1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 Google LLC 4 * Author: Quentin Perret <qperret@google.com> 5 */ 6 7 #include <linux/kvm_host.h> 8 #include <asm/kvm_emulate.h> 9 #include <asm/kvm_hyp.h> 10 #include <asm/kvm_mmu.h> 11 #include <asm/kvm_pgtable.h> 12 #include <asm/kvm_pkvm.h> 13 #include <asm/stage2_pgtable.h> 14 15 #include <hyp/fault.h> 16 17 #include <nvhe/gfp.h> 18 #include <nvhe/memory.h> 19 #include <nvhe/mem_protect.h> 20 #include <nvhe/mm.h> 21 22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP) 23 24 struct host_mmu host_mmu; 25 26 static struct hyp_pool host_s2_pool; 27 28 static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm); 29 #define current_vm (*this_cpu_ptr(&__current_vm)) 30 31 static void guest_lock_component(struct pkvm_hyp_vm *vm) 32 { 33 hyp_spin_lock(&vm->lock); 34 current_vm = vm; 35 } 36 37 static void guest_unlock_component(struct pkvm_hyp_vm *vm) 38 { 39 current_vm = NULL; 40 hyp_spin_unlock(&vm->lock); 41 } 42 43 static void host_lock_component(void) 44 { 45 hyp_spin_lock(&host_mmu.lock); 46 } 47 48 static void host_unlock_component(void) 49 { 50 hyp_spin_unlock(&host_mmu.lock); 51 } 52 53 static void hyp_lock_component(void) 54 { 55 hyp_spin_lock(&pkvm_pgd_lock); 56 } 57 58 static void hyp_unlock_component(void) 59 { 60 hyp_spin_unlock(&pkvm_pgd_lock); 61 } 62 63 static void *host_s2_zalloc_pages_exact(size_t size) 64 { 65 void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size)); 66 67 hyp_split_page(hyp_virt_to_page(addr)); 68 69 /* 70 * The size of concatenated PGDs is always a power of two of PAGE_SIZE, 71 * so there should be no need to free any of the tail pages to make the 72 * allocation exact. 73 */ 74 WARN_ON(size != (PAGE_SIZE << get_order(size))); 75 76 return addr; 77 } 78 79 static void *host_s2_zalloc_page(void *pool) 80 { 81 return hyp_alloc_pages(pool, 0); 82 } 83 84 static void host_s2_get_page(void *addr) 85 { 86 hyp_get_page(&host_s2_pool, addr); 87 } 88 89 static void host_s2_put_page(void *addr) 90 { 91 hyp_put_page(&host_s2_pool, addr); 92 } 93 94 static void host_s2_free_unlinked_table(void *addr, s8 level) 95 { 96 kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level); 97 } 98 99 static int prepare_s2_pool(void *pgt_pool_base) 100 { 101 unsigned long nr_pages, pfn; 102 int ret; 103 104 pfn = hyp_virt_to_pfn(pgt_pool_base); 105 nr_pages = host_s2_pgtable_pages(); 106 ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0); 107 if (ret) 108 return ret; 109 110 host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) { 111 .zalloc_pages_exact = host_s2_zalloc_pages_exact, 112 .zalloc_page = host_s2_zalloc_page, 113 .free_unlinked_table = host_s2_free_unlinked_table, 114 .phys_to_virt = hyp_phys_to_virt, 115 .virt_to_phys = hyp_virt_to_phys, 116 .page_count = hyp_page_count, 117 .get_page = host_s2_get_page, 118 .put_page = host_s2_put_page, 119 }; 120 121 return 0; 122 } 123 124 static void prepare_host_vtcr(void) 125 { 126 u32 parange, phys_shift; 127 128 /* The host stage 2 is id-mapped, so use parange for T0SZ */ 129 parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val); 130 phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange); 131 132 host_mmu.arch.mmu.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val, 133 id_aa64mmfr1_el1_sys_val, phys_shift); 134 } 135 136 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot); 137 138 int kvm_host_prepare_stage2(void *pgt_pool_base) 139 { 140 struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; 141 int ret; 142 143 prepare_host_vtcr(); 144 hyp_spin_lock_init(&host_mmu.lock); 145 mmu->arch = &host_mmu.arch; 146 147 ret = prepare_s2_pool(pgt_pool_base); 148 if (ret) 149 return ret; 150 151 ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu, 152 &host_mmu.mm_ops, KVM_HOST_S2_FLAGS, 153 host_stage2_force_pte_cb); 154 if (ret) 155 return ret; 156 157 mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd); 158 mmu->pgt = &host_mmu.pgt; 159 atomic64_set(&mmu->vmid.id, 0); 160 161 return 0; 162 } 163 164 static bool guest_stage2_force_pte_cb(u64 addr, u64 end, 165 enum kvm_pgtable_prot prot) 166 { 167 return true; 168 } 169 170 static void *guest_s2_zalloc_pages_exact(size_t size) 171 { 172 void *addr = hyp_alloc_pages(¤t_vm->pool, get_order(size)); 173 174 WARN_ON(size != (PAGE_SIZE << get_order(size))); 175 hyp_split_page(hyp_virt_to_page(addr)); 176 177 return addr; 178 } 179 180 static void guest_s2_free_pages_exact(void *addr, unsigned long size) 181 { 182 u8 order = get_order(size); 183 unsigned int i; 184 185 for (i = 0; i < (1 << order); i++) 186 hyp_put_page(¤t_vm->pool, addr + (i * PAGE_SIZE)); 187 } 188 189 static void *guest_s2_zalloc_page(void *mc) 190 { 191 struct hyp_page *p; 192 void *addr; 193 194 addr = hyp_alloc_pages(¤t_vm->pool, 0); 195 if (addr) 196 return addr; 197 198 addr = pop_hyp_memcache(mc, hyp_phys_to_virt); 199 if (!addr) 200 return addr; 201 202 memset(addr, 0, PAGE_SIZE); 203 p = hyp_virt_to_page(addr); 204 memset(p, 0, sizeof(*p)); 205 p->refcount = 1; 206 207 return addr; 208 } 209 210 static void guest_s2_get_page(void *addr) 211 { 212 hyp_get_page(¤t_vm->pool, addr); 213 } 214 215 static void guest_s2_put_page(void *addr) 216 { 217 hyp_put_page(¤t_vm->pool, addr); 218 } 219 220 static void clean_dcache_guest_page(void *va, size_t size) 221 { 222 __clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); 223 hyp_fixmap_unmap(); 224 } 225 226 static void invalidate_icache_guest_page(void *va, size_t size) 227 { 228 __invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); 229 hyp_fixmap_unmap(); 230 } 231 232 int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd) 233 { 234 struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu; 235 unsigned long nr_pages; 236 int ret; 237 238 nr_pages = kvm_pgtable_stage2_pgd_size(mmu->vtcr) >> PAGE_SHIFT; 239 ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0); 240 if (ret) 241 return ret; 242 243 hyp_spin_lock_init(&vm->lock); 244 vm->mm_ops = (struct kvm_pgtable_mm_ops) { 245 .zalloc_pages_exact = guest_s2_zalloc_pages_exact, 246 .free_pages_exact = guest_s2_free_pages_exact, 247 .zalloc_page = guest_s2_zalloc_page, 248 .phys_to_virt = hyp_phys_to_virt, 249 .virt_to_phys = hyp_virt_to_phys, 250 .page_count = hyp_page_count, 251 .get_page = guest_s2_get_page, 252 .put_page = guest_s2_put_page, 253 .dcache_clean_inval_poc = clean_dcache_guest_page, 254 .icache_inval_pou = invalidate_icache_guest_page, 255 }; 256 257 guest_lock_component(vm); 258 ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, 259 guest_stage2_force_pte_cb); 260 guest_unlock_component(vm); 261 if (ret) 262 return ret; 263 264 vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd); 265 266 return 0; 267 } 268 269 void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc) 270 { 271 void *addr; 272 273 /* Dump all pgtable pages in the hyp_pool */ 274 guest_lock_component(vm); 275 kvm_pgtable_stage2_destroy(&vm->pgt); 276 vm->kvm.arch.mmu.pgd_phys = 0ULL; 277 guest_unlock_component(vm); 278 279 /* Drain the hyp_pool into the memcache */ 280 addr = hyp_alloc_pages(&vm->pool, 0); 281 while (addr) { 282 memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page)); 283 push_hyp_memcache(mc, addr, hyp_virt_to_phys); 284 WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1)); 285 addr = hyp_alloc_pages(&vm->pool, 0); 286 } 287 } 288 289 int __pkvm_prot_finalize(void) 290 { 291 struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; 292 struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); 293 294 if (params->hcr_el2 & HCR_VM) 295 return -EPERM; 296 297 params->vttbr = kvm_get_vttbr(mmu); 298 params->vtcr = mmu->vtcr; 299 params->hcr_el2 |= HCR_VM; 300 301 /* 302 * The CMO below not only cleans the updated params to the 303 * PoC, but also provides the DSB that ensures ongoing 304 * page-table walks that have started before we trapped to EL2 305 * have completed. 306 */ 307 kvm_flush_dcache_to_poc(params, sizeof(*params)); 308 309 write_sysreg(params->hcr_el2, hcr_el2); 310 __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch); 311 312 /* 313 * Make sure to have an ISB before the TLB maintenance below but only 314 * when __load_stage2() doesn't include one already. 315 */ 316 asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); 317 318 /* Invalidate stale HCR bits that may be cached in TLBs */ 319 __tlbi(vmalls12e1); 320 dsb(nsh); 321 isb(); 322 323 return 0; 324 } 325 326 static int host_stage2_unmap_dev_all(void) 327 { 328 struct kvm_pgtable *pgt = &host_mmu.pgt; 329 struct memblock_region *reg; 330 u64 addr = 0; 331 int i, ret; 332 333 /* Unmap all non-memory regions to recycle the pages */ 334 for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) { 335 reg = &hyp_memory[i]; 336 ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr); 337 if (ret) 338 return ret; 339 } 340 return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr); 341 } 342 343 struct kvm_mem_range { 344 u64 start; 345 u64 end; 346 }; 347 348 static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range) 349 { 350 int cur, left = 0, right = hyp_memblock_nr; 351 struct memblock_region *reg; 352 phys_addr_t end; 353 354 range->start = 0; 355 range->end = ULONG_MAX; 356 357 /* The list of memblock regions is sorted, binary search it */ 358 while (left < right) { 359 cur = (left + right) >> 1; 360 reg = &hyp_memory[cur]; 361 end = reg->base + reg->size; 362 if (addr < reg->base) { 363 right = cur; 364 range->end = reg->base; 365 } else if (addr >= end) { 366 left = cur + 1; 367 range->start = end; 368 } else { 369 range->start = reg->base; 370 range->end = end; 371 return reg; 372 } 373 } 374 375 return NULL; 376 } 377 378 bool addr_is_memory(phys_addr_t phys) 379 { 380 struct kvm_mem_range range; 381 382 return !!find_mem_range(phys, &range); 383 } 384 385 static bool addr_is_allowed_memory(phys_addr_t phys) 386 { 387 struct memblock_region *reg; 388 struct kvm_mem_range range; 389 390 reg = find_mem_range(phys, &range); 391 392 return reg && !(reg->flags & MEMBLOCK_NOMAP); 393 } 394 395 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range) 396 { 397 return range->start <= addr && addr < range->end; 398 } 399 400 static bool range_is_memory(u64 start, u64 end) 401 { 402 struct kvm_mem_range r; 403 404 if (!find_mem_range(start, &r)) 405 return false; 406 407 return is_in_mem_range(end - 1, &r); 408 } 409 410 static inline int __host_stage2_idmap(u64 start, u64 end, 411 enum kvm_pgtable_prot prot) 412 { 413 return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start, 414 prot, &host_s2_pool, 0); 415 } 416 417 /* 418 * The pool has been provided with enough pages to cover all of memory with 419 * page granularity, but it is difficult to know how much of the MMIO range 420 * we will need to cover upfront, so we may need to 'recycle' the pages if we 421 * run out. 422 */ 423 #define host_stage2_try(fn, ...) \ 424 ({ \ 425 int __ret; \ 426 hyp_assert_lock_held(&host_mmu.lock); \ 427 __ret = fn(__VA_ARGS__); \ 428 if (__ret == -ENOMEM) { \ 429 __ret = host_stage2_unmap_dev_all(); \ 430 if (!__ret) \ 431 __ret = fn(__VA_ARGS__); \ 432 } \ 433 __ret; \ 434 }) 435 436 static inline bool range_included(struct kvm_mem_range *child, 437 struct kvm_mem_range *parent) 438 { 439 return parent->start <= child->start && child->end <= parent->end; 440 } 441 442 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range) 443 { 444 struct kvm_mem_range cur; 445 kvm_pte_t pte; 446 s8 level; 447 int ret; 448 449 hyp_assert_lock_held(&host_mmu.lock); 450 ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level); 451 if (ret) 452 return ret; 453 454 if (kvm_pte_valid(pte)) 455 return -EAGAIN; 456 457 if (pte) 458 return -EPERM; 459 460 do { 461 u64 granule = kvm_granule_size(level); 462 cur.start = ALIGN_DOWN(addr, granule); 463 cur.end = cur.start + granule; 464 level++; 465 } while ((level <= KVM_PGTABLE_LAST_LEVEL) && 466 !(kvm_level_supports_block_mapping(level) && 467 range_included(&cur, range))); 468 469 *range = cur; 470 471 return 0; 472 } 473 474 int host_stage2_idmap_locked(phys_addr_t addr, u64 size, 475 enum kvm_pgtable_prot prot) 476 { 477 return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot); 478 } 479 480 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id) 481 { 482 return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt, 483 addr, size, &host_s2_pool, owner_id); 484 } 485 486 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot) 487 { 488 /* 489 * Block mappings must be used with care in the host stage-2 as a 490 * kvm_pgtable_stage2_map() operation targeting a page in the range of 491 * an existing block will delete the block under the assumption that 492 * mappings in the rest of the block range can always be rebuilt lazily. 493 * That assumption is correct for the host stage-2 with RWX mappings 494 * targeting memory or RW mappings targeting MMIO ranges (see 495 * host_stage2_idmap() below which implements some of the host memory 496 * abort logic). However, this is not safe for any other mappings where 497 * the host stage-2 page-table is in fact the only place where this 498 * state is stored. In all those cases, it is safer to use page-level 499 * mappings, hence avoiding to lose the state because of side-effects in 500 * kvm_pgtable_stage2_map(). 501 */ 502 if (range_is_memory(addr, end)) 503 return prot != PKVM_HOST_MEM_PROT; 504 else 505 return prot != PKVM_HOST_MMIO_PROT; 506 } 507 508 static int host_stage2_idmap(u64 addr) 509 { 510 struct kvm_mem_range range; 511 bool is_memory = !!find_mem_range(addr, &range); 512 enum kvm_pgtable_prot prot; 513 int ret; 514 515 prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT; 516 517 host_lock_component(); 518 ret = host_stage2_adjust_range(addr, &range); 519 if (ret) 520 goto unlock; 521 522 ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot); 523 unlock: 524 host_unlock_component(); 525 526 return ret; 527 } 528 529 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt) 530 { 531 struct kvm_vcpu_fault_info fault; 532 u64 esr, addr; 533 int ret = 0; 534 535 esr = read_sysreg_el2(SYS_ESR); 536 if (!__get_fault_info(esr, &fault)) { 537 /* 538 * We've presumably raced with a page-table change which caused 539 * AT to fail, try again. 540 */ 541 return; 542 } 543 544 addr = (fault.hpfar_el2 & HPFAR_MASK) << 8; 545 ret = host_stage2_idmap(addr); 546 BUG_ON(ret && ret != -EAGAIN); 547 } 548 549 struct pkvm_mem_transition { 550 u64 nr_pages; 551 552 struct { 553 enum pkvm_component_id id; 554 /* Address in the initiator's address space */ 555 u64 addr; 556 557 union { 558 struct { 559 /* Address in the completer's address space */ 560 u64 completer_addr; 561 } host; 562 struct { 563 u64 completer_addr; 564 } hyp; 565 }; 566 } initiator; 567 568 struct { 569 enum pkvm_component_id id; 570 } completer; 571 }; 572 573 struct pkvm_mem_share { 574 const struct pkvm_mem_transition tx; 575 const enum kvm_pgtable_prot completer_prot; 576 }; 577 578 struct pkvm_mem_donation { 579 const struct pkvm_mem_transition tx; 580 }; 581 582 struct check_walk_data { 583 enum pkvm_page_state desired; 584 enum pkvm_page_state (*get_page_state)(kvm_pte_t pte, u64 addr); 585 }; 586 587 static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx, 588 enum kvm_pgtable_walk_flags visit) 589 { 590 struct check_walk_data *d = ctx->arg; 591 592 return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM; 593 } 594 595 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size, 596 struct check_walk_data *data) 597 { 598 struct kvm_pgtable_walker walker = { 599 .cb = __check_page_state_visitor, 600 .arg = data, 601 .flags = KVM_PGTABLE_WALK_LEAF, 602 }; 603 604 return kvm_pgtable_walk(pgt, addr, size, &walker); 605 } 606 607 static enum pkvm_page_state host_get_page_state(kvm_pte_t pte, u64 addr) 608 { 609 if (!addr_is_allowed_memory(addr)) 610 return PKVM_NOPAGE; 611 612 if (!kvm_pte_valid(pte) && pte) 613 return PKVM_NOPAGE; 614 615 return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte)); 616 } 617 618 static int __host_check_page_state_range(u64 addr, u64 size, 619 enum pkvm_page_state state) 620 { 621 struct check_walk_data d = { 622 .desired = state, 623 .get_page_state = host_get_page_state, 624 }; 625 626 hyp_assert_lock_held(&host_mmu.lock); 627 return check_page_state_range(&host_mmu.pgt, addr, size, &d); 628 } 629 630 static int __host_set_page_state_range(u64 addr, u64 size, 631 enum pkvm_page_state state) 632 { 633 enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state); 634 635 return host_stage2_idmap_locked(addr, size, prot); 636 } 637 638 static int host_request_owned_transition(u64 *completer_addr, 639 const struct pkvm_mem_transition *tx) 640 { 641 u64 size = tx->nr_pages * PAGE_SIZE; 642 u64 addr = tx->initiator.addr; 643 644 *completer_addr = tx->initiator.host.completer_addr; 645 return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED); 646 } 647 648 static int host_request_unshare(u64 *completer_addr, 649 const struct pkvm_mem_transition *tx) 650 { 651 u64 size = tx->nr_pages * PAGE_SIZE; 652 u64 addr = tx->initiator.addr; 653 654 *completer_addr = tx->initiator.host.completer_addr; 655 return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); 656 } 657 658 static int host_initiate_share(u64 *completer_addr, 659 const struct pkvm_mem_transition *tx) 660 { 661 u64 size = tx->nr_pages * PAGE_SIZE; 662 u64 addr = tx->initiator.addr; 663 664 *completer_addr = tx->initiator.host.completer_addr; 665 return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); 666 } 667 668 static int host_initiate_unshare(u64 *completer_addr, 669 const struct pkvm_mem_transition *tx) 670 { 671 u64 size = tx->nr_pages * PAGE_SIZE; 672 u64 addr = tx->initiator.addr; 673 674 *completer_addr = tx->initiator.host.completer_addr; 675 return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED); 676 } 677 678 static int host_initiate_donation(u64 *completer_addr, 679 const struct pkvm_mem_transition *tx) 680 { 681 u8 owner_id = tx->completer.id; 682 u64 size = tx->nr_pages * PAGE_SIZE; 683 684 *completer_addr = tx->initiator.host.completer_addr; 685 return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id); 686 } 687 688 static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) 689 { 690 return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || 691 tx->initiator.id != PKVM_ID_HYP); 692 } 693 694 static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx, 695 enum pkvm_page_state state) 696 { 697 u64 size = tx->nr_pages * PAGE_SIZE; 698 699 if (__host_ack_skip_pgtable_check(tx)) 700 return 0; 701 702 return __host_check_page_state_range(addr, size, state); 703 } 704 705 static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) 706 { 707 return __host_ack_transition(addr, tx, PKVM_NOPAGE); 708 } 709 710 static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx) 711 { 712 u64 size = tx->nr_pages * PAGE_SIZE; 713 u8 host_id = tx->completer.id; 714 715 return host_stage2_set_owner_locked(addr, size, host_id); 716 } 717 718 static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte, u64 addr) 719 { 720 if (!kvm_pte_valid(pte)) 721 return PKVM_NOPAGE; 722 723 return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte)); 724 } 725 726 static int __hyp_check_page_state_range(u64 addr, u64 size, 727 enum pkvm_page_state state) 728 { 729 struct check_walk_data d = { 730 .desired = state, 731 .get_page_state = hyp_get_page_state, 732 }; 733 734 hyp_assert_lock_held(&pkvm_pgd_lock); 735 return check_page_state_range(&pkvm_pgtable, addr, size, &d); 736 } 737 738 static int hyp_request_donation(u64 *completer_addr, 739 const struct pkvm_mem_transition *tx) 740 { 741 u64 size = tx->nr_pages * PAGE_SIZE; 742 u64 addr = tx->initiator.addr; 743 744 *completer_addr = tx->initiator.hyp.completer_addr; 745 return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED); 746 } 747 748 static int hyp_initiate_donation(u64 *completer_addr, 749 const struct pkvm_mem_transition *tx) 750 { 751 u64 size = tx->nr_pages * PAGE_SIZE; 752 int ret; 753 754 *completer_addr = tx->initiator.hyp.completer_addr; 755 ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size); 756 return (ret != size) ? -EFAULT : 0; 757 } 758 759 static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) 760 { 761 return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || 762 tx->initiator.id != PKVM_ID_HOST); 763 } 764 765 static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx, 766 enum kvm_pgtable_prot perms) 767 { 768 u64 size = tx->nr_pages * PAGE_SIZE; 769 770 if (perms != PAGE_HYP) 771 return -EPERM; 772 773 if (__hyp_ack_skip_pgtable_check(tx)) 774 return 0; 775 776 return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); 777 } 778 779 static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx) 780 { 781 u64 size = tx->nr_pages * PAGE_SIZE; 782 783 if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr)) 784 return -EBUSY; 785 786 if (__hyp_ack_skip_pgtable_check(tx)) 787 return 0; 788 789 return __hyp_check_page_state_range(addr, size, 790 PKVM_PAGE_SHARED_BORROWED); 791 } 792 793 static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) 794 { 795 u64 size = tx->nr_pages * PAGE_SIZE; 796 797 if (__hyp_ack_skip_pgtable_check(tx)) 798 return 0; 799 800 return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); 801 } 802 803 static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx, 804 enum kvm_pgtable_prot perms) 805 { 806 void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); 807 enum kvm_pgtable_prot prot; 808 809 prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED); 810 return pkvm_create_mappings_locked(start, end, prot); 811 } 812 813 static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx) 814 { 815 u64 size = tx->nr_pages * PAGE_SIZE; 816 int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size); 817 818 return (ret != size) ? -EFAULT : 0; 819 } 820 821 static int hyp_complete_donation(u64 addr, 822 const struct pkvm_mem_transition *tx) 823 { 824 void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); 825 enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED); 826 827 return pkvm_create_mappings_locked(start, end, prot); 828 } 829 830 static int check_share(struct pkvm_mem_share *share) 831 { 832 const struct pkvm_mem_transition *tx = &share->tx; 833 u64 completer_addr; 834 int ret; 835 836 switch (tx->initiator.id) { 837 case PKVM_ID_HOST: 838 ret = host_request_owned_transition(&completer_addr, tx); 839 break; 840 default: 841 ret = -EINVAL; 842 } 843 844 if (ret) 845 return ret; 846 847 switch (tx->completer.id) { 848 case PKVM_ID_HYP: 849 ret = hyp_ack_share(completer_addr, tx, share->completer_prot); 850 break; 851 case PKVM_ID_FFA: 852 /* 853 * We only check the host; the secure side will check the other 854 * end when we forward the FFA call. 855 */ 856 ret = 0; 857 break; 858 default: 859 ret = -EINVAL; 860 } 861 862 return ret; 863 } 864 865 static int __do_share(struct pkvm_mem_share *share) 866 { 867 const struct pkvm_mem_transition *tx = &share->tx; 868 u64 completer_addr; 869 int ret; 870 871 switch (tx->initiator.id) { 872 case PKVM_ID_HOST: 873 ret = host_initiate_share(&completer_addr, tx); 874 break; 875 default: 876 ret = -EINVAL; 877 } 878 879 if (ret) 880 return ret; 881 882 switch (tx->completer.id) { 883 case PKVM_ID_HYP: 884 ret = hyp_complete_share(completer_addr, tx, share->completer_prot); 885 break; 886 case PKVM_ID_FFA: 887 /* 888 * We're not responsible for any secure page-tables, so there's 889 * nothing to do here. 890 */ 891 ret = 0; 892 break; 893 default: 894 ret = -EINVAL; 895 } 896 897 return ret; 898 } 899 900 /* 901 * do_share(): 902 * 903 * The page owner grants access to another component with a given set 904 * of permissions. 905 * 906 * Initiator: OWNED => SHARED_OWNED 907 * Completer: NOPAGE => SHARED_BORROWED 908 */ 909 static int do_share(struct pkvm_mem_share *share) 910 { 911 int ret; 912 913 ret = check_share(share); 914 if (ret) 915 return ret; 916 917 return WARN_ON(__do_share(share)); 918 } 919 920 static int check_unshare(struct pkvm_mem_share *share) 921 { 922 const struct pkvm_mem_transition *tx = &share->tx; 923 u64 completer_addr; 924 int ret; 925 926 switch (tx->initiator.id) { 927 case PKVM_ID_HOST: 928 ret = host_request_unshare(&completer_addr, tx); 929 break; 930 default: 931 ret = -EINVAL; 932 } 933 934 if (ret) 935 return ret; 936 937 switch (tx->completer.id) { 938 case PKVM_ID_HYP: 939 ret = hyp_ack_unshare(completer_addr, tx); 940 break; 941 case PKVM_ID_FFA: 942 /* See check_share() */ 943 ret = 0; 944 break; 945 default: 946 ret = -EINVAL; 947 } 948 949 return ret; 950 } 951 952 static int __do_unshare(struct pkvm_mem_share *share) 953 { 954 const struct pkvm_mem_transition *tx = &share->tx; 955 u64 completer_addr; 956 int ret; 957 958 switch (tx->initiator.id) { 959 case PKVM_ID_HOST: 960 ret = host_initiate_unshare(&completer_addr, tx); 961 break; 962 default: 963 ret = -EINVAL; 964 } 965 966 if (ret) 967 return ret; 968 969 switch (tx->completer.id) { 970 case PKVM_ID_HYP: 971 ret = hyp_complete_unshare(completer_addr, tx); 972 break; 973 case PKVM_ID_FFA: 974 /* See __do_share() */ 975 ret = 0; 976 break; 977 default: 978 ret = -EINVAL; 979 } 980 981 return ret; 982 } 983 984 /* 985 * do_unshare(): 986 * 987 * The page owner revokes access from another component for a range of 988 * pages which were previously shared using do_share(). 989 * 990 * Initiator: SHARED_OWNED => OWNED 991 * Completer: SHARED_BORROWED => NOPAGE 992 */ 993 static int do_unshare(struct pkvm_mem_share *share) 994 { 995 int ret; 996 997 ret = check_unshare(share); 998 if (ret) 999 return ret; 1000 1001 return WARN_ON(__do_unshare(share)); 1002 } 1003 1004 static int check_donation(struct pkvm_mem_donation *donation) 1005 { 1006 const struct pkvm_mem_transition *tx = &donation->tx; 1007 u64 completer_addr; 1008 int ret; 1009 1010 switch (tx->initiator.id) { 1011 case PKVM_ID_HOST: 1012 ret = host_request_owned_transition(&completer_addr, tx); 1013 break; 1014 case PKVM_ID_HYP: 1015 ret = hyp_request_donation(&completer_addr, tx); 1016 break; 1017 default: 1018 ret = -EINVAL; 1019 } 1020 1021 if (ret) 1022 return ret; 1023 1024 switch (tx->completer.id) { 1025 case PKVM_ID_HOST: 1026 ret = host_ack_donation(completer_addr, tx); 1027 break; 1028 case PKVM_ID_HYP: 1029 ret = hyp_ack_donation(completer_addr, tx); 1030 break; 1031 default: 1032 ret = -EINVAL; 1033 } 1034 1035 return ret; 1036 } 1037 1038 static int __do_donate(struct pkvm_mem_donation *donation) 1039 { 1040 const struct pkvm_mem_transition *tx = &donation->tx; 1041 u64 completer_addr; 1042 int ret; 1043 1044 switch (tx->initiator.id) { 1045 case PKVM_ID_HOST: 1046 ret = host_initiate_donation(&completer_addr, tx); 1047 break; 1048 case PKVM_ID_HYP: 1049 ret = hyp_initiate_donation(&completer_addr, tx); 1050 break; 1051 default: 1052 ret = -EINVAL; 1053 } 1054 1055 if (ret) 1056 return ret; 1057 1058 switch (tx->completer.id) { 1059 case PKVM_ID_HOST: 1060 ret = host_complete_donation(completer_addr, tx); 1061 break; 1062 case PKVM_ID_HYP: 1063 ret = hyp_complete_donation(completer_addr, tx); 1064 break; 1065 default: 1066 ret = -EINVAL; 1067 } 1068 1069 return ret; 1070 } 1071 1072 /* 1073 * do_donate(): 1074 * 1075 * The page owner transfers ownership to another component, losing access 1076 * as a consequence. 1077 * 1078 * Initiator: OWNED => NOPAGE 1079 * Completer: NOPAGE => OWNED 1080 */ 1081 static int do_donate(struct pkvm_mem_donation *donation) 1082 { 1083 int ret; 1084 1085 ret = check_donation(donation); 1086 if (ret) 1087 return ret; 1088 1089 return WARN_ON(__do_donate(donation)); 1090 } 1091 1092 int __pkvm_host_share_hyp(u64 pfn) 1093 { 1094 int ret; 1095 u64 host_addr = hyp_pfn_to_phys(pfn); 1096 u64 hyp_addr = (u64)__hyp_va(host_addr); 1097 struct pkvm_mem_share share = { 1098 .tx = { 1099 .nr_pages = 1, 1100 .initiator = { 1101 .id = PKVM_ID_HOST, 1102 .addr = host_addr, 1103 .host = { 1104 .completer_addr = hyp_addr, 1105 }, 1106 }, 1107 .completer = { 1108 .id = PKVM_ID_HYP, 1109 }, 1110 }, 1111 .completer_prot = PAGE_HYP, 1112 }; 1113 1114 host_lock_component(); 1115 hyp_lock_component(); 1116 1117 ret = do_share(&share); 1118 1119 hyp_unlock_component(); 1120 host_unlock_component(); 1121 1122 return ret; 1123 } 1124 1125 int __pkvm_host_unshare_hyp(u64 pfn) 1126 { 1127 int ret; 1128 u64 host_addr = hyp_pfn_to_phys(pfn); 1129 u64 hyp_addr = (u64)__hyp_va(host_addr); 1130 struct pkvm_mem_share share = { 1131 .tx = { 1132 .nr_pages = 1, 1133 .initiator = { 1134 .id = PKVM_ID_HOST, 1135 .addr = host_addr, 1136 .host = { 1137 .completer_addr = hyp_addr, 1138 }, 1139 }, 1140 .completer = { 1141 .id = PKVM_ID_HYP, 1142 }, 1143 }, 1144 .completer_prot = PAGE_HYP, 1145 }; 1146 1147 host_lock_component(); 1148 hyp_lock_component(); 1149 1150 ret = do_unshare(&share); 1151 1152 hyp_unlock_component(); 1153 host_unlock_component(); 1154 1155 return ret; 1156 } 1157 1158 int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages) 1159 { 1160 int ret; 1161 u64 host_addr = hyp_pfn_to_phys(pfn); 1162 u64 hyp_addr = (u64)__hyp_va(host_addr); 1163 struct pkvm_mem_donation donation = { 1164 .tx = { 1165 .nr_pages = nr_pages, 1166 .initiator = { 1167 .id = PKVM_ID_HOST, 1168 .addr = host_addr, 1169 .host = { 1170 .completer_addr = hyp_addr, 1171 }, 1172 }, 1173 .completer = { 1174 .id = PKVM_ID_HYP, 1175 }, 1176 }, 1177 }; 1178 1179 host_lock_component(); 1180 hyp_lock_component(); 1181 1182 ret = do_donate(&donation); 1183 1184 hyp_unlock_component(); 1185 host_unlock_component(); 1186 1187 return ret; 1188 } 1189 1190 int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages) 1191 { 1192 int ret; 1193 u64 host_addr = hyp_pfn_to_phys(pfn); 1194 u64 hyp_addr = (u64)__hyp_va(host_addr); 1195 struct pkvm_mem_donation donation = { 1196 .tx = { 1197 .nr_pages = nr_pages, 1198 .initiator = { 1199 .id = PKVM_ID_HYP, 1200 .addr = hyp_addr, 1201 .hyp = { 1202 .completer_addr = host_addr, 1203 }, 1204 }, 1205 .completer = { 1206 .id = PKVM_ID_HOST, 1207 }, 1208 }, 1209 }; 1210 1211 host_lock_component(); 1212 hyp_lock_component(); 1213 1214 ret = do_donate(&donation); 1215 1216 hyp_unlock_component(); 1217 host_unlock_component(); 1218 1219 return ret; 1220 } 1221 1222 int hyp_pin_shared_mem(void *from, void *to) 1223 { 1224 u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); 1225 u64 end = PAGE_ALIGN((u64)to); 1226 u64 size = end - start; 1227 int ret; 1228 1229 host_lock_component(); 1230 hyp_lock_component(); 1231 1232 ret = __host_check_page_state_range(__hyp_pa(start), size, 1233 PKVM_PAGE_SHARED_OWNED); 1234 if (ret) 1235 goto unlock; 1236 1237 ret = __hyp_check_page_state_range(start, size, 1238 PKVM_PAGE_SHARED_BORROWED); 1239 if (ret) 1240 goto unlock; 1241 1242 for (cur = start; cur < end; cur += PAGE_SIZE) 1243 hyp_page_ref_inc(hyp_virt_to_page(cur)); 1244 1245 unlock: 1246 hyp_unlock_component(); 1247 host_unlock_component(); 1248 1249 return ret; 1250 } 1251 1252 void hyp_unpin_shared_mem(void *from, void *to) 1253 { 1254 u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); 1255 u64 end = PAGE_ALIGN((u64)to); 1256 1257 host_lock_component(); 1258 hyp_lock_component(); 1259 1260 for (cur = start; cur < end; cur += PAGE_SIZE) 1261 hyp_page_ref_dec(hyp_virt_to_page(cur)); 1262 1263 hyp_unlock_component(); 1264 host_unlock_component(); 1265 } 1266 1267 int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages) 1268 { 1269 int ret; 1270 struct pkvm_mem_share share = { 1271 .tx = { 1272 .nr_pages = nr_pages, 1273 .initiator = { 1274 .id = PKVM_ID_HOST, 1275 .addr = hyp_pfn_to_phys(pfn), 1276 }, 1277 .completer = { 1278 .id = PKVM_ID_FFA, 1279 }, 1280 }, 1281 }; 1282 1283 host_lock_component(); 1284 ret = do_share(&share); 1285 host_unlock_component(); 1286 1287 return ret; 1288 } 1289 1290 int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages) 1291 { 1292 int ret; 1293 struct pkvm_mem_share share = { 1294 .tx = { 1295 .nr_pages = nr_pages, 1296 .initiator = { 1297 .id = PKVM_ID_HOST, 1298 .addr = hyp_pfn_to_phys(pfn), 1299 }, 1300 .completer = { 1301 .id = PKVM_ID_FFA, 1302 }, 1303 }, 1304 }; 1305 1306 host_lock_component(); 1307 ret = do_unshare(&share); 1308 host_unlock_component(); 1309 1310 return ret; 1311 } 1312