1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 Google LLC 4 * Author: Quentin Perret <qperret@google.com> 5 */ 6 7 #include <linux/kvm_host.h> 8 #include <asm/kvm_hyp.h> 9 #include <asm/kvm_mmu.h> 10 #include <asm/kvm_pgtable.h> 11 #include <asm/kvm_pkvm.h> 12 #include <asm/spectre.h> 13 14 #include <nvhe/early_alloc.h> 15 #include <nvhe/gfp.h> 16 #include <nvhe/memory.h> 17 #include <nvhe/mem_protect.h> 18 #include <nvhe/mm.h> 19 #include <nvhe/spinlock.h> 20 21 struct kvm_pgtable pkvm_pgtable; 22 hyp_spinlock_t pkvm_pgd_lock; 23 24 struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS]; 25 unsigned int hyp_memblock_nr; 26 27 static u64 __io_map_base; 28 29 struct hyp_fixmap_slot { 30 u64 addr; 31 kvm_pte_t *ptep; 32 }; 33 static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots); 34 35 static int __pkvm_create_mappings(unsigned long start, unsigned long size, 36 unsigned long phys, enum kvm_pgtable_prot prot) 37 { 38 int err; 39 40 hyp_spin_lock(&pkvm_pgd_lock); 41 err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot); 42 hyp_spin_unlock(&pkvm_pgd_lock); 43 44 return err; 45 } 46 47 static int __pkvm_alloc_private_va_range(unsigned long start, size_t size) 48 { 49 unsigned long cur; 50 51 hyp_assert_lock_held(&pkvm_pgd_lock); 52 53 if (!start || start < __io_map_base) 54 return -EINVAL; 55 56 /* The allocated size is always a multiple of PAGE_SIZE */ 57 cur = start + PAGE_ALIGN(size); 58 59 /* Are we overflowing on the vmemmap ? */ 60 if (cur > __hyp_vmemmap) 61 return -ENOMEM; 62 63 __io_map_base = cur; 64 65 return 0; 66 } 67 68 /** 69 * pkvm_alloc_private_va_range - Allocates a private VA range. 70 * @size: The size of the VA range to reserve. 71 * @haddr: The hypervisor virtual start address of the allocation. 72 * 73 * The private virtual address (VA) range is allocated above __io_map_base 74 * and aligned based on the order of @size. 75 * 76 * Return: 0 on success or negative error code on failure. 77 */ 78 int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr) 79 { 80 unsigned long addr; 81 int ret; 82 83 hyp_spin_lock(&pkvm_pgd_lock); 84 addr = __io_map_base; 85 ret = __pkvm_alloc_private_va_range(addr, size); 86 hyp_spin_unlock(&pkvm_pgd_lock); 87 88 *haddr = addr; 89 90 return ret; 91 } 92 93 int __pkvm_create_private_mapping(phys_addr_t phys, size_t size, 94 enum kvm_pgtable_prot prot, 95 unsigned long *haddr) 96 { 97 unsigned long addr; 98 int err; 99 100 size = PAGE_ALIGN(size + offset_in_page(phys)); 101 err = pkvm_alloc_private_va_range(size, &addr); 102 if (err) 103 return err; 104 105 err = __pkvm_create_mappings(addr, size, phys, prot); 106 if (err) 107 return err; 108 109 *haddr = addr + offset_in_page(phys); 110 return err; 111 } 112 113 int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot) 114 { 115 unsigned long start = (unsigned long)from; 116 unsigned long end = (unsigned long)to; 117 unsigned long virt_addr; 118 phys_addr_t phys; 119 120 hyp_assert_lock_held(&pkvm_pgd_lock); 121 122 start = start & PAGE_MASK; 123 end = PAGE_ALIGN(end); 124 125 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 126 int err; 127 128 phys = hyp_virt_to_phys((void *)virt_addr); 129 err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE, 130 phys, prot); 131 if (err) 132 return err; 133 } 134 135 return 0; 136 } 137 138 int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 139 { 140 int ret; 141 142 hyp_spin_lock(&pkvm_pgd_lock); 143 ret = pkvm_create_mappings_locked(from, to, prot); 144 hyp_spin_unlock(&pkvm_pgd_lock); 145 146 return ret; 147 } 148 149 int hyp_back_vmemmap(phys_addr_t back) 150 { 151 unsigned long i, start, size, end = 0; 152 int ret; 153 154 for (i = 0; i < hyp_memblock_nr; i++) { 155 start = hyp_memory[i].base; 156 start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE); 157 /* 158 * The beginning of the hyp_vmemmap region for the current 159 * memblock may already be backed by the page backing the end 160 * the previous region, so avoid mapping it twice. 161 */ 162 start = max(start, end); 163 164 end = hyp_memory[i].base + hyp_memory[i].size; 165 end = PAGE_ALIGN((u64)hyp_phys_to_page(end)); 166 if (start >= end) 167 continue; 168 169 size = end - start; 170 ret = __pkvm_create_mappings(start, size, back, PAGE_HYP); 171 if (ret) 172 return ret; 173 174 memset(hyp_phys_to_virt(back), 0, size); 175 back += size; 176 } 177 178 return 0; 179 } 180 181 static void *__hyp_bp_vect_base; 182 int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot) 183 { 184 void *vector; 185 186 switch (slot) { 187 case HYP_VECTOR_DIRECT: { 188 vector = __kvm_hyp_vector; 189 break; 190 } 191 case HYP_VECTOR_SPECTRE_DIRECT: { 192 vector = __bp_harden_hyp_vecs; 193 break; 194 } 195 case HYP_VECTOR_INDIRECT: 196 case HYP_VECTOR_SPECTRE_INDIRECT: { 197 vector = (void *)__hyp_bp_vect_base; 198 break; 199 } 200 default: 201 return -EINVAL; 202 } 203 204 vector = __kvm_vector_slot2addr(vector, slot); 205 *this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector; 206 207 return 0; 208 } 209 210 int hyp_map_vectors(void) 211 { 212 phys_addr_t phys; 213 unsigned long bp_base; 214 int ret; 215 216 if (!kvm_system_needs_idmapped_vectors()) { 217 __hyp_bp_vect_base = __bp_harden_hyp_vecs; 218 return 0; 219 } 220 221 phys = __hyp_pa(__bp_harden_hyp_vecs); 222 ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ, 223 PAGE_HYP_EXEC, &bp_base); 224 if (ret) 225 return ret; 226 227 __hyp_bp_vect_base = (void *)bp_base; 228 229 return 0; 230 } 231 232 static void *fixmap_map_slot(struct hyp_fixmap_slot *slot, phys_addr_t phys) 233 { 234 kvm_pte_t pte, *ptep = slot->ptep; 235 236 pte = *ptep; 237 pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID); 238 pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID; 239 WRITE_ONCE(*ptep, pte); 240 dsb(ishst); 241 242 return (void *)slot->addr; 243 } 244 245 void *hyp_fixmap_map(phys_addr_t phys) 246 { 247 return fixmap_map_slot(this_cpu_ptr(&fixmap_slots), phys); 248 } 249 250 static void fixmap_clear_slot(struct hyp_fixmap_slot *slot) 251 { 252 kvm_pte_t *ptep = slot->ptep; 253 u64 addr = slot->addr; 254 u32 level; 255 256 if (FIELD_GET(KVM_PTE_TYPE, *ptep) == KVM_PTE_TYPE_PAGE) 257 level = KVM_PGTABLE_LAST_LEVEL; 258 else 259 level = KVM_PGTABLE_LAST_LEVEL - 1; /* create_fixblock() guarantees PMD level */ 260 261 WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID); 262 263 /* 264 * Irritatingly, the architecture requires that we use inner-shareable 265 * broadcast TLB invalidation here in case another CPU speculates 266 * through our fixmap and decides to create an "amalagamation of the 267 * values held in the TLB" due to the apparent lack of a 268 * break-before-make sequence. 269 * 270 * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03 271 */ 272 dsb(ishst); 273 __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), level); 274 dsb(ish); 275 isb(); 276 } 277 278 void hyp_fixmap_unmap(void) 279 { 280 fixmap_clear_slot(this_cpu_ptr(&fixmap_slots)); 281 } 282 283 static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx, 284 enum kvm_pgtable_walk_flags visit) 285 { 286 struct hyp_fixmap_slot *slot = (struct hyp_fixmap_slot *)ctx->arg; 287 288 if (!kvm_pte_valid(ctx->old) || (ctx->end - ctx->start) != kvm_granule_size(ctx->level)) 289 return -EINVAL; 290 291 slot->addr = ctx->addr; 292 slot->ptep = ctx->ptep; 293 294 /* 295 * Clear the PTE, but keep the page-table page refcount elevated to 296 * prevent it from ever being freed. This lets us manipulate the PTEs 297 * by hand safely without ever needing to allocate memory. 298 */ 299 fixmap_clear_slot(slot); 300 301 return 0; 302 } 303 304 static int create_fixmap_slot(u64 addr, u64 cpu) 305 { 306 struct kvm_pgtable_walker walker = { 307 .cb = __create_fixmap_slot_cb, 308 .flags = KVM_PGTABLE_WALK_LEAF, 309 .arg = per_cpu_ptr(&fixmap_slots, cpu), 310 }; 311 312 return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker); 313 } 314 315 #if PAGE_SHIFT < 16 316 #define HAS_FIXBLOCK 317 static struct hyp_fixmap_slot hyp_fixblock_slot; 318 static DEFINE_HYP_SPINLOCK(hyp_fixblock_lock); 319 #endif 320 321 static int create_fixblock(void) 322 { 323 #ifdef HAS_FIXBLOCK 324 struct kvm_pgtable_walker walker = { 325 .cb = __create_fixmap_slot_cb, 326 .flags = KVM_PGTABLE_WALK_LEAF, 327 .arg = &hyp_fixblock_slot, 328 }; 329 unsigned long addr; 330 phys_addr_t phys; 331 int ret, i; 332 333 /* Find a RAM phys address, PMD aligned */ 334 for (i = 0; i < hyp_memblock_nr; i++) { 335 phys = ALIGN(hyp_memory[i].base, PMD_SIZE); 336 if (phys + PMD_SIZE < (hyp_memory[i].base + hyp_memory[i].size)) 337 break; 338 } 339 340 if (i >= hyp_memblock_nr) 341 return -EINVAL; 342 343 hyp_spin_lock(&pkvm_pgd_lock); 344 addr = ALIGN(__io_map_base, PMD_SIZE); 345 ret = __pkvm_alloc_private_va_range(addr, PMD_SIZE); 346 if (ret) 347 goto unlock; 348 349 ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PMD_SIZE, phys, PAGE_HYP); 350 if (ret) 351 goto unlock; 352 353 ret = kvm_pgtable_walk(&pkvm_pgtable, addr, PMD_SIZE, &walker); 354 355 unlock: 356 hyp_spin_unlock(&pkvm_pgd_lock); 357 358 return ret; 359 #else 360 return 0; 361 #endif 362 } 363 364 void *hyp_fixblock_map(phys_addr_t phys, size_t *size) 365 { 366 #ifdef HAS_FIXBLOCK 367 *size = PMD_SIZE; 368 hyp_spin_lock(&hyp_fixblock_lock); 369 return fixmap_map_slot(&hyp_fixblock_slot, phys); 370 #else 371 *size = PAGE_SIZE; 372 return hyp_fixmap_map(phys); 373 #endif 374 } 375 376 void hyp_fixblock_unmap(void) 377 { 378 #ifdef HAS_FIXBLOCK 379 fixmap_clear_slot(&hyp_fixblock_slot); 380 hyp_spin_unlock(&hyp_fixblock_lock); 381 #else 382 hyp_fixmap_unmap(); 383 #endif 384 } 385 386 int hyp_create_fixmap(void) 387 { 388 unsigned long addr, i; 389 int ret; 390 391 for (i = 0; i < hyp_nr_cpus; i++) { 392 ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr); 393 if (ret) 394 return ret; 395 396 ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE, 397 __hyp_pa(__hyp_bss_start), PAGE_HYP); 398 if (ret) 399 return ret; 400 401 ret = create_fixmap_slot(addr, i); 402 if (ret) 403 return ret; 404 } 405 406 return create_fixblock(); 407 } 408 409 int hyp_create_idmap(u32 hyp_va_bits) 410 { 411 unsigned long start, end; 412 413 start = hyp_virt_to_phys((void *)__hyp_idmap_text_start); 414 start = ALIGN_DOWN(start, PAGE_SIZE); 415 416 end = hyp_virt_to_phys((void *)__hyp_idmap_text_end); 417 end = ALIGN(end, PAGE_SIZE); 418 419 /* 420 * One half of the VA space is reserved to linearly map portions of 421 * memory -- see va_layout.c for more details. The other half of the VA 422 * space contains the trampoline page, and needs some care. Split that 423 * second half in two and find the quarter of VA space not conflicting 424 * with the idmap to place the IOs and the vmemmap. IOs use the lower 425 * half of the quarter and the vmemmap the upper half. 426 */ 427 __io_map_base = start & BIT(hyp_va_bits - 2); 428 __io_map_base ^= BIT(hyp_va_bits - 2); 429 __hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3); 430 431 return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC); 432 } 433 434 int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr) 435 { 436 unsigned long addr, prev_base; 437 size_t size; 438 int ret; 439 440 hyp_spin_lock(&pkvm_pgd_lock); 441 442 prev_base = __io_map_base; 443 /* 444 * Efficient stack verification using the NVHE_STACK_SHIFT bit implies 445 * an alignment of our allocation on the order of the size. 446 */ 447 size = NVHE_STACK_SIZE * 2; 448 addr = ALIGN(__io_map_base, size); 449 450 ret = __pkvm_alloc_private_va_range(addr, size); 451 if (!ret) { 452 /* 453 * Since the stack grows downwards, map the stack to the page 454 * at the higher address and leave the lower guard page 455 * unbacked. 456 * 457 * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1 458 * and addresses corresponding to the guard page have the 459 * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection. 460 */ 461 ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + NVHE_STACK_SIZE, 462 NVHE_STACK_SIZE, phys, PAGE_HYP); 463 if (ret) 464 __io_map_base = prev_base; 465 } 466 hyp_spin_unlock(&pkvm_pgd_lock); 467 468 *haddr = addr + size; 469 470 return ret; 471 } 472 473 static void *admit_host_page(void *arg) 474 { 475 struct kvm_hyp_memcache *host_mc = arg; 476 477 if (!host_mc->nr_pages) 478 return NULL; 479 480 /* 481 * The host still owns the pages in its memcache, so we need to go 482 * through a full host-to-hyp donation cycle to change it. Fortunately, 483 * __pkvm_host_donate_hyp() takes care of races for us, so if it 484 * succeeds we're good to go. 485 */ 486 if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1)) 487 return NULL; 488 489 return pop_hyp_memcache(host_mc, hyp_phys_to_virt); 490 } 491 492 /* Refill our local memcache by popping pages from the one provided by the host. */ 493 int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages, 494 struct kvm_hyp_memcache *host_mc) 495 { 496 struct kvm_hyp_memcache tmp = *host_mc; 497 int ret; 498 499 ret = __topup_hyp_memcache(mc, min_pages, admit_host_page, 500 hyp_virt_to_phys, &tmp); 501 *host_mc = tmp; 502 503 return ret; 504 } 505