xref: /linux/arch/arm64/kvm/handle_exit.c (revision 170aafe35cb98e0f3fbacb446ea86389fbce22ea)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/handle_exit.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 
14 #include <asm/esr.h>
15 #include <asm/exception.h>
16 #include <asm/kvm_asm.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_mmu.h>
19 #include <asm/kvm_nested.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/stacktrace/nvhe.h>
22 #include <asm/traps.h>
23 
24 #include <kvm/arm_hypercalls.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_handle_exit.h"
28 
29 typedef int (*exit_handle_fn)(struct kvm_vcpu *);
30 
31 static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
32 {
33 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
34 		kvm_inject_vabt(vcpu);
35 }
36 
37 static int handle_hvc(struct kvm_vcpu *vcpu)
38 {
39 	trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
40 			    kvm_vcpu_hvc_get_imm(vcpu));
41 	vcpu->stat.hvc_exit_stat++;
42 
43 	/* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
44 	if (vcpu_has_nv(vcpu)) {
45 		if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
46 			kvm_inject_undefined(vcpu);
47 		else
48 			kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
49 
50 		return 1;
51 	}
52 
53 	return kvm_smccc_call_handler(vcpu);
54 }
55 
56 static int handle_smc(struct kvm_vcpu *vcpu)
57 {
58 	/*
59 	 * Forward this trapped smc instruction to the virtual EL2 if
60 	 * the guest has asked for it.
61 	 */
62 	if (forward_smc_trap(vcpu))
63 		return 1;
64 
65 	/*
66 	 * "If an SMC instruction executed at Non-secure EL1 is
67 	 * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
68 	 * Trap exception, not a Secure Monitor Call exception [...]"
69 	 *
70 	 * We need to advance the PC after the trap, as it would
71 	 * otherwise return to the same address. Furthermore, pre-incrementing
72 	 * the PC before potentially exiting to userspace maintains the same
73 	 * abstraction for both SMCs and HVCs.
74 	 */
75 	kvm_incr_pc(vcpu);
76 
77 	/*
78 	 * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
79 	 * "SMC and HVC immediate value".
80 	 */
81 	if (kvm_vcpu_hvc_get_imm(vcpu)) {
82 		vcpu_set_reg(vcpu, 0, ~0UL);
83 		return 1;
84 	}
85 
86 	/*
87 	 * If imm is zero then it is likely an SMCCC call.
88 	 *
89 	 * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
90 	 * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
91 	 * being treated as UNDEFINED.
92 	 */
93 	return kvm_smccc_call_handler(vcpu);
94 }
95 
96 /*
97  * This handles the cases where the system does not support FP/ASIMD or when
98  * we are running nested virtualization and the guest hypervisor is trapping
99  * FP/ASIMD accesses by its guest guest.
100  *
101  * All other handling of guest vs. host FP/ASIMD register state is handled in
102  * fixup_guest_exit().
103  */
104 static int kvm_handle_fpasimd(struct kvm_vcpu *vcpu)
105 {
106 	if (guest_hyp_fpsimd_traps_enabled(vcpu))
107 		return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
108 
109 	/* This is the case when the system doesn't support FP/ASIMD. */
110 	kvm_inject_undefined(vcpu);
111 	return 1;
112 }
113 
114 /**
115  * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
116  *		    instruction executed by a guest
117  *
118  * @vcpu:	the vcpu pointer
119  *
120  * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
121  * decides to.
122  * WFI: Simply call kvm_vcpu_halt(), which will halt execution of
123  * world-switches and schedule other host processes until there is an
124  * incoming IRQ or FIQ to the VM.
125  * WFIT: Same as WFI, with a timed wakeup implemented as a background timer
126  *
127  * WF{I,E}T can immediately return if the deadline has already expired.
128  */
129 static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
130 {
131 	u64 esr = kvm_vcpu_get_esr(vcpu);
132 
133 	if (esr & ESR_ELx_WFx_ISS_WFE) {
134 		trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
135 		vcpu->stat.wfe_exit_stat++;
136 	} else {
137 		trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
138 		vcpu->stat.wfi_exit_stat++;
139 	}
140 
141 	if (esr & ESR_ELx_WFx_ISS_WFxT) {
142 		if (esr & ESR_ELx_WFx_ISS_RV) {
143 			u64 val, now;
144 
145 			now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
146 			val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
147 
148 			if (now >= val)
149 				goto out;
150 		} else {
151 			/* Treat WFxT as WFx if RN is invalid */
152 			esr &= ~ESR_ELx_WFx_ISS_WFxT;
153 		}
154 	}
155 
156 	if (esr & ESR_ELx_WFx_ISS_WFE) {
157 		kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
158 	} else {
159 		if (esr & ESR_ELx_WFx_ISS_WFxT)
160 			vcpu_set_flag(vcpu, IN_WFIT);
161 
162 		kvm_vcpu_wfi(vcpu);
163 	}
164 out:
165 	kvm_incr_pc(vcpu);
166 
167 	return 1;
168 }
169 
170 /**
171  * kvm_handle_guest_debug - handle a debug exception instruction
172  *
173  * @vcpu:	the vcpu pointer
174  *
175  * We route all debug exceptions through the same handler. If both the
176  * guest and host are using the same debug facilities it will be up to
177  * userspace to re-inject the correct exception for guest delivery.
178  *
179  * @return: 0 (while setting vcpu->run->exit_reason)
180  */
181 static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
182 {
183 	struct kvm_run *run = vcpu->run;
184 	u64 esr = kvm_vcpu_get_esr(vcpu);
185 
186 	run->exit_reason = KVM_EXIT_DEBUG;
187 	run->debug.arch.hsr = lower_32_bits(esr);
188 	run->debug.arch.hsr_high = upper_32_bits(esr);
189 	run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
190 
191 	switch (ESR_ELx_EC(esr)) {
192 	case ESR_ELx_EC_WATCHPT_LOW:
193 		run->debug.arch.far = vcpu->arch.fault.far_el2;
194 		break;
195 	case ESR_ELx_EC_SOFTSTP_LOW:
196 		vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
197 		break;
198 	}
199 
200 	return 0;
201 }
202 
203 static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
204 {
205 	u64 esr = kvm_vcpu_get_esr(vcpu);
206 
207 	kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
208 		      esr, esr_get_class_string(esr));
209 
210 	kvm_inject_undefined(vcpu);
211 	return 1;
212 }
213 
214 /*
215  * Guest access to SVE registers should be routed to this handler only
216  * when the system doesn't support SVE.
217  */
218 static int handle_sve(struct kvm_vcpu *vcpu)
219 {
220 	if (guest_hyp_sve_traps_enabled(vcpu))
221 		return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
222 
223 	kvm_inject_undefined(vcpu);
224 	return 1;
225 }
226 
227 /*
228  * Two possibilities to handle a trapping ptrauth instruction:
229  *
230  * - Guest usage of a ptrauth instruction (which the guest EL1 did not
231  *   turn into a NOP). If we get here, it is because we didn't enable
232  *   ptrauth for the guest. This results in an UNDEF, as it isn't
233  *   supposed to use ptrauth without being told it could.
234  *
235  * - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for
236  *   which we reinject the exception into L1.
237  *
238  * Anything else is an emulation bug (hence the WARN_ON + UNDEF).
239  */
240 static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
241 {
242 	if (!vcpu_has_ptrauth(vcpu)) {
243 		kvm_inject_undefined(vcpu);
244 		return 1;
245 	}
246 
247 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
248 		kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
249 		return 1;
250 	}
251 
252 	/* Really shouldn't be here! */
253 	WARN_ON_ONCE(1);
254 	kvm_inject_undefined(vcpu);
255 	return 1;
256 }
257 
258 static int kvm_handle_eret(struct kvm_vcpu *vcpu)
259 {
260 	if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) &&
261 	    !vcpu_has_ptrauth(vcpu))
262 		return kvm_handle_ptrauth(vcpu);
263 
264 	/*
265 	 * If we got here, two possibilities:
266 	 *
267 	 * - the guest is in EL2, and we need to fully emulate ERET
268 	 *
269 	 * - the guest is in EL1, and we need to reinject the
270          *   exception into the L1 hypervisor.
271 	 *
272 	 * If KVM ever traps ERET for its own use, we'll have to
273 	 * revisit this.
274 	 */
275 	if (is_hyp_ctxt(vcpu))
276 		kvm_emulate_nested_eret(vcpu);
277 	else
278 		kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
279 
280 	return 1;
281 }
282 
283 static int handle_svc(struct kvm_vcpu *vcpu)
284 {
285 	/*
286 	 * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
287 	 * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
288 	 * we should only have to deal with a 64 bit exception.
289 	 */
290 	kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
291 	return 1;
292 }
293 
294 static exit_handle_fn arm_exit_handlers[] = {
295 	[0 ... ESR_ELx_EC_MAX]	= kvm_handle_unknown_ec,
296 	[ESR_ELx_EC_WFx]	= kvm_handle_wfx,
297 	[ESR_ELx_EC_CP15_32]	= kvm_handle_cp15_32,
298 	[ESR_ELx_EC_CP15_64]	= kvm_handle_cp15_64,
299 	[ESR_ELx_EC_CP14_MR]	= kvm_handle_cp14_32,
300 	[ESR_ELx_EC_CP14_LS]	= kvm_handle_cp14_load_store,
301 	[ESR_ELx_EC_CP10_ID]	= kvm_handle_cp10_id,
302 	[ESR_ELx_EC_CP14_64]	= kvm_handle_cp14_64,
303 	[ESR_ELx_EC_HVC32]	= handle_hvc,
304 	[ESR_ELx_EC_SMC32]	= handle_smc,
305 	[ESR_ELx_EC_HVC64]	= handle_hvc,
306 	[ESR_ELx_EC_SMC64]	= handle_smc,
307 	[ESR_ELx_EC_SVC64]	= handle_svc,
308 	[ESR_ELx_EC_SYS64]	= kvm_handle_sys_reg,
309 	[ESR_ELx_EC_SVE]	= handle_sve,
310 	[ESR_ELx_EC_ERET]	= kvm_handle_eret,
311 	[ESR_ELx_EC_IABT_LOW]	= kvm_handle_guest_abort,
312 	[ESR_ELx_EC_DABT_LOW]	= kvm_handle_guest_abort,
313 	[ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
314 	[ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
315 	[ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
316 	[ESR_ELx_EC_BKPT32]	= kvm_handle_guest_debug,
317 	[ESR_ELx_EC_BRK64]	= kvm_handle_guest_debug,
318 	[ESR_ELx_EC_FP_ASIMD]	= kvm_handle_fpasimd,
319 	[ESR_ELx_EC_PAC]	= kvm_handle_ptrauth,
320 };
321 
322 static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
323 {
324 	u64 esr = kvm_vcpu_get_esr(vcpu);
325 	u8 esr_ec = ESR_ELx_EC(esr);
326 
327 	return arm_exit_handlers[esr_ec];
328 }
329 
330 /*
331  * We may be single-stepping an emulated instruction. If the emulation
332  * has been completed in the kernel, we can return to userspace with a
333  * KVM_EXIT_DEBUG, otherwise userspace needs to complete its
334  * emulation first.
335  */
336 static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
337 {
338 	int handled;
339 
340 	/*
341 	 * See ARM ARM B1.14.1: "Hyp traps on instructions
342 	 * that fail their condition code check"
343 	 */
344 	if (!kvm_condition_valid(vcpu)) {
345 		kvm_incr_pc(vcpu);
346 		handled = 1;
347 	} else {
348 		exit_handle_fn exit_handler;
349 
350 		exit_handler = kvm_get_exit_handler(vcpu);
351 		handled = exit_handler(vcpu);
352 	}
353 
354 	return handled;
355 }
356 
357 /*
358  * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
359  * proper exit to userspace.
360  */
361 int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
362 {
363 	struct kvm_run *run = vcpu->run;
364 
365 	if (ARM_SERROR_PENDING(exception_index)) {
366 		/*
367 		 * The SError is handled by handle_exit_early(). If the guest
368 		 * survives it will re-execute the original instruction.
369 		 */
370 		return 1;
371 	}
372 
373 	exception_index = ARM_EXCEPTION_CODE(exception_index);
374 
375 	switch (exception_index) {
376 	case ARM_EXCEPTION_IRQ:
377 		return 1;
378 	case ARM_EXCEPTION_EL1_SERROR:
379 		return 1;
380 	case ARM_EXCEPTION_TRAP:
381 		return handle_trap_exceptions(vcpu);
382 	case ARM_EXCEPTION_HYP_GONE:
383 		/*
384 		 * EL2 has been reset to the hyp-stub. This happens when a guest
385 		 * is pre-emptied by kvm_reboot()'s shutdown call.
386 		 */
387 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
388 		return 0;
389 	case ARM_EXCEPTION_IL:
390 		/*
391 		 * We attempted an illegal exception return.  Guest state must
392 		 * have been corrupted somehow.  Give up.
393 		 */
394 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
395 		return -EINVAL;
396 	default:
397 		kvm_pr_unimpl("Unsupported exception type: %d",
398 			      exception_index);
399 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
400 		return 0;
401 	}
402 }
403 
404 /* For exit types that need handling before we can be preempted */
405 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
406 {
407 	if (ARM_SERROR_PENDING(exception_index)) {
408 		if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
409 			u64 disr = kvm_vcpu_get_disr(vcpu);
410 
411 			kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
412 		} else {
413 			kvm_inject_vabt(vcpu);
414 		}
415 
416 		return;
417 	}
418 
419 	exception_index = ARM_EXCEPTION_CODE(exception_index);
420 
421 	if (exception_index == ARM_EXCEPTION_EL1_SERROR)
422 		kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
423 }
424 
425 static void print_nvhe_hyp_panic(const char *name, u64 panic_addr)
426 {
427 	kvm_err("nVHE hyp %s at: [<%016llx>] %pB!\n", name, panic_addr,
428 		(void *)(panic_addr + kaslr_offset()));
429 }
430 
431 static void kvm_nvhe_report_cfi_failure(u64 panic_addr)
432 {
433 	print_nvhe_hyp_panic("CFI failure", panic_addr);
434 
435 	if (IS_ENABLED(CONFIG_CFI_PERMISSIVE))
436 		kvm_err(" (CONFIG_CFI_PERMISSIVE ignored for hyp failures)\n");
437 }
438 
439 void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
440 					      u64 elr_virt, u64 elr_phys,
441 					      u64 par, uintptr_t vcpu,
442 					      u64 far, u64 hpfar) {
443 	u64 elr_in_kimg = __phys_to_kimg(elr_phys);
444 	u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
445 	u64 mode = spsr & PSR_MODE_MASK;
446 	u64 panic_addr = elr_virt + hyp_offset;
447 
448 	if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
449 		kvm_err("Invalid host exception to nVHE hyp!\n");
450 	} else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
451 		   esr_brk_comment(esr) == BUG_BRK_IMM) {
452 		const char *file = NULL;
453 		unsigned int line = 0;
454 
455 		/* All hyp bugs, including warnings, are treated as fatal. */
456 		if (!is_protected_kvm_enabled() ||
457 		    IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
458 			struct bug_entry *bug = find_bug(elr_in_kimg);
459 
460 			if (bug)
461 				bug_get_file_line(bug, &file, &line);
462 		}
463 
464 		if (file)
465 			kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
466 		else
467 			print_nvhe_hyp_panic("BUG", panic_addr);
468 	} else if (IS_ENABLED(CONFIG_CFI_CLANG) && esr_is_cfi_brk(esr)) {
469 		kvm_nvhe_report_cfi_failure(panic_addr);
470 	} else {
471 		print_nvhe_hyp_panic("panic", panic_addr);
472 	}
473 
474 	/* Dump the nVHE hypervisor backtrace */
475 	kvm_nvhe_dump_backtrace(hyp_offset);
476 
477 	/*
478 	 * Hyp has panicked and we're going to handle that by panicking the
479 	 * kernel. The kernel offset will be revealed in the panic so we're
480 	 * also safe to reveal the hyp offset as a debugging aid for translating
481 	 * hyp VAs to vmlinux addresses.
482 	 */
483 	kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
484 
485 	panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
486 	      spsr, elr_virt, esr, far, hpfar, par, vcpu);
487 }
488