xref: /linux/arch/arm64/kvm/hyp/nvhe/hyp-main.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 - Google Inc
4  * Author: Andrew Scull <ascull@google.com>
5  */
6 
7 #include <hyp/adjust_pc.h>
8 
9 #include <asm/pgtable-types.h>
10 #include <asm/kvm_asm.h>
11 #include <asm/kvm_emulate.h>
12 #include <asm/kvm_host.h>
13 #include <asm/kvm_hyp.h>
14 #include <asm/kvm_mmu.h>
15 
16 #include <nvhe/ffa.h>
17 #include <nvhe/mem_protect.h>
18 #include <nvhe/mm.h>
19 #include <nvhe/pkvm.h>
20 #include <nvhe/trap_handler.h>
21 
22 DEFINE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
23 
24 void __kvm_hyp_host_forward_smc(struct kvm_cpu_context *host_ctxt);
25 
26 static void __hyp_sve_save_guest(struct kvm_vcpu *vcpu)
27 {
28 	__vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR);
29 	/*
30 	 * On saving/restoring guest sve state, always use the maximum VL for
31 	 * the guest. The layout of the data when saving the sve state depends
32 	 * on the VL, so use a consistent (i.e., the maximum) guest VL.
33 	 */
34 	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
35 	__sve_save_state(vcpu_sve_pffr(vcpu), &vcpu->arch.ctxt.fp_regs.fpsr, true);
36 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL2);
37 }
38 
39 static void __hyp_sve_restore_host(void)
40 {
41 	struct cpu_sve_state *sve_state = *host_data_ptr(sve_state);
42 
43 	/*
44 	 * On saving/restoring host sve state, always use the maximum VL for
45 	 * the host. The layout of the data when saving the sve state depends
46 	 * on the VL, so use a consistent (i.e., the maximum) host VL.
47 	 *
48 	 * Setting ZCR_EL2 to ZCR_ELx_LEN_MASK sets the effective length
49 	 * supported by the system (or limited at EL3).
50 	 */
51 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL2);
52 	__sve_restore_state(sve_state->sve_regs + sve_ffr_offset(kvm_host_sve_max_vl),
53 			    &sve_state->fpsr,
54 			    true);
55 	write_sysreg_el1(sve_state->zcr_el1, SYS_ZCR);
56 }
57 
58 static void fpsimd_sve_flush(void)
59 {
60 	*host_data_ptr(fp_owner) = FP_STATE_HOST_OWNED;
61 }
62 
63 static void fpsimd_sve_sync(struct kvm_vcpu *vcpu)
64 {
65 	if (!guest_owns_fp_regs())
66 		return;
67 
68 	cpacr_clear_set(0, CPACR_ELx_FPEN | CPACR_ELx_ZEN);
69 	isb();
70 
71 	if (vcpu_has_sve(vcpu))
72 		__hyp_sve_save_guest(vcpu);
73 	else
74 		__fpsimd_save_state(&vcpu->arch.ctxt.fp_regs);
75 
76 	if (system_supports_sve())
77 		__hyp_sve_restore_host();
78 	else
79 		__fpsimd_restore_state(*host_data_ptr(fpsimd_state));
80 
81 	*host_data_ptr(fp_owner) = FP_STATE_HOST_OWNED;
82 }
83 
84 static void flush_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
85 {
86 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
87 
88 	fpsimd_sve_flush();
89 
90 	hyp_vcpu->vcpu.arch.ctxt	= host_vcpu->arch.ctxt;
91 
92 	hyp_vcpu->vcpu.arch.sve_state	= kern_hyp_va(host_vcpu->arch.sve_state);
93 	/* Limit guest vector length to the maximum supported by the host.  */
94 	hyp_vcpu->vcpu.arch.sve_max_vl	= min(host_vcpu->arch.sve_max_vl, kvm_host_sve_max_vl);
95 
96 	hyp_vcpu->vcpu.arch.hw_mmu	= host_vcpu->arch.hw_mmu;
97 
98 	hyp_vcpu->vcpu.arch.hcr_el2	= host_vcpu->arch.hcr_el2;
99 	hyp_vcpu->vcpu.arch.mdcr_el2	= host_vcpu->arch.mdcr_el2;
100 
101 	hyp_vcpu->vcpu.arch.iflags	= host_vcpu->arch.iflags;
102 
103 	hyp_vcpu->vcpu.arch.debug_ptr	= kern_hyp_va(host_vcpu->arch.debug_ptr);
104 
105 	hyp_vcpu->vcpu.arch.vsesr_el2	= host_vcpu->arch.vsesr_el2;
106 
107 	hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3 = host_vcpu->arch.vgic_cpu.vgic_v3;
108 }
109 
110 static void sync_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
111 {
112 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
113 	struct vgic_v3_cpu_if *hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3;
114 	struct vgic_v3_cpu_if *host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3;
115 	unsigned int i;
116 
117 	fpsimd_sve_sync(&hyp_vcpu->vcpu);
118 
119 	host_vcpu->arch.ctxt		= hyp_vcpu->vcpu.arch.ctxt;
120 
121 	host_vcpu->arch.hcr_el2		= hyp_vcpu->vcpu.arch.hcr_el2;
122 
123 	host_vcpu->arch.fault		= hyp_vcpu->vcpu.arch.fault;
124 
125 	host_vcpu->arch.iflags		= hyp_vcpu->vcpu.arch.iflags;
126 
127 	host_cpu_if->vgic_hcr		= hyp_cpu_if->vgic_hcr;
128 	for (i = 0; i < hyp_cpu_if->used_lrs; ++i)
129 		host_cpu_if->vgic_lr[i] = hyp_cpu_if->vgic_lr[i];
130 }
131 
132 static void handle___kvm_vcpu_run(struct kvm_cpu_context *host_ctxt)
133 {
134 	DECLARE_REG(struct kvm_vcpu *, host_vcpu, host_ctxt, 1);
135 	int ret;
136 
137 	host_vcpu = kern_hyp_va(host_vcpu);
138 
139 	if (unlikely(is_protected_kvm_enabled())) {
140 		struct pkvm_hyp_vcpu *hyp_vcpu;
141 		struct kvm *host_kvm;
142 
143 		/*
144 		 * KVM (and pKVM) doesn't support SME guests for now, and
145 		 * ensures that SME features aren't enabled in pstate when
146 		 * loading a vcpu. Therefore, if SME features enabled the host
147 		 * is misbehaving.
148 		 */
149 		if (unlikely(system_supports_sme() && read_sysreg_s(SYS_SVCR))) {
150 			ret = -EINVAL;
151 			goto out;
152 		}
153 
154 		host_kvm = kern_hyp_va(host_vcpu->kvm);
155 		hyp_vcpu = pkvm_load_hyp_vcpu(host_kvm->arch.pkvm.handle,
156 					      host_vcpu->vcpu_idx);
157 		if (!hyp_vcpu) {
158 			ret = -EINVAL;
159 			goto out;
160 		}
161 
162 		flush_hyp_vcpu(hyp_vcpu);
163 
164 		ret = __kvm_vcpu_run(&hyp_vcpu->vcpu);
165 
166 		sync_hyp_vcpu(hyp_vcpu);
167 		pkvm_put_hyp_vcpu(hyp_vcpu);
168 	} else {
169 		/* The host is fully trusted, run its vCPU directly. */
170 		ret = __kvm_vcpu_run(host_vcpu);
171 	}
172 
173 out:
174 	cpu_reg(host_ctxt, 1) =  ret;
175 }
176 
177 static void handle___kvm_adjust_pc(struct kvm_cpu_context *host_ctxt)
178 {
179 	DECLARE_REG(struct kvm_vcpu *, vcpu, host_ctxt, 1);
180 
181 	__kvm_adjust_pc(kern_hyp_va(vcpu));
182 }
183 
184 static void handle___kvm_flush_vm_context(struct kvm_cpu_context *host_ctxt)
185 {
186 	__kvm_flush_vm_context();
187 }
188 
189 static void handle___kvm_tlb_flush_vmid_ipa(struct kvm_cpu_context *host_ctxt)
190 {
191 	DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
192 	DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2);
193 	DECLARE_REG(int, level, host_ctxt, 3);
194 
195 	__kvm_tlb_flush_vmid_ipa(kern_hyp_va(mmu), ipa, level);
196 }
197 
198 static void handle___kvm_tlb_flush_vmid_ipa_nsh(struct kvm_cpu_context *host_ctxt)
199 {
200 	DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
201 	DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2);
202 	DECLARE_REG(int, level, host_ctxt, 3);
203 
204 	__kvm_tlb_flush_vmid_ipa_nsh(kern_hyp_va(mmu), ipa, level);
205 }
206 
207 static void
208 handle___kvm_tlb_flush_vmid_range(struct kvm_cpu_context *host_ctxt)
209 {
210 	DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
211 	DECLARE_REG(phys_addr_t, start, host_ctxt, 2);
212 	DECLARE_REG(unsigned long, pages, host_ctxt, 3);
213 
214 	__kvm_tlb_flush_vmid_range(kern_hyp_va(mmu), start, pages);
215 }
216 
217 static void handle___kvm_tlb_flush_vmid(struct kvm_cpu_context *host_ctxt)
218 {
219 	DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
220 
221 	__kvm_tlb_flush_vmid(kern_hyp_va(mmu));
222 }
223 
224 static void handle___kvm_flush_cpu_context(struct kvm_cpu_context *host_ctxt)
225 {
226 	DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
227 
228 	__kvm_flush_cpu_context(kern_hyp_va(mmu));
229 }
230 
231 static void handle___kvm_timer_set_cntvoff(struct kvm_cpu_context *host_ctxt)
232 {
233 	__kvm_timer_set_cntvoff(cpu_reg(host_ctxt, 1));
234 }
235 
236 static void handle___kvm_enable_ssbs(struct kvm_cpu_context *host_ctxt)
237 {
238 	u64 tmp;
239 
240 	tmp = read_sysreg_el2(SYS_SCTLR);
241 	tmp |= SCTLR_ELx_DSSBS;
242 	write_sysreg_el2(tmp, SYS_SCTLR);
243 }
244 
245 static void handle___vgic_v3_get_gic_config(struct kvm_cpu_context *host_ctxt)
246 {
247 	cpu_reg(host_ctxt, 1) = __vgic_v3_get_gic_config();
248 }
249 
250 static void handle___vgic_v3_init_lrs(struct kvm_cpu_context *host_ctxt)
251 {
252 	__vgic_v3_init_lrs();
253 }
254 
255 static void handle___kvm_get_mdcr_el2(struct kvm_cpu_context *host_ctxt)
256 {
257 	cpu_reg(host_ctxt, 1) = __kvm_get_mdcr_el2();
258 }
259 
260 static void handle___vgic_v3_save_vmcr_aprs(struct kvm_cpu_context *host_ctxt)
261 {
262 	DECLARE_REG(struct vgic_v3_cpu_if *, cpu_if, host_ctxt, 1);
263 
264 	__vgic_v3_save_vmcr_aprs(kern_hyp_va(cpu_if));
265 }
266 
267 static void handle___vgic_v3_restore_vmcr_aprs(struct kvm_cpu_context *host_ctxt)
268 {
269 	DECLARE_REG(struct vgic_v3_cpu_if *, cpu_if, host_ctxt, 1);
270 
271 	__vgic_v3_restore_vmcr_aprs(kern_hyp_va(cpu_if));
272 }
273 
274 static void handle___pkvm_init(struct kvm_cpu_context *host_ctxt)
275 {
276 	DECLARE_REG(phys_addr_t, phys, host_ctxt, 1);
277 	DECLARE_REG(unsigned long, size, host_ctxt, 2);
278 	DECLARE_REG(unsigned long, nr_cpus, host_ctxt, 3);
279 	DECLARE_REG(unsigned long *, per_cpu_base, host_ctxt, 4);
280 	DECLARE_REG(u32, hyp_va_bits, host_ctxt, 5);
281 
282 	/*
283 	 * __pkvm_init() will return only if an error occurred, otherwise it
284 	 * will tail-call in __pkvm_init_finalise() which will have to deal
285 	 * with the host context directly.
286 	 */
287 	cpu_reg(host_ctxt, 1) = __pkvm_init(phys, size, nr_cpus, per_cpu_base,
288 					    hyp_va_bits);
289 }
290 
291 static void handle___pkvm_cpu_set_vector(struct kvm_cpu_context *host_ctxt)
292 {
293 	DECLARE_REG(enum arm64_hyp_spectre_vector, slot, host_ctxt, 1);
294 
295 	cpu_reg(host_ctxt, 1) = pkvm_cpu_set_vector(slot);
296 }
297 
298 static void handle___pkvm_host_share_hyp(struct kvm_cpu_context *host_ctxt)
299 {
300 	DECLARE_REG(u64, pfn, host_ctxt, 1);
301 
302 	cpu_reg(host_ctxt, 1) = __pkvm_host_share_hyp(pfn);
303 }
304 
305 static void handle___pkvm_host_unshare_hyp(struct kvm_cpu_context *host_ctxt)
306 {
307 	DECLARE_REG(u64, pfn, host_ctxt, 1);
308 
309 	cpu_reg(host_ctxt, 1) = __pkvm_host_unshare_hyp(pfn);
310 }
311 
312 static void handle___pkvm_create_private_mapping(struct kvm_cpu_context *host_ctxt)
313 {
314 	DECLARE_REG(phys_addr_t, phys, host_ctxt, 1);
315 	DECLARE_REG(size_t, size, host_ctxt, 2);
316 	DECLARE_REG(enum kvm_pgtable_prot, prot, host_ctxt, 3);
317 
318 	/*
319 	 * __pkvm_create_private_mapping() populates a pointer with the
320 	 * hypervisor start address of the allocation.
321 	 *
322 	 * However, handle___pkvm_create_private_mapping() hypercall crosses the
323 	 * EL1/EL2 boundary so the pointer would not be valid in this context.
324 	 *
325 	 * Instead pass the allocation address as the return value (or return
326 	 * ERR_PTR() on failure).
327 	 */
328 	unsigned long haddr;
329 	int err = __pkvm_create_private_mapping(phys, size, prot, &haddr);
330 
331 	if (err)
332 		haddr = (unsigned long)ERR_PTR(err);
333 
334 	cpu_reg(host_ctxt, 1) = haddr;
335 }
336 
337 static void handle___pkvm_prot_finalize(struct kvm_cpu_context *host_ctxt)
338 {
339 	cpu_reg(host_ctxt, 1) = __pkvm_prot_finalize();
340 }
341 
342 static void handle___pkvm_vcpu_init_traps(struct kvm_cpu_context *host_ctxt)
343 {
344 	DECLARE_REG(struct kvm_vcpu *, vcpu, host_ctxt, 1);
345 
346 	__pkvm_vcpu_init_traps(kern_hyp_va(vcpu));
347 }
348 
349 static void handle___pkvm_init_vm(struct kvm_cpu_context *host_ctxt)
350 {
351 	DECLARE_REG(struct kvm *, host_kvm, host_ctxt, 1);
352 	DECLARE_REG(unsigned long, vm_hva, host_ctxt, 2);
353 	DECLARE_REG(unsigned long, pgd_hva, host_ctxt, 3);
354 
355 	host_kvm = kern_hyp_va(host_kvm);
356 	cpu_reg(host_ctxt, 1) = __pkvm_init_vm(host_kvm, vm_hva, pgd_hva);
357 }
358 
359 static void handle___pkvm_init_vcpu(struct kvm_cpu_context *host_ctxt)
360 {
361 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
362 	DECLARE_REG(struct kvm_vcpu *, host_vcpu, host_ctxt, 2);
363 	DECLARE_REG(unsigned long, vcpu_hva, host_ctxt, 3);
364 
365 	host_vcpu = kern_hyp_va(host_vcpu);
366 	cpu_reg(host_ctxt, 1) = __pkvm_init_vcpu(handle, host_vcpu, vcpu_hva);
367 }
368 
369 static void handle___pkvm_teardown_vm(struct kvm_cpu_context *host_ctxt)
370 {
371 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
372 
373 	cpu_reg(host_ctxt, 1) = __pkvm_teardown_vm(handle);
374 }
375 
376 typedef void (*hcall_t)(struct kvm_cpu_context *);
377 
378 #define HANDLE_FUNC(x)	[__KVM_HOST_SMCCC_FUNC_##x] = (hcall_t)handle_##x
379 
380 static const hcall_t host_hcall[] = {
381 	/* ___kvm_hyp_init */
382 	HANDLE_FUNC(__kvm_get_mdcr_el2),
383 	HANDLE_FUNC(__pkvm_init),
384 	HANDLE_FUNC(__pkvm_create_private_mapping),
385 	HANDLE_FUNC(__pkvm_cpu_set_vector),
386 	HANDLE_FUNC(__kvm_enable_ssbs),
387 	HANDLE_FUNC(__vgic_v3_init_lrs),
388 	HANDLE_FUNC(__vgic_v3_get_gic_config),
389 	HANDLE_FUNC(__pkvm_prot_finalize),
390 
391 	HANDLE_FUNC(__pkvm_host_share_hyp),
392 	HANDLE_FUNC(__pkvm_host_unshare_hyp),
393 	HANDLE_FUNC(__kvm_adjust_pc),
394 	HANDLE_FUNC(__kvm_vcpu_run),
395 	HANDLE_FUNC(__kvm_flush_vm_context),
396 	HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa),
397 	HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa_nsh),
398 	HANDLE_FUNC(__kvm_tlb_flush_vmid),
399 	HANDLE_FUNC(__kvm_tlb_flush_vmid_range),
400 	HANDLE_FUNC(__kvm_flush_cpu_context),
401 	HANDLE_FUNC(__kvm_timer_set_cntvoff),
402 	HANDLE_FUNC(__vgic_v3_save_vmcr_aprs),
403 	HANDLE_FUNC(__vgic_v3_restore_vmcr_aprs),
404 	HANDLE_FUNC(__pkvm_vcpu_init_traps),
405 	HANDLE_FUNC(__pkvm_init_vm),
406 	HANDLE_FUNC(__pkvm_init_vcpu),
407 	HANDLE_FUNC(__pkvm_teardown_vm),
408 };
409 
410 static void handle_host_hcall(struct kvm_cpu_context *host_ctxt)
411 {
412 	DECLARE_REG(unsigned long, id, host_ctxt, 0);
413 	unsigned long hcall_min = 0;
414 	hcall_t hfn;
415 
416 	/*
417 	 * If pKVM has been initialised then reject any calls to the
418 	 * early "privileged" hypercalls. Note that we cannot reject
419 	 * calls to __pkvm_prot_finalize for two reasons: (1) The static
420 	 * key used to determine initialisation must be toggled prior to
421 	 * finalisation and (2) finalisation is performed on a per-CPU
422 	 * basis. This is all fine, however, since __pkvm_prot_finalize
423 	 * returns -EPERM after the first call for a given CPU.
424 	 */
425 	if (static_branch_unlikely(&kvm_protected_mode_initialized))
426 		hcall_min = __KVM_HOST_SMCCC_FUNC___pkvm_prot_finalize;
427 
428 	id &= ~ARM_SMCCC_CALL_HINTS;
429 	id -= KVM_HOST_SMCCC_ID(0);
430 
431 	if (unlikely(id < hcall_min || id >= ARRAY_SIZE(host_hcall)))
432 		goto inval;
433 
434 	hfn = host_hcall[id];
435 	if (unlikely(!hfn))
436 		goto inval;
437 
438 	cpu_reg(host_ctxt, 0) = SMCCC_RET_SUCCESS;
439 	hfn(host_ctxt);
440 
441 	return;
442 inval:
443 	cpu_reg(host_ctxt, 0) = SMCCC_RET_NOT_SUPPORTED;
444 }
445 
446 static void default_host_smc_handler(struct kvm_cpu_context *host_ctxt)
447 {
448 	__kvm_hyp_host_forward_smc(host_ctxt);
449 }
450 
451 static void handle_host_smc(struct kvm_cpu_context *host_ctxt)
452 {
453 	DECLARE_REG(u64, func_id, host_ctxt, 0);
454 	bool handled;
455 
456 	func_id &= ~ARM_SMCCC_CALL_HINTS;
457 
458 	handled = kvm_host_psci_handler(host_ctxt, func_id);
459 	if (!handled)
460 		handled = kvm_host_ffa_handler(host_ctxt, func_id);
461 	if (!handled)
462 		default_host_smc_handler(host_ctxt);
463 
464 	/* SMC was trapped, move ELR past the current PC. */
465 	kvm_skip_host_instr();
466 }
467 
468 void handle_trap(struct kvm_cpu_context *host_ctxt)
469 {
470 	u64 esr = read_sysreg_el2(SYS_ESR);
471 
472 	switch (ESR_ELx_EC(esr)) {
473 	case ESR_ELx_EC_HVC64:
474 		handle_host_hcall(host_ctxt);
475 		break;
476 	case ESR_ELx_EC_SMC64:
477 		handle_host_smc(host_ctxt);
478 		break;
479 	case ESR_ELx_EC_SVE:
480 		cpacr_clear_set(0, CPACR_ELx_ZEN);
481 		isb();
482 		sve_cond_update_zcr_vq(ZCR_ELx_LEN_MASK, SYS_ZCR_EL2);
483 		break;
484 	case ESR_ELx_EC_IABT_LOW:
485 	case ESR_ELx_EC_DABT_LOW:
486 		handle_host_mem_abort(host_ctxt);
487 		break;
488 	default:
489 		BUG();
490 	}
491 }
492