1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 Google LLC 4 * Author: Quentin Perret <qperret@google.com> 5 */ 6 7 #include <linux/kvm_host.h> 8 #include <asm/kvm_emulate.h> 9 #include <asm/kvm_hyp.h> 10 #include <asm/kvm_mmu.h> 11 #include <asm/kvm_pgtable.h> 12 #include <asm/kvm_pkvm.h> 13 #include <asm/stage2_pgtable.h> 14 15 #include <hyp/fault.h> 16 17 #include <nvhe/gfp.h> 18 #include <nvhe/memory.h> 19 #include <nvhe/mem_protect.h> 20 #include <nvhe/mm.h> 21 22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP) 23 24 struct host_mmu host_mmu; 25 26 static struct hyp_pool host_s2_pool; 27 28 static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm); 29 #define current_vm (*this_cpu_ptr(&__current_vm)) 30 31 static void guest_lock_component(struct pkvm_hyp_vm *vm) 32 { 33 hyp_spin_lock(&vm->lock); 34 current_vm = vm; 35 } 36 37 static void guest_unlock_component(struct pkvm_hyp_vm *vm) 38 { 39 current_vm = NULL; 40 hyp_spin_unlock(&vm->lock); 41 } 42 43 static void host_lock_component(void) 44 { 45 hyp_spin_lock(&host_mmu.lock); 46 } 47 48 static void host_unlock_component(void) 49 { 50 hyp_spin_unlock(&host_mmu.lock); 51 } 52 53 static void hyp_lock_component(void) 54 { 55 hyp_spin_lock(&pkvm_pgd_lock); 56 } 57 58 static void hyp_unlock_component(void) 59 { 60 hyp_spin_unlock(&pkvm_pgd_lock); 61 } 62 63 static void *host_s2_zalloc_pages_exact(size_t size) 64 { 65 void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size)); 66 67 hyp_split_page(hyp_virt_to_page(addr)); 68 69 /* 70 * The size of concatenated PGDs is always a power of two of PAGE_SIZE, 71 * so there should be no need to free any of the tail pages to make the 72 * allocation exact. 73 */ 74 WARN_ON(size != (PAGE_SIZE << get_order(size))); 75 76 return addr; 77 } 78 79 static void *host_s2_zalloc_page(void *pool) 80 { 81 return hyp_alloc_pages(pool, 0); 82 } 83 84 static void host_s2_get_page(void *addr) 85 { 86 hyp_get_page(&host_s2_pool, addr); 87 } 88 89 static void host_s2_put_page(void *addr) 90 { 91 hyp_put_page(&host_s2_pool, addr); 92 } 93 94 static void host_s2_free_unlinked_table(void *addr, s8 level) 95 { 96 kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level); 97 } 98 99 static int prepare_s2_pool(void *pgt_pool_base) 100 { 101 unsigned long nr_pages, pfn; 102 int ret; 103 104 pfn = hyp_virt_to_pfn(pgt_pool_base); 105 nr_pages = host_s2_pgtable_pages(); 106 ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0); 107 if (ret) 108 return ret; 109 110 host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) { 111 .zalloc_pages_exact = host_s2_zalloc_pages_exact, 112 .zalloc_page = host_s2_zalloc_page, 113 .free_unlinked_table = host_s2_free_unlinked_table, 114 .phys_to_virt = hyp_phys_to_virt, 115 .virt_to_phys = hyp_virt_to_phys, 116 .page_count = hyp_page_count, 117 .get_page = host_s2_get_page, 118 .put_page = host_s2_put_page, 119 }; 120 121 return 0; 122 } 123 124 static void prepare_host_vtcr(void) 125 { 126 u32 parange, phys_shift; 127 128 /* The host stage 2 is id-mapped, so use parange for T0SZ */ 129 parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val); 130 phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange); 131 132 host_mmu.arch.mmu.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val, 133 id_aa64mmfr1_el1_sys_val, phys_shift); 134 } 135 136 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot); 137 138 int kvm_host_prepare_stage2(void *pgt_pool_base) 139 { 140 struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; 141 int ret; 142 143 prepare_host_vtcr(); 144 hyp_spin_lock_init(&host_mmu.lock); 145 mmu->arch = &host_mmu.arch; 146 147 ret = prepare_s2_pool(pgt_pool_base); 148 if (ret) 149 return ret; 150 151 ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu, 152 &host_mmu.mm_ops, KVM_HOST_S2_FLAGS, 153 host_stage2_force_pte_cb); 154 if (ret) 155 return ret; 156 157 mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd); 158 mmu->pgt = &host_mmu.pgt; 159 atomic64_set(&mmu->vmid.id, 0); 160 161 return 0; 162 } 163 164 static bool guest_stage2_force_pte_cb(u64 addr, u64 end, 165 enum kvm_pgtable_prot prot) 166 { 167 return true; 168 } 169 170 static void *guest_s2_zalloc_pages_exact(size_t size) 171 { 172 void *addr = hyp_alloc_pages(¤t_vm->pool, get_order(size)); 173 174 WARN_ON(size != (PAGE_SIZE << get_order(size))); 175 hyp_split_page(hyp_virt_to_page(addr)); 176 177 return addr; 178 } 179 180 static void guest_s2_free_pages_exact(void *addr, unsigned long size) 181 { 182 u8 order = get_order(size); 183 unsigned int i; 184 185 for (i = 0; i < (1 << order); i++) 186 hyp_put_page(¤t_vm->pool, addr + (i * PAGE_SIZE)); 187 } 188 189 static void *guest_s2_zalloc_page(void *mc) 190 { 191 struct hyp_page *p; 192 void *addr; 193 194 addr = hyp_alloc_pages(¤t_vm->pool, 0); 195 if (addr) 196 return addr; 197 198 addr = pop_hyp_memcache(mc, hyp_phys_to_virt); 199 if (!addr) 200 return addr; 201 202 memset(addr, 0, PAGE_SIZE); 203 p = hyp_virt_to_page(addr); 204 memset(p, 0, sizeof(*p)); 205 p->refcount = 1; 206 207 return addr; 208 } 209 210 static void guest_s2_get_page(void *addr) 211 { 212 hyp_get_page(¤t_vm->pool, addr); 213 } 214 215 static void guest_s2_put_page(void *addr) 216 { 217 hyp_put_page(¤t_vm->pool, addr); 218 } 219 220 static void clean_dcache_guest_page(void *va, size_t size) 221 { 222 __clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); 223 hyp_fixmap_unmap(); 224 } 225 226 static void invalidate_icache_guest_page(void *va, size_t size) 227 { 228 __invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); 229 hyp_fixmap_unmap(); 230 } 231 232 int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd) 233 { 234 struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu; 235 unsigned long nr_pages; 236 int ret; 237 238 nr_pages = kvm_pgtable_stage2_pgd_size(mmu->vtcr) >> PAGE_SHIFT; 239 ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0); 240 if (ret) 241 return ret; 242 243 hyp_spin_lock_init(&vm->lock); 244 vm->mm_ops = (struct kvm_pgtable_mm_ops) { 245 .zalloc_pages_exact = guest_s2_zalloc_pages_exact, 246 .free_pages_exact = guest_s2_free_pages_exact, 247 .zalloc_page = guest_s2_zalloc_page, 248 .phys_to_virt = hyp_phys_to_virt, 249 .virt_to_phys = hyp_virt_to_phys, 250 .page_count = hyp_page_count, 251 .get_page = guest_s2_get_page, 252 .put_page = guest_s2_put_page, 253 .dcache_clean_inval_poc = clean_dcache_guest_page, 254 .icache_inval_pou = invalidate_icache_guest_page, 255 }; 256 257 guest_lock_component(vm); 258 ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, 259 guest_stage2_force_pte_cb); 260 guest_unlock_component(vm); 261 if (ret) 262 return ret; 263 264 vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd); 265 266 return 0; 267 } 268 269 void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc) 270 { 271 void *addr; 272 273 /* Dump all pgtable pages in the hyp_pool */ 274 guest_lock_component(vm); 275 kvm_pgtable_stage2_destroy(&vm->pgt); 276 vm->kvm.arch.mmu.pgd_phys = 0ULL; 277 guest_unlock_component(vm); 278 279 /* Drain the hyp_pool into the memcache */ 280 addr = hyp_alloc_pages(&vm->pool, 0); 281 while (addr) { 282 memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page)); 283 push_hyp_memcache(mc, addr, hyp_virt_to_phys); 284 WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1)); 285 addr = hyp_alloc_pages(&vm->pool, 0); 286 } 287 } 288 289 int __pkvm_prot_finalize(void) 290 { 291 struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; 292 struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); 293 294 if (params->hcr_el2 & HCR_VM) 295 return -EPERM; 296 297 params->vttbr = kvm_get_vttbr(mmu); 298 params->vtcr = mmu->vtcr; 299 params->hcr_el2 |= HCR_VM; 300 301 /* 302 * The CMO below not only cleans the updated params to the 303 * PoC, but also provides the DSB that ensures ongoing 304 * page-table walks that have started before we trapped to EL2 305 * have completed. 306 */ 307 kvm_flush_dcache_to_poc(params, sizeof(*params)); 308 309 write_sysreg(params->hcr_el2, hcr_el2); 310 __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch); 311 312 /* 313 * Make sure to have an ISB before the TLB maintenance below but only 314 * when __load_stage2() doesn't include one already. 315 */ 316 asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); 317 318 /* Invalidate stale HCR bits that may be cached in TLBs */ 319 __tlbi(vmalls12e1); 320 dsb(nsh); 321 isb(); 322 323 return 0; 324 } 325 326 static int host_stage2_unmap_dev_all(void) 327 { 328 struct kvm_pgtable *pgt = &host_mmu.pgt; 329 struct memblock_region *reg; 330 u64 addr = 0; 331 int i, ret; 332 333 /* Unmap all non-memory regions to recycle the pages */ 334 for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) { 335 reg = &hyp_memory[i]; 336 ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr); 337 if (ret) 338 return ret; 339 } 340 return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr); 341 } 342 343 struct kvm_mem_range { 344 u64 start; 345 u64 end; 346 }; 347 348 static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range) 349 { 350 int cur, left = 0, right = hyp_memblock_nr; 351 struct memblock_region *reg; 352 phys_addr_t end; 353 354 range->start = 0; 355 range->end = ULONG_MAX; 356 357 /* The list of memblock regions is sorted, binary search it */ 358 while (left < right) { 359 cur = (left + right) >> 1; 360 reg = &hyp_memory[cur]; 361 end = reg->base + reg->size; 362 if (addr < reg->base) { 363 right = cur; 364 range->end = reg->base; 365 } else if (addr >= end) { 366 left = cur + 1; 367 range->start = end; 368 } else { 369 range->start = reg->base; 370 range->end = end; 371 return reg; 372 } 373 } 374 375 return NULL; 376 } 377 378 bool addr_is_memory(phys_addr_t phys) 379 { 380 struct kvm_mem_range range; 381 382 return !!find_mem_range(phys, &range); 383 } 384 385 static bool addr_is_allowed_memory(phys_addr_t phys) 386 { 387 struct memblock_region *reg; 388 struct kvm_mem_range range; 389 390 reg = find_mem_range(phys, &range); 391 392 return reg && !(reg->flags & MEMBLOCK_NOMAP); 393 } 394 395 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range) 396 { 397 return range->start <= addr && addr < range->end; 398 } 399 400 static bool range_is_memory(u64 start, u64 end) 401 { 402 struct kvm_mem_range r; 403 404 if (!find_mem_range(start, &r)) 405 return false; 406 407 return is_in_mem_range(end - 1, &r); 408 } 409 410 static inline int __host_stage2_idmap(u64 start, u64 end, 411 enum kvm_pgtable_prot prot) 412 { 413 return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start, 414 prot, &host_s2_pool, 0); 415 } 416 417 /* 418 * The pool has been provided with enough pages to cover all of memory with 419 * page granularity, but it is difficult to know how much of the MMIO range 420 * we will need to cover upfront, so we may need to 'recycle' the pages if we 421 * run out. 422 */ 423 #define host_stage2_try(fn, ...) \ 424 ({ \ 425 int __ret; \ 426 hyp_assert_lock_held(&host_mmu.lock); \ 427 __ret = fn(__VA_ARGS__); \ 428 if (__ret == -ENOMEM) { \ 429 __ret = host_stage2_unmap_dev_all(); \ 430 if (!__ret) \ 431 __ret = fn(__VA_ARGS__); \ 432 } \ 433 __ret; \ 434 }) 435 436 static inline bool range_included(struct kvm_mem_range *child, 437 struct kvm_mem_range *parent) 438 { 439 return parent->start <= child->start && child->end <= parent->end; 440 } 441 442 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range) 443 { 444 struct kvm_mem_range cur; 445 kvm_pte_t pte; 446 s8 level; 447 int ret; 448 449 hyp_assert_lock_held(&host_mmu.lock); 450 ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level); 451 if (ret) 452 return ret; 453 454 if (kvm_pte_valid(pte)) 455 return -EAGAIN; 456 457 if (pte) 458 return -EPERM; 459 460 do { 461 u64 granule = kvm_granule_size(level); 462 cur.start = ALIGN_DOWN(addr, granule); 463 cur.end = cur.start + granule; 464 level++; 465 } while ((level <= KVM_PGTABLE_LAST_LEVEL) && 466 !(kvm_level_supports_block_mapping(level) && 467 range_included(&cur, range))); 468 469 *range = cur; 470 471 return 0; 472 } 473 474 int host_stage2_idmap_locked(phys_addr_t addr, u64 size, 475 enum kvm_pgtable_prot prot) 476 { 477 return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot); 478 } 479 480 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id) 481 { 482 return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt, 483 addr, size, &host_s2_pool, owner_id); 484 } 485 486 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot) 487 { 488 /* 489 * Block mappings must be used with care in the host stage-2 as a 490 * kvm_pgtable_stage2_map() operation targeting a page in the range of 491 * an existing block will delete the block under the assumption that 492 * mappings in the rest of the block range can always be rebuilt lazily. 493 * That assumption is correct for the host stage-2 with RWX mappings 494 * targeting memory or RW mappings targeting MMIO ranges (see 495 * host_stage2_idmap() below which implements some of the host memory 496 * abort logic). However, this is not safe for any other mappings where 497 * the host stage-2 page-table is in fact the only place where this 498 * state is stored. In all those cases, it is safer to use page-level 499 * mappings, hence avoiding to lose the state because of side-effects in 500 * kvm_pgtable_stage2_map(). 501 */ 502 if (range_is_memory(addr, end)) 503 return prot != PKVM_HOST_MEM_PROT; 504 else 505 return prot != PKVM_HOST_MMIO_PROT; 506 } 507 508 static int host_stage2_idmap(u64 addr) 509 { 510 struct kvm_mem_range range; 511 bool is_memory = !!find_mem_range(addr, &range); 512 enum kvm_pgtable_prot prot; 513 int ret; 514 515 prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT; 516 517 host_lock_component(); 518 ret = host_stage2_adjust_range(addr, &range); 519 if (ret) 520 goto unlock; 521 522 ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot); 523 unlock: 524 host_unlock_component(); 525 526 return ret; 527 } 528 529 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt) 530 { 531 struct kvm_vcpu_fault_info fault; 532 u64 esr, addr; 533 int ret = 0; 534 535 esr = read_sysreg_el2(SYS_ESR); 536 if (!__get_fault_info(esr, &fault)) { 537 /* 538 * We've presumably raced with a page-table change which caused 539 * AT to fail, try again. 540 */ 541 return; 542 } 543 544 addr = (fault.hpfar_el2 & HPFAR_MASK) << 8; 545 ret = host_stage2_idmap(addr); 546 BUG_ON(ret && ret != -EAGAIN); 547 } 548 549 struct pkvm_mem_transition { 550 u64 nr_pages; 551 552 struct { 553 enum pkvm_component_id id; 554 /* Address in the initiator's address space */ 555 u64 addr; 556 557 union { 558 struct { 559 /* Address in the completer's address space */ 560 u64 completer_addr; 561 } host; 562 struct { 563 u64 completer_addr; 564 } hyp; 565 }; 566 } initiator; 567 568 struct { 569 enum pkvm_component_id id; 570 } completer; 571 }; 572 573 struct pkvm_mem_share { 574 const struct pkvm_mem_transition tx; 575 const enum kvm_pgtable_prot completer_prot; 576 }; 577 578 struct pkvm_mem_donation { 579 const struct pkvm_mem_transition tx; 580 }; 581 582 struct check_walk_data { 583 enum pkvm_page_state desired; 584 enum pkvm_page_state (*get_page_state)(kvm_pte_t pte, u64 addr); 585 }; 586 587 static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx, 588 enum kvm_pgtable_walk_flags visit) 589 { 590 struct check_walk_data *d = ctx->arg; 591 592 return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM; 593 } 594 595 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size, 596 struct check_walk_data *data) 597 { 598 struct kvm_pgtable_walker walker = { 599 .cb = __check_page_state_visitor, 600 .arg = data, 601 .flags = KVM_PGTABLE_WALK_LEAF, 602 }; 603 604 return kvm_pgtable_walk(pgt, addr, size, &walker); 605 } 606 607 static enum pkvm_page_state host_get_page_state(kvm_pte_t pte, u64 addr) 608 { 609 if (!addr_is_allowed_memory(addr)) 610 return PKVM_NOPAGE; 611 612 if (!kvm_pte_valid(pte) && pte) 613 return PKVM_NOPAGE; 614 615 return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte)); 616 } 617 618 static int __host_check_page_state_range(u64 addr, u64 size, 619 enum pkvm_page_state state) 620 { 621 struct check_walk_data d = { 622 .desired = state, 623 .get_page_state = host_get_page_state, 624 }; 625 626 hyp_assert_lock_held(&host_mmu.lock); 627 return check_page_state_range(&host_mmu.pgt, addr, size, &d); 628 } 629 630 static int __host_set_page_state_range(u64 addr, u64 size, 631 enum pkvm_page_state state) 632 { 633 enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state); 634 635 return host_stage2_idmap_locked(addr, size, prot); 636 } 637 638 static int host_request_owned_transition(u64 *completer_addr, 639 const struct pkvm_mem_transition *tx) 640 { 641 u64 size = tx->nr_pages * PAGE_SIZE; 642 u64 addr = tx->initiator.addr; 643 644 *completer_addr = tx->initiator.host.completer_addr; 645 return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED); 646 } 647 648 static int host_request_unshare(u64 *completer_addr, 649 const struct pkvm_mem_transition *tx) 650 { 651 u64 size = tx->nr_pages * PAGE_SIZE; 652 u64 addr = tx->initiator.addr; 653 654 *completer_addr = tx->initiator.host.completer_addr; 655 return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); 656 } 657 658 static int host_initiate_share(u64 *completer_addr, 659 const struct pkvm_mem_transition *tx) 660 { 661 u64 size = tx->nr_pages * PAGE_SIZE; 662 u64 addr = tx->initiator.addr; 663 664 *completer_addr = tx->initiator.host.completer_addr; 665 return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); 666 } 667 668 static int host_initiate_unshare(u64 *completer_addr, 669 const struct pkvm_mem_transition *tx) 670 { 671 u64 size = tx->nr_pages * PAGE_SIZE; 672 u64 addr = tx->initiator.addr; 673 674 *completer_addr = tx->initiator.host.completer_addr; 675 return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED); 676 } 677 678 static int host_initiate_donation(u64 *completer_addr, 679 const struct pkvm_mem_transition *tx) 680 { 681 u8 owner_id = tx->completer.id; 682 u64 size = tx->nr_pages * PAGE_SIZE; 683 684 *completer_addr = tx->initiator.host.completer_addr; 685 return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id); 686 } 687 688 static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) 689 { 690 return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || 691 tx->initiator.id != PKVM_ID_HYP); 692 } 693 694 static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx, 695 enum pkvm_page_state state) 696 { 697 u64 size = tx->nr_pages * PAGE_SIZE; 698 699 if (__host_ack_skip_pgtable_check(tx)) 700 return 0; 701 702 return __host_check_page_state_range(addr, size, state); 703 } 704 705 static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) 706 { 707 return __host_ack_transition(addr, tx, PKVM_NOPAGE); 708 } 709 710 static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx) 711 { 712 u64 size = tx->nr_pages * PAGE_SIZE; 713 u8 host_id = tx->completer.id; 714 715 return host_stage2_set_owner_locked(addr, size, host_id); 716 } 717 718 static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte, u64 addr) 719 { 720 if (!kvm_pte_valid(pte)) 721 return PKVM_NOPAGE; 722 723 return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte)); 724 } 725 726 static int __hyp_check_page_state_range(u64 addr, u64 size, 727 enum pkvm_page_state state) 728 { 729 struct check_walk_data d = { 730 .desired = state, 731 .get_page_state = hyp_get_page_state, 732 }; 733 734 hyp_assert_lock_held(&pkvm_pgd_lock); 735 return check_page_state_range(&pkvm_pgtable, addr, size, &d); 736 } 737 738 static int hyp_request_donation(u64 *completer_addr, 739 const struct pkvm_mem_transition *tx) 740 { 741 u64 size = tx->nr_pages * PAGE_SIZE; 742 u64 addr = tx->initiator.addr; 743 744 *completer_addr = tx->initiator.hyp.completer_addr; 745 return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED); 746 } 747 748 static int hyp_initiate_donation(u64 *completer_addr, 749 const struct pkvm_mem_transition *tx) 750 { 751 u64 size = tx->nr_pages * PAGE_SIZE; 752 int ret; 753 754 *completer_addr = tx->initiator.hyp.completer_addr; 755 ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size); 756 return (ret != size) ? -EFAULT : 0; 757 } 758 759 static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) 760 { 761 return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || 762 tx->initiator.id != PKVM_ID_HOST); 763 } 764 765 static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx, 766 enum kvm_pgtable_prot perms) 767 { 768 u64 size = tx->nr_pages * PAGE_SIZE; 769 770 if (perms != PAGE_HYP) 771 return -EPERM; 772 773 if (__hyp_ack_skip_pgtable_check(tx)) 774 return 0; 775 776 return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); 777 } 778 779 static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx) 780 { 781 u64 size = tx->nr_pages * PAGE_SIZE; 782 783 if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr)) 784 return -EBUSY; 785 786 return __hyp_check_page_state_range(addr, size, 787 PKVM_PAGE_SHARED_BORROWED); 788 } 789 790 static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) 791 { 792 u64 size = tx->nr_pages * PAGE_SIZE; 793 794 if (__hyp_ack_skip_pgtable_check(tx)) 795 return 0; 796 797 return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); 798 } 799 800 static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx, 801 enum kvm_pgtable_prot perms) 802 { 803 void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); 804 enum kvm_pgtable_prot prot; 805 806 prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED); 807 return pkvm_create_mappings_locked(start, end, prot); 808 } 809 810 static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx) 811 { 812 u64 size = tx->nr_pages * PAGE_SIZE; 813 int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size); 814 815 return (ret != size) ? -EFAULT : 0; 816 } 817 818 static int hyp_complete_donation(u64 addr, 819 const struct pkvm_mem_transition *tx) 820 { 821 void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); 822 enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED); 823 824 return pkvm_create_mappings_locked(start, end, prot); 825 } 826 827 static int check_share(struct pkvm_mem_share *share) 828 { 829 const struct pkvm_mem_transition *tx = &share->tx; 830 u64 completer_addr; 831 int ret; 832 833 switch (tx->initiator.id) { 834 case PKVM_ID_HOST: 835 ret = host_request_owned_transition(&completer_addr, tx); 836 break; 837 default: 838 ret = -EINVAL; 839 } 840 841 if (ret) 842 return ret; 843 844 switch (tx->completer.id) { 845 case PKVM_ID_HYP: 846 ret = hyp_ack_share(completer_addr, tx, share->completer_prot); 847 break; 848 case PKVM_ID_FFA: 849 /* 850 * We only check the host; the secure side will check the other 851 * end when we forward the FFA call. 852 */ 853 ret = 0; 854 break; 855 default: 856 ret = -EINVAL; 857 } 858 859 return ret; 860 } 861 862 static int __do_share(struct pkvm_mem_share *share) 863 { 864 const struct pkvm_mem_transition *tx = &share->tx; 865 u64 completer_addr; 866 int ret; 867 868 switch (tx->initiator.id) { 869 case PKVM_ID_HOST: 870 ret = host_initiate_share(&completer_addr, tx); 871 break; 872 default: 873 ret = -EINVAL; 874 } 875 876 if (ret) 877 return ret; 878 879 switch (tx->completer.id) { 880 case PKVM_ID_HYP: 881 ret = hyp_complete_share(completer_addr, tx, share->completer_prot); 882 break; 883 case PKVM_ID_FFA: 884 /* 885 * We're not responsible for any secure page-tables, so there's 886 * nothing to do here. 887 */ 888 ret = 0; 889 break; 890 default: 891 ret = -EINVAL; 892 } 893 894 return ret; 895 } 896 897 /* 898 * do_share(): 899 * 900 * The page owner grants access to another component with a given set 901 * of permissions. 902 * 903 * Initiator: OWNED => SHARED_OWNED 904 * Completer: NOPAGE => SHARED_BORROWED 905 */ 906 static int do_share(struct pkvm_mem_share *share) 907 { 908 int ret; 909 910 ret = check_share(share); 911 if (ret) 912 return ret; 913 914 return WARN_ON(__do_share(share)); 915 } 916 917 static int check_unshare(struct pkvm_mem_share *share) 918 { 919 const struct pkvm_mem_transition *tx = &share->tx; 920 u64 completer_addr; 921 int ret; 922 923 switch (tx->initiator.id) { 924 case PKVM_ID_HOST: 925 ret = host_request_unshare(&completer_addr, tx); 926 break; 927 default: 928 ret = -EINVAL; 929 } 930 931 if (ret) 932 return ret; 933 934 switch (tx->completer.id) { 935 case PKVM_ID_HYP: 936 ret = hyp_ack_unshare(completer_addr, tx); 937 break; 938 case PKVM_ID_FFA: 939 /* See check_share() */ 940 ret = 0; 941 break; 942 default: 943 ret = -EINVAL; 944 } 945 946 return ret; 947 } 948 949 static int __do_unshare(struct pkvm_mem_share *share) 950 { 951 const struct pkvm_mem_transition *tx = &share->tx; 952 u64 completer_addr; 953 int ret; 954 955 switch (tx->initiator.id) { 956 case PKVM_ID_HOST: 957 ret = host_initiate_unshare(&completer_addr, tx); 958 break; 959 default: 960 ret = -EINVAL; 961 } 962 963 if (ret) 964 return ret; 965 966 switch (tx->completer.id) { 967 case PKVM_ID_HYP: 968 ret = hyp_complete_unshare(completer_addr, tx); 969 break; 970 case PKVM_ID_FFA: 971 /* See __do_share() */ 972 ret = 0; 973 break; 974 default: 975 ret = -EINVAL; 976 } 977 978 return ret; 979 } 980 981 /* 982 * do_unshare(): 983 * 984 * The page owner revokes access from another component for a range of 985 * pages which were previously shared using do_share(). 986 * 987 * Initiator: SHARED_OWNED => OWNED 988 * Completer: SHARED_BORROWED => NOPAGE 989 */ 990 static int do_unshare(struct pkvm_mem_share *share) 991 { 992 int ret; 993 994 ret = check_unshare(share); 995 if (ret) 996 return ret; 997 998 return WARN_ON(__do_unshare(share)); 999 } 1000 1001 static int check_donation(struct pkvm_mem_donation *donation) 1002 { 1003 const struct pkvm_mem_transition *tx = &donation->tx; 1004 u64 completer_addr; 1005 int ret; 1006 1007 switch (tx->initiator.id) { 1008 case PKVM_ID_HOST: 1009 ret = host_request_owned_transition(&completer_addr, tx); 1010 break; 1011 case PKVM_ID_HYP: 1012 ret = hyp_request_donation(&completer_addr, tx); 1013 break; 1014 default: 1015 ret = -EINVAL; 1016 } 1017 1018 if (ret) 1019 return ret; 1020 1021 switch (tx->completer.id) { 1022 case PKVM_ID_HOST: 1023 ret = host_ack_donation(completer_addr, tx); 1024 break; 1025 case PKVM_ID_HYP: 1026 ret = hyp_ack_donation(completer_addr, tx); 1027 break; 1028 default: 1029 ret = -EINVAL; 1030 } 1031 1032 return ret; 1033 } 1034 1035 static int __do_donate(struct pkvm_mem_donation *donation) 1036 { 1037 const struct pkvm_mem_transition *tx = &donation->tx; 1038 u64 completer_addr; 1039 int ret; 1040 1041 switch (tx->initiator.id) { 1042 case PKVM_ID_HOST: 1043 ret = host_initiate_donation(&completer_addr, tx); 1044 break; 1045 case PKVM_ID_HYP: 1046 ret = hyp_initiate_donation(&completer_addr, tx); 1047 break; 1048 default: 1049 ret = -EINVAL; 1050 } 1051 1052 if (ret) 1053 return ret; 1054 1055 switch (tx->completer.id) { 1056 case PKVM_ID_HOST: 1057 ret = host_complete_donation(completer_addr, tx); 1058 break; 1059 case PKVM_ID_HYP: 1060 ret = hyp_complete_donation(completer_addr, tx); 1061 break; 1062 default: 1063 ret = -EINVAL; 1064 } 1065 1066 return ret; 1067 } 1068 1069 /* 1070 * do_donate(): 1071 * 1072 * The page owner transfers ownership to another component, losing access 1073 * as a consequence. 1074 * 1075 * Initiator: OWNED => NOPAGE 1076 * Completer: NOPAGE => OWNED 1077 */ 1078 static int do_donate(struct pkvm_mem_donation *donation) 1079 { 1080 int ret; 1081 1082 ret = check_donation(donation); 1083 if (ret) 1084 return ret; 1085 1086 return WARN_ON(__do_donate(donation)); 1087 } 1088 1089 int __pkvm_host_share_hyp(u64 pfn) 1090 { 1091 int ret; 1092 u64 host_addr = hyp_pfn_to_phys(pfn); 1093 u64 hyp_addr = (u64)__hyp_va(host_addr); 1094 struct pkvm_mem_share share = { 1095 .tx = { 1096 .nr_pages = 1, 1097 .initiator = { 1098 .id = PKVM_ID_HOST, 1099 .addr = host_addr, 1100 .host = { 1101 .completer_addr = hyp_addr, 1102 }, 1103 }, 1104 .completer = { 1105 .id = PKVM_ID_HYP, 1106 }, 1107 }, 1108 .completer_prot = PAGE_HYP, 1109 }; 1110 1111 host_lock_component(); 1112 hyp_lock_component(); 1113 1114 ret = do_share(&share); 1115 1116 hyp_unlock_component(); 1117 host_unlock_component(); 1118 1119 return ret; 1120 } 1121 1122 int __pkvm_host_unshare_hyp(u64 pfn) 1123 { 1124 int ret; 1125 u64 host_addr = hyp_pfn_to_phys(pfn); 1126 u64 hyp_addr = (u64)__hyp_va(host_addr); 1127 struct pkvm_mem_share share = { 1128 .tx = { 1129 .nr_pages = 1, 1130 .initiator = { 1131 .id = PKVM_ID_HOST, 1132 .addr = host_addr, 1133 .host = { 1134 .completer_addr = hyp_addr, 1135 }, 1136 }, 1137 .completer = { 1138 .id = PKVM_ID_HYP, 1139 }, 1140 }, 1141 .completer_prot = PAGE_HYP, 1142 }; 1143 1144 host_lock_component(); 1145 hyp_lock_component(); 1146 1147 ret = do_unshare(&share); 1148 1149 hyp_unlock_component(); 1150 host_unlock_component(); 1151 1152 return ret; 1153 } 1154 1155 int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages) 1156 { 1157 int ret; 1158 u64 host_addr = hyp_pfn_to_phys(pfn); 1159 u64 hyp_addr = (u64)__hyp_va(host_addr); 1160 struct pkvm_mem_donation donation = { 1161 .tx = { 1162 .nr_pages = nr_pages, 1163 .initiator = { 1164 .id = PKVM_ID_HOST, 1165 .addr = host_addr, 1166 .host = { 1167 .completer_addr = hyp_addr, 1168 }, 1169 }, 1170 .completer = { 1171 .id = PKVM_ID_HYP, 1172 }, 1173 }, 1174 }; 1175 1176 host_lock_component(); 1177 hyp_lock_component(); 1178 1179 ret = do_donate(&donation); 1180 1181 hyp_unlock_component(); 1182 host_unlock_component(); 1183 1184 return ret; 1185 } 1186 1187 int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages) 1188 { 1189 int ret; 1190 u64 host_addr = hyp_pfn_to_phys(pfn); 1191 u64 hyp_addr = (u64)__hyp_va(host_addr); 1192 struct pkvm_mem_donation donation = { 1193 .tx = { 1194 .nr_pages = nr_pages, 1195 .initiator = { 1196 .id = PKVM_ID_HYP, 1197 .addr = hyp_addr, 1198 .hyp = { 1199 .completer_addr = host_addr, 1200 }, 1201 }, 1202 .completer = { 1203 .id = PKVM_ID_HOST, 1204 }, 1205 }, 1206 }; 1207 1208 host_lock_component(); 1209 hyp_lock_component(); 1210 1211 ret = do_donate(&donation); 1212 1213 hyp_unlock_component(); 1214 host_unlock_component(); 1215 1216 return ret; 1217 } 1218 1219 int hyp_pin_shared_mem(void *from, void *to) 1220 { 1221 u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); 1222 u64 end = PAGE_ALIGN((u64)to); 1223 u64 size = end - start; 1224 int ret; 1225 1226 host_lock_component(); 1227 hyp_lock_component(); 1228 1229 ret = __host_check_page_state_range(__hyp_pa(start), size, 1230 PKVM_PAGE_SHARED_OWNED); 1231 if (ret) 1232 goto unlock; 1233 1234 ret = __hyp_check_page_state_range(start, size, 1235 PKVM_PAGE_SHARED_BORROWED); 1236 if (ret) 1237 goto unlock; 1238 1239 for (cur = start; cur < end; cur += PAGE_SIZE) 1240 hyp_page_ref_inc(hyp_virt_to_page(cur)); 1241 1242 unlock: 1243 hyp_unlock_component(); 1244 host_unlock_component(); 1245 1246 return ret; 1247 } 1248 1249 void hyp_unpin_shared_mem(void *from, void *to) 1250 { 1251 u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); 1252 u64 end = PAGE_ALIGN((u64)to); 1253 1254 host_lock_component(); 1255 hyp_lock_component(); 1256 1257 for (cur = start; cur < end; cur += PAGE_SIZE) 1258 hyp_page_ref_dec(hyp_virt_to_page(cur)); 1259 1260 hyp_unlock_component(); 1261 host_unlock_component(); 1262 } 1263 1264 int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages) 1265 { 1266 int ret; 1267 struct pkvm_mem_share share = { 1268 .tx = { 1269 .nr_pages = nr_pages, 1270 .initiator = { 1271 .id = PKVM_ID_HOST, 1272 .addr = hyp_pfn_to_phys(pfn), 1273 }, 1274 .completer = { 1275 .id = PKVM_ID_FFA, 1276 }, 1277 }, 1278 }; 1279 1280 host_lock_component(); 1281 ret = do_share(&share); 1282 host_unlock_component(); 1283 1284 return ret; 1285 } 1286 1287 int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages) 1288 { 1289 int ret; 1290 struct pkvm_mem_share share = { 1291 .tx = { 1292 .nr_pages = nr_pages, 1293 .initiator = { 1294 .id = PKVM_ID_HOST, 1295 .addr = hyp_pfn_to_phys(pfn), 1296 }, 1297 .completer = { 1298 .id = PKVM_ID_FFA, 1299 }, 1300 }, 1301 }; 1302 1303 host_lock_component(); 1304 ret = do_unshare(&share); 1305 host_unlock_component(); 1306 1307 return ret; 1308 } 1309