1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/kvm/handle_exit.c: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #include <linux/kvm.h> 12 #include <linux/kvm_host.h> 13 14 #include <asm/esr.h> 15 #include <asm/exception.h> 16 #include <asm/kvm_asm.h> 17 #include <asm/kvm_emulate.h> 18 #include <asm/kvm_mmu.h> 19 #include <asm/kvm_nested.h> 20 #include <asm/debug-monitors.h> 21 #include <asm/stacktrace/nvhe.h> 22 #include <asm/traps.h> 23 24 #include <kvm/arm_hypercalls.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_handle_exit.h" 28 29 typedef int (*exit_handle_fn)(struct kvm_vcpu *); 30 31 static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr) 32 { 33 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr)) 34 kvm_inject_vabt(vcpu); 35 } 36 37 static int handle_hvc(struct kvm_vcpu *vcpu) 38 { 39 trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0), 40 kvm_vcpu_hvc_get_imm(vcpu)); 41 vcpu->stat.hvc_exit_stat++; 42 43 /* Forward hvc instructions to the virtual EL2 if the guest has EL2. */ 44 if (vcpu_has_nv(vcpu)) { 45 if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD) 46 kvm_inject_undefined(vcpu); 47 else 48 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 49 50 return 1; 51 } 52 53 return kvm_smccc_call_handler(vcpu); 54 } 55 56 static int handle_smc(struct kvm_vcpu *vcpu) 57 { 58 /* 59 * Forward this trapped smc instruction to the virtual EL2 if 60 * the guest has asked for it. 61 */ 62 if (forward_smc_trap(vcpu)) 63 return 1; 64 65 /* 66 * "If an SMC instruction executed at Non-secure EL1 is 67 * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a 68 * Trap exception, not a Secure Monitor Call exception [...]" 69 * 70 * We need to advance the PC after the trap, as it would 71 * otherwise return to the same address. Furthermore, pre-incrementing 72 * the PC before potentially exiting to userspace maintains the same 73 * abstraction for both SMCs and HVCs. 74 */ 75 kvm_incr_pc(vcpu); 76 77 /* 78 * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9 79 * "SMC and HVC immediate value". 80 */ 81 if (kvm_vcpu_hvc_get_imm(vcpu)) { 82 vcpu_set_reg(vcpu, 0, ~0UL); 83 return 1; 84 } 85 86 /* 87 * If imm is zero then it is likely an SMCCC call. 88 * 89 * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed 90 * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than 91 * being treated as UNDEFINED. 92 */ 93 return kvm_smccc_call_handler(vcpu); 94 } 95 96 /* 97 * This handles the cases where the system does not support FP/ASIMD or when 98 * we are running nested virtualization and the guest hypervisor is trapping 99 * FP/ASIMD accesses by its guest guest. 100 * 101 * All other handling of guest vs. host FP/ASIMD register state is handled in 102 * fixup_guest_exit(). 103 */ 104 static int kvm_handle_fpasimd(struct kvm_vcpu *vcpu) 105 { 106 if (guest_hyp_fpsimd_traps_enabled(vcpu)) 107 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 108 109 /* This is the case when the system doesn't support FP/ASIMD. */ 110 kvm_inject_undefined(vcpu); 111 return 1; 112 } 113 114 /** 115 * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event 116 * instruction executed by a guest 117 * 118 * @vcpu: the vcpu pointer 119 * 120 * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler 121 * decides to. 122 * WFI: Simply call kvm_vcpu_halt(), which will halt execution of 123 * world-switches and schedule other host processes until there is an 124 * incoming IRQ or FIQ to the VM. 125 * WFIT: Same as WFI, with a timed wakeup implemented as a background timer 126 * 127 * WF{I,E}T can immediately return if the deadline has already expired. 128 */ 129 static int kvm_handle_wfx(struct kvm_vcpu *vcpu) 130 { 131 u64 esr = kvm_vcpu_get_esr(vcpu); 132 133 if (esr & ESR_ELx_WFx_ISS_WFE) { 134 trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true); 135 vcpu->stat.wfe_exit_stat++; 136 } else { 137 trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false); 138 vcpu->stat.wfi_exit_stat++; 139 } 140 141 if (esr & ESR_ELx_WFx_ISS_WFxT) { 142 if (esr & ESR_ELx_WFx_ISS_RV) { 143 u64 val, now; 144 145 now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT); 146 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); 147 148 if (now >= val) 149 goto out; 150 } else { 151 /* Treat WFxT as WFx if RN is invalid */ 152 esr &= ~ESR_ELx_WFx_ISS_WFxT; 153 } 154 } 155 156 if (esr & ESR_ELx_WFx_ISS_WFE) { 157 kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu)); 158 } else { 159 if (esr & ESR_ELx_WFx_ISS_WFxT) 160 vcpu_set_flag(vcpu, IN_WFIT); 161 162 kvm_vcpu_wfi(vcpu); 163 } 164 out: 165 kvm_incr_pc(vcpu); 166 167 return 1; 168 } 169 170 /** 171 * kvm_handle_guest_debug - handle a debug exception instruction 172 * 173 * @vcpu: the vcpu pointer 174 * 175 * We route all debug exceptions through the same handler. If both the 176 * guest and host are using the same debug facilities it will be up to 177 * userspace to re-inject the correct exception for guest delivery. 178 * 179 * @return: 0 (while setting vcpu->run->exit_reason) 180 */ 181 static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu) 182 { 183 struct kvm_run *run = vcpu->run; 184 u64 esr = kvm_vcpu_get_esr(vcpu); 185 186 run->exit_reason = KVM_EXIT_DEBUG; 187 run->debug.arch.hsr = lower_32_bits(esr); 188 run->debug.arch.hsr_high = upper_32_bits(esr); 189 run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID; 190 191 switch (ESR_ELx_EC(esr)) { 192 case ESR_ELx_EC_WATCHPT_LOW: 193 run->debug.arch.far = vcpu->arch.fault.far_el2; 194 break; 195 case ESR_ELx_EC_SOFTSTP_LOW: 196 vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING); 197 break; 198 } 199 200 return 0; 201 } 202 203 static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu) 204 { 205 u64 esr = kvm_vcpu_get_esr(vcpu); 206 207 kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n", 208 esr, esr_get_class_string(esr)); 209 210 kvm_inject_undefined(vcpu); 211 return 1; 212 } 213 214 /* 215 * Guest access to SVE registers should be routed to this handler only 216 * when the system doesn't support SVE. 217 */ 218 static int handle_sve(struct kvm_vcpu *vcpu) 219 { 220 if (guest_hyp_sve_traps_enabled(vcpu)) 221 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 222 223 kvm_inject_undefined(vcpu); 224 return 1; 225 } 226 227 /* 228 * Two possibilities to handle a trapping ptrauth instruction: 229 * 230 * - Guest usage of a ptrauth instruction (which the guest EL1 did not 231 * turn into a NOP). If we get here, it is because we didn't enable 232 * ptrauth for the guest. This results in an UNDEF, as it isn't 233 * supposed to use ptrauth without being told it could. 234 * 235 * - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for 236 * which we reinject the exception into L1. 237 * 238 * Anything else is an emulation bug (hence the WARN_ON + UNDEF). 239 */ 240 static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu) 241 { 242 if (!vcpu_has_ptrauth(vcpu)) { 243 kvm_inject_undefined(vcpu); 244 return 1; 245 } 246 247 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { 248 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 249 return 1; 250 } 251 252 /* Really shouldn't be here! */ 253 WARN_ON_ONCE(1); 254 kvm_inject_undefined(vcpu); 255 return 1; 256 } 257 258 static int kvm_handle_eret(struct kvm_vcpu *vcpu) 259 { 260 if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) && 261 !vcpu_has_ptrauth(vcpu)) 262 return kvm_handle_ptrauth(vcpu); 263 264 /* 265 * If we got here, two possibilities: 266 * 267 * - the guest is in EL2, and we need to fully emulate ERET 268 * 269 * - the guest is in EL1, and we need to reinject the 270 * exception into the L1 hypervisor. 271 * 272 * If KVM ever traps ERET for its own use, we'll have to 273 * revisit this. 274 */ 275 if (is_hyp_ctxt(vcpu)) 276 kvm_emulate_nested_eret(vcpu); 277 else 278 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 279 280 return 1; 281 } 282 283 static int handle_svc(struct kvm_vcpu *vcpu) 284 { 285 /* 286 * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a 287 * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so 288 * we should only have to deal with a 64 bit exception. 289 */ 290 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 291 return 1; 292 } 293 294 static exit_handle_fn arm_exit_handlers[] = { 295 [0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec, 296 [ESR_ELx_EC_WFx] = kvm_handle_wfx, 297 [ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32, 298 [ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64, 299 [ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32, 300 [ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store, 301 [ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id, 302 [ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64, 303 [ESR_ELx_EC_HVC32] = handle_hvc, 304 [ESR_ELx_EC_SMC32] = handle_smc, 305 [ESR_ELx_EC_HVC64] = handle_hvc, 306 [ESR_ELx_EC_SMC64] = handle_smc, 307 [ESR_ELx_EC_SVC64] = handle_svc, 308 [ESR_ELx_EC_SYS64] = kvm_handle_sys_reg, 309 [ESR_ELx_EC_SVE] = handle_sve, 310 [ESR_ELx_EC_ERET] = kvm_handle_eret, 311 [ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort, 312 [ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort, 313 [ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug, 314 [ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug, 315 [ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug, 316 [ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug, 317 [ESR_ELx_EC_BRK64] = kvm_handle_guest_debug, 318 [ESR_ELx_EC_FP_ASIMD] = kvm_handle_fpasimd, 319 [ESR_ELx_EC_PAC] = kvm_handle_ptrauth, 320 }; 321 322 static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu) 323 { 324 u64 esr = kvm_vcpu_get_esr(vcpu); 325 u8 esr_ec = ESR_ELx_EC(esr); 326 327 return arm_exit_handlers[esr_ec]; 328 } 329 330 /* 331 * We may be single-stepping an emulated instruction. If the emulation 332 * has been completed in the kernel, we can return to userspace with a 333 * KVM_EXIT_DEBUG, otherwise userspace needs to complete its 334 * emulation first. 335 */ 336 static int handle_trap_exceptions(struct kvm_vcpu *vcpu) 337 { 338 int handled; 339 340 /* 341 * See ARM ARM B1.14.1: "Hyp traps on instructions 342 * that fail their condition code check" 343 */ 344 if (!kvm_condition_valid(vcpu)) { 345 kvm_incr_pc(vcpu); 346 handled = 1; 347 } else { 348 exit_handle_fn exit_handler; 349 350 exit_handler = kvm_get_exit_handler(vcpu); 351 handled = exit_handler(vcpu); 352 } 353 354 return handled; 355 } 356 357 /* 358 * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on 359 * proper exit to userspace. 360 */ 361 int handle_exit(struct kvm_vcpu *vcpu, int exception_index) 362 { 363 struct kvm_run *run = vcpu->run; 364 365 if (ARM_SERROR_PENDING(exception_index)) { 366 /* 367 * The SError is handled by handle_exit_early(). If the guest 368 * survives it will re-execute the original instruction. 369 */ 370 return 1; 371 } 372 373 exception_index = ARM_EXCEPTION_CODE(exception_index); 374 375 switch (exception_index) { 376 case ARM_EXCEPTION_IRQ: 377 return 1; 378 case ARM_EXCEPTION_EL1_SERROR: 379 return 1; 380 case ARM_EXCEPTION_TRAP: 381 return handle_trap_exceptions(vcpu); 382 case ARM_EXCEPTION_HYP_GONE: 383 /* 384 * EL2 has been reset to the hyp-stub. This happens when a guest 385 * is pre-emptied by kvm_reboot()'s shutdown call. 386 */ 387 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 388 return 0; 389 case ARM_EXCEPTION_IL: 390 /* 391 * We attempted an illegal exception return. Guest state must 392 * have been corrupted somehow. Give up. 393 */ 394 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 395 return -EINVAL; 396 default: 397 kvm_pr_unimpl("Unsupported exception type: %d", 398 exception_index); 399 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 400 return 0; 401 } 402 } 403 404 /* For exit types that need handling before we can be preempted */ 405 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index) 406 { 407 if (ARM_SERROR_PENDING(exception_index)) { 408 if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) { 409 u64 disr = kvm_vcpu_get_disr(vcpu); 410 411 kvm_handle_guest_serror(vcpu, disr_to_esr(disr)); 412 } else { 413 kvm_inject_vabt(vcpu); 414 } 415 416 return; 417 } 418 419 exception_index = ARM_EXCEPTION_CODE(exception_index); 420 421 if (exception_index == ARM_EXCEPTION_EL1_SERROR) 422 kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu)); 423 } 424 425 static void print_nvhe_hyp_panic(const char *name, u64 panic_addr) 426 { 427 kvm_err("nVHE hyp %s at: [<%016llx>] %pB!\n", name, panic_addr, 428 (void *)(panic_addr + kaslr_offset())); 429 } 430 431 static void kvm_nvhe_report_cfi_failure(u64 panic_addr) 432 { 433 print_nvhe_hyp_panic("CFI failure", panic_addr); 434 435 if (IS_ENABLED(CONFIG_CFI_PERMISSIVE)) 436 kvm_err(" (CONFIG_CFI_PERMISSIVE ignored for hyp failures)\n"); 437 } 438 439 void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr, 440 u64 elr_virt, u64 elr_phys, 441 u64 par, uintptr_t vcpu, 442 u64 far, u64 hpfar) { 443 u64 elr_in_kimg = __phys_to_kimg(elr_phys); 444 u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt; 445 u64 mode = spsr & PSR_MODE_MASK; 446 u64 panic_addr = elr_virt + hyp_offset; 447 448 if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) { 449 kvm_err("Invalid host exception to nVHE hyp!\n"); 450 } else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 && 451 esr_brk_comment(esr) == BUG_BRK_IMM) { 452 const char *file = NULL; 453 unsigned int line = 0; 454 455 /* All hyp bugs, including warnings, are treated as fatal. */ 456 if (!is_protected_kvm_enabled() || 457 IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) { 458 struct bug_entry *bug = find_bug(elr_in_kimg); 459 460 if (bug) 461 bug_get_file_line(bug, &file, &line); 462 } 463 464 if (file) 465 kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line); 466 else 467 print_nvhe_hyp_panic("BUG", panic_addr); 468 } else if (IS_ENABLED(CONFIG_CFI_CLANG) && esr_is_cfi_brk(esr)) { 469 kvm_nvhe_report_cfi_failure(panic_addr); 470 } else { 471 print_nvhe_hyp_panic("panic", panic_addr); 472 } 473 474 /* Dump the nVHE hypervisor backtrace */ 475 kvm_nvhe_dump_backtrace(hyp_offset); 476 477 /* 478 * Hyp has panicked and we're going to handle that by panicking the 479 * kernel. The kernel offset will be revealed in the panic so we're 480 * also safe to reveal the hyp offset as a debugging aid for translating 481 * hyp VAs to vmlinux addresses. 482 */ 483 kvm_err("Hyp Offset: 0x%llx\n", hyp_offset); 484 485 panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n", 486 spsr, elr_virt, esr, far, hpfar, par, vcpu); 487 } 488