1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/kvm/handle_exit.c: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #include <linux/kvm.h> 12 #include <linux/kvm_host.h> 13 14 #include <asm/esr.h> 15 #include <asm/exception.h> 16 #include <asm/kvm_asm.h> 17 #include <asm/kvm_emulate.h> 18 #include <asm/kvm_mmu.h> 19 #include <asm/kvm_nested.h> 20 #include <asm/debug-monitors.h> 21 #include <asm/stacktrace/nvhe.h> 22 #include <asm/traps.h> 23 24 #include <kvm/arm_hypercalls.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_handle_exit.h" 28 29 typedef int (*exit_handle_fn)(struct kvm_vcpu *); 30 31 static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr) 32 { 33 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr)) 34 kvm_inject_vabt(vcpu); 35 } 36 37 static int handle_hvc(struct kvm_vcpu *vcpu) 38 { 39 trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0), 40 kvm_vcpu_hvc_get_imm(vcpu)); 41 vcpu->stat.hvc_exit_stat++; 42 43 /* Forward hvc instructions to the virtual EL2 if the guest has EL2. */ 44 if (vcpu_has_nv(vcpu)) { 45 if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD) 46 kvm_inject_undefined(vcpu); 47 else 48 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 49 50 return 1; 51 } 52 53 return kvm_smccc_call_handler(vcpu); 54 } 55 56 static int handle_smc(struct kvm_vcpu *vcpu) 57 { 58 /* 59 * Forward this trapped smc instruction to the virtual EL2 if 60 * the guest has asked for it. 61 */ 62 if (forward_smc_trap(vcpu)) 63 return 1; 64 65 /* 66 * "If an SMC instruction executed at Non-secure EL1 is 67 * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a 68 * Trap exception, not a Secure Monitor Call exception [...]" 69 * 70 * We need to advance the PC after the trap, as it would 71 * otherwise return to the same address. Furthermore, pre-incrementing 72 * the PC before potentially exiting to userspace maintains the same 73 * abstraction for both SMCs and HVCs. 74 */ 75 kvm_incr_pc(vcpu); 76 77 /* 78 * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9 79 * "SMC and HVC immediate value". 80 */ 81 if (kvm_vcpu_hvc_get_imm(vcpu)) { 82 vcpu_set_reg(vcpu, 0, ~0UL); 83 return 1; 84 } 85 86 /* 87 * If imm is zero then it is likely an SMCCC call. 88 * 89 * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed 90 * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than 91 * being treated as UNDEFINED. 92 */ 93 return kvm_smccc_call_handler(vcpu); 94 } 95 96 /* 97 * This handles the cases where the system does not support FP/ASIMD or when 98 * we are running nested virtualization and the guest hypervisor is trapping 99 * FP/ASIMD accesses by its guest guest. 100 * 101 * All other handling of guest vs. host FP/ASIMD register state is handled in 102 * fixup_guest_exit(). 103 */ 104 static int kvm_handle_fpasimd(struct kvm_vcpu *vcpu) 105 { 106 if (guest_hyp_fpsimd_traps_enabled(vcpu)) 107 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 108 109 /* This is the case when the system doesn't support FP/ASIMD. */ 110 kvm_inject_undefined(vcpu); 111 return 1; 112 } 113 114 /** 115 * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event 116 * instruction executed by a guest 117 * 118 * @vcpu: the vcpu pointer 119 * 120 * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler 121 * decides to. 122 * WFI: Simply call kvm_vcpu_halt(), which will halt execution of 123 * world-switches and schedule other host processes until there is an 124 * incoming IRQ or FIQ to the VM. 125 * WFIT: Same as WFI, with a timed wakeup implemented as a background timer 126 * 127 * WF{I,E}T can immediately return if the deadline has already expired. 128 */ 129 static int kvm_handle_wfx(struct kvm_vcpu *vcpu) 130 { 131 u64 esr = kvm_vcpu_get_esr(vcpu); 132 bool is_wfe = !!(esr & ESR_ELx_WFx_ISS_WFE); 133 134 if (guest_hyp_wfx_traps_enabled(vcpu)) 135 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 136 137 if (is_wfe) { 138 trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true); 139 vcpu->stat.wfe_exit_stat++; 140 } else { 141 trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false); 142 vcpu->stat.wfi_exit_stat++; 143 } 144 145 if (esr & ESR_ELx_WFx_ISS_WFxT) { 146 if (esr & ESR_ELx_WFx_ISS_RV) { 147 u64 val, now; 148 149 now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT); 150 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); 151 152 if (now >= val) 153 goto out; 154 } else { 155 /* Treat WFxT as WFx if RN is invalid */ 156 esr &= ~ESR_ELx_WFx_ISS_WFxT; 157 } 158 } 159 160 if (esr & ESR_ELx_WFx_ISS_WFE) { 161 kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu)); 162 } else { 163 if (esr & ESR_ELx_WFx_ISS_WFxT) 164 vcpu_set_flag(vcpu, IN_WFIT); 165 166 kvm_vcpu_wfi(vcpu); 167 } 168 out: 169 kvm_incr_pc(vcpu); 170 171 return 1; 172 } 173 174 /** 175 * kvm_handle_guest_debug - handle a debug exception instruction 176 * 177 * @vcpu: the vcpu pointer 178 * 179 * We route all debug exceptions through the same handler. If both the 180 * guest and host are using the same debug facilities it will be up to 181 * userspace to re-inject the correct exception for guest delivery. 182 * 183 * @return: 0 (while setting vcpu->run->exit_reason) 184 */ 185 static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu) 186 { 187 struct kvm_run *run = vcpu->run; 188 u64 esr = kvm_vcpu_get_esr(vcpu); 189 190 if (!vcpu->guest_debug && forward_debug_exception(vcpu)) 191 return 1; 192 193 run->exit_reason = KVM_EXIT_DEBUG; 194 run->debug.arch.hsr = lower_32_bits(esr); 195 run->debug.arch.hsr_high = upper_32_bits(esr); 196 run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID; 197 198 switch (ESR_ELx_EC(esr)) { 199 case ESR_ELx_EC_WATCHPT_LOW: 200 run->debug.arch.far = vcpu->arch.fault.far_el2; 201 break; 202 case ESR_ELx_EC_SOFTSTP_LOW: 203 *vcpu_cpsr(vcpu) |= DBG_SPSR_SS; 204 break; 205 } 206 207 return 0; 208 } 209 210 static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu) 211 { 212 u64 esr = kvm_vcpu_get_esr(vcpu); 213 214 kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n", 215 esr, esr_get_class_string(esr)); 216 217 kvm_inject_undefined(vcpu); 218 return 1; 219 } 220 221 /* 222 * Guest access to SVE registers should be routed to this handler only 223 * when the system doesn't support SVE. 224 */ 225 static int handle_sve(struct kvm_vcpu *vcpu) 226 { 227 if (guest_hyp_sve_traps_enabled(vcpu)) 228 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 229 230 kvm_inject_undefined(vcpu); 231 return 1; 232 } 233 234 /* 235 * Two possibilities to handle a trapping ptrauth instruction: 236 * 237 * - Guest usage of a ptrauth instruction (which the guest EL1 did not 238 * turn into a NOP). If we get here, it is because we didn't enable 239 * ptrauth for the guest. This results in an UNDEF, as it isn't 240 * supposed to use ptrauth without being told it could. 241 * 242 * - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for 243 * which we reinject the exception into L1. 244 * 245 * Anything else is an emulation bug (hence the WARN_ON + UNDEF). 246 */ 247 static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu) 248 { 249 if (!vcpu_has_ptrauth(vcpu)) { 250 kvm_inject_undefined(vcpu); 251 return 1; 252 } 253 254 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { 255 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 256 return 1; 257 } 258 259 /* Really shouldn't be here! */ 260 WARN_ON_ONCE(1); 261 kvm_inject_undefined(vcpu); 262 return 1; 263 } 264 265 static int kvm_handle_eret(struct kvm_vcpu *vcpu) 266 { 267 if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) && 268 !vcpu_has_ptrauth(vcpu)) 269 return kvm_handle_ptrauth(vcpu); 270 271 /* 272 * If we got here, two possibilities: 273 * 274 * - the guest is in EL2, and we need to fully emulate ERET 275 * 276 * - the guest is in EL1, and we need to reinject the 277 * exception into the L1 hypervisor. 278 * 279 * If KVM ever traps ERET for its own use, we'll have to 280 * revisit this. 281 */ 282 if (is_hyp_ctxt(vcpu)) 283 kvm_emulate_nested_eret(vcpu); 284 else 285 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 286 287 return 1; 288 } 289 290 static int handle_svc(struct kvm_vcpu *vcpu) 291 { 292 /* 293 * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a 294 * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so 295 * we should only have to deal with a 64 bit exception. 296 */ 297 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 298 return 1; 299 } 300 301 static exit_handle_fn arm_exit_handlers[] = { 302 [0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec, 303 [ESR_ELx_EC_WFx] = kvm_handle_wfx, 304 [ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32, 305 [ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64, 306 [ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32, 307 [ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store, 308 [ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id, 309 [ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64, 310 [ESR_ELx_EC_HVC32] = handle_hvc, 311 [ESR_ELx_EC_SMC32] = handle_smc, 312 [ESR_ELx_EC_HVC64] = handle_hvc, 313 [ESR_ELx_EC_SMC64] = handle_smc, 314 [ESR_ELx_EC_SVC64] = handle_svc, 315 [ESR_ELx_EC_SYS64] = kvm_handle_sys_reg, 316 [ESR_ELx_EC_SVE] = handle_sve, 317 [ESR_ELx_EC_ERET] = kvm_handle_eret, 318 [ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort, 319 [ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort, 320 [ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug, 321 [ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug, 322 [ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug, 323 [ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug, 324 [ESR_ELx_EC_BRK64] = kvm_handle_guest_debug, 325 [ESR_ELx_EC_FP_ASIMD] = kvm_handle_fpasimd, 326 [ESR_ELx_EC_PAC] = kvm_handle_ptrauth, 327 }; 328 329 static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu) 330 { 331 u64 esr = kvm_vcpu_get_esr(vcpu); 332 u8 esr_ec = ESR_ELx_EC(esr); 333 334 return arm_exit_handlers[esr_ec]; 335 } 336 337 /* 338 * We may be single-stepping an emulated instruction. If the emulation 339 * has been completed in the kernel, we can return to userspace with a 340 * KVM_EXIT_DEBUG, otherwise userspace needs to complete its 341 * emulation first. 342 */ 343 static int handle_trap_exceptions(struct kvm_vcpu *vcpu) 344 { 345 int handled; 346 347 /* 348 * See ARM ARM B1.14.1: "Hyp traps on instructions 349 * that fail their condition code check" 350 */ 351 if (!kvm_condition_valid(vcpu)) { 352 kvm_incr_pc(vcpu); 353 handled = 1; 354 } else { 355 exit_handle_fn exit_handler; 356 357 exit_handler = kvm_get_exit_handler(vcpu); 358 handled = exit_handler(vcpu); 359 } 360 361 return handled; 362 } 363 364 /* 365 * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on 366 * proper exit to userspace. 367 */ 368 int handle_exit(struct kvm_vcpu *vcpu, int exception_index) 369 { 370 struct kvm_run *run = vcpu->run; 371 372 if (ARM_SERROR_PENDING(exception_index)) { 373 /* 374 * The SError is handled by handle_exit_early(). If the guest 375 * survives it will re-execute the original instruction. 376 */ 377 return 1; 378 } 379 380 exception_index = ARM_EXCEPTION_CODE(exception_index); 381 382 switch (exception_index) { 383 case ARM_EXCEPTION_IRQ: 384 return 1; 385 case ARM_EXCEPTION_EL1_SERROR: 386 return 1; 387 case ARM_EXCEPTION_TRAP: 388 return handle_trap_exceptions(vcpu); 389 case ARM_EXCEPTION_HYP_GONE: 390 /* 391 * EL2 has been reset to the hyp-stub. This happens when a guest 392 * is pre-emptied by kvm_reboot()'s shutdown call. 393 */ 394 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 395 return 0; 396 case ARM_EXCEPTION_IL: 397 /* 398 * We attempted an illegal exception return. Guest state must 399 * have been corrupted somehow. Give up. 400 */ 401 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 402 return -EINVAL; 403 default: 404 kvm_pr_unimpl("Unsupported exception type: %d", 405 exception_index); 406 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 407 return 0; 408 } 409 } 410 411 /* For exit types that need handling before we can be preempted */ 412 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index) 413 { 414 if (ARM_SERROR_PENDING(exception_index)) { 415 if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) { 416 u64 disr = kvm_vcpu_get_disr(vcpu); 417 418 kvm_handle_guest_serror(vcpu, disr_to_esr(disr)); 419 } else { 420 kvm_inject_vabt(vcpu); 421 } 422 423 return; 424 } 425 426 exception_index = ARM_EXCEPTION_CODE(exception_index); 427 428 if (exception_index == ARM_EXCEPTION_EL1_SERROR) 429 kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu)); 430 } 431 432 static void print_nvhe_hyp_panic(const char *name, u64 panic_addr) 433 { 434 kvm_err("nVHE hyp %s at: [<%016llx>] %pB!\n", name, panic_addr, 435 (void *)(panic_addr + kaslr_offset())); 436 } 437 438 static void kvm_nvhe_report_cfi_failure(u64 panic_addr) 439 { 440 print_nvhe_hyp_panic("CFI failure", panic_addr); 441 442 if (IS_ENABLED(CONFIG_CFI_PERMISSIVE)) 443 kvm_err(" (CONFIG_CFI_PERMISSIVE ignored for hyp failures)\n"); 444 } 445 446 void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr, 447 u64 elr_virt, u64 elr_phys, 448 u64 par, uintptr_t vcpu, 449 u64 far, u64 hpfar) { 450 u64 elr_in_kimg = __phys_to_kimg(elr_phys); 451 u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt; 452 u64 mode = spsr & PSR_MODE_MASK; 453 u64 panic_addr = elr_virt + hyp_offset; 454 455 if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) { 456 kvm_err("Invalid host exception to nVHE hyp!\n"); 457 } else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 && 458 esr_brk_comment(esr) == BUG_BRK_IMM) { 459 const char *file = NULL; 460 unsigned int line = 0; 461 462 /* All hyp bugs, including warnings, are treated as fatal. */ 463 if (!is_protected_kvm_enabled() || 464 IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) { 465 struct bug_entry *bug = find_bug(elr_in_kimg); 466 467 if (bug) 468 bug_get_file_line(bug, &file, &line); 469 } 470 471 if (file) 472 kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line); 473 else 474 print_nvhe_hyp_panic("BUG", panic_addr); 475 } else if (IS_ENABLED(CONFIG_CFI_CLANG) && esr_is_cfi_brk(esr)) { 476 kvm_nvhe_report_cfi_failure(panic_addr); 477 } else { 478 print_nvhe_hyp_panic("panic", panic_addr); 479 } 480 481 /* Dump the nVHE hypervisor backtrace */ 482 kvm_nvhe_dump_backtrace(hyp_offset); 483 484 /* 485 * Hyp has panicked and we're going to handle that by panicking the 486 * kernel. The kernel offset will be revealed in the panic so we're 487 * also safe to reveal the hyp offset as a debugging aid for translating 488 * hyp VAs to vmlinux addresses. 489 */ 490 kvm_err("Hyp Offset: 0x%llx\n", hyp_offset); 491 492 panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n", 493 spsr, elr_virt, esr, far, hpfar, par, vcpu); 494 } 495