to the buddy tree and page refcounts must be done with the hyp_pool
161 * lock held. If a refcount change requires an update to the buddy tree (e.g.
162 * hyp_put_page()), both operations must be done within the same critical
163 * section to guarantee transient states (e.g. a page with null refcount but
164 * not yet attached to a free list) can't be observed by well-behaved readers.
165 */
hyp_put_page(struct hyp_pool * pool,void * addr)166 void hyp_put_page(struct hyp_pool *pool, void *addr)
167 {
168 struct hyp_page *p = hyp_virt_to_page(addr);
169
170 hyp_spin_lock(&pool->lock);
171 __hyp_put_page(pool, p);
172 hyp_spin_unlock(&pool->lock);
173 }
174
hyp_get_page(struct hyp_pool * pool,void * addr)175 void hyp_get_page(struct hyp_pool *pool, void *addr)
176 {
177 struct hyp_page *p = hyp_virt_to_page(addr);
178
179 hyp_spin_lock(&pool->lock);
180 hyp_page_ref_inc(p);
181 hyp_spin_unlock(&pool->lock);
182 }
183
hyp_split_page(struct hyp_page * p)184 void hyp_split_page(struct hyp_page *p)
185 {
186 unsigned short order = p->order;
187 unsigned int i;
188
189 p->order = 0;
190 for (i = 1; i < (1 << order); i++) {
191 struct hyp_page *tail = p + i;
192
193 tail->order = 0;
194 hyp_set_page_refcounted(tail);
195 }
196 }
197
hyp_alloc_pages(struct hyp_pool * pool,unsigned short order)198 void *hyp_alloc_pages(struct hyp_pool *pool, unsigned short order)
199 {
200 unsigned short i = order;
201 struct hyp_page *p;
202
203 hyp_spin_lock(&pool->lock);
204
205 /* Look for a high-enough-order page */
206 while (i <= pool->max_order && list_empty(&pool->free_area[i]))
207 i++;
208 if (i > pool->max_order) {
209 hyp_spin_unlock(&pool->lock);
210 return NULL;
211 }
212
213 /* Extract it from the tree at the right order */
214 p = node_to_page(pool->free_area[i].next);
215 p = __hyp_extract_page(pool, p, order);
216
217 hyp_set_page_refcounted(p);
218 hyp_spin_unlock(&pool->lock);
219
220 return hyp_page_to_virt(p);
221 }
222
hyp_pool_init(struct hyp_pool * pool,u64 pfn,unsigned int nr_pages,unsigned int reserved_pages)223 int hyp_pool_init(struct hyp_pool *pool, u64 pfn, unsigned int nr_pages,
224 unsigned int reserved_pages)
225 {
226 phys_addr_t phys = hyp_pfn_to_phys(pfn);
227 struct hyp_page *p;
228 int i;
229
230 hyp_spin_lock_init(&pool->lock);
231 pool->max_order = min(MAX_PAGE_ORDER,
232 get_order(nr_pages << PAGE_SHIFT));
233 for (i = 0; i <= pool->max_order; i++)
234 INIT_LIST_HEAD(&pool->free_area[i]);
235 pool->range_start = phys;
236 pool->range_end = phys + (nr_pages << PAGE_SHIFT);
237
238 /* Init the vmemmap portion */
239 p = hyp_phys_to_page(phys);
240 for (i = 0; i < nr_pages; i++)
241 hyp_set_page_refcounted(&p[i]);
242
243 /* Attach the unused pages to the buddy tree */
244 for (i = reserved_pages; i < nr_pages; i++)
245 __hyp_put_page(pool, &p[i]);
246
247 return 0;
248 }
249