xref: /linux/arch/arm64/kvm/guest.c (revision e3966940559d52aa1800a008dcfeec218dd31f88)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_hypercalls.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_nested.h>
28 #include <asm/sigcontext.h>
29 
30 #include "trace.h"
31 
32 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
33 	KVM_GENERIC_VM_STATS()
34 };
35 
36 const struct kvm_stats_header kvm_vm_stats_header = {
37 	.name_size = KVM_STATS_NAME_SIZE,
38 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
39 	.id_offset =  sizeof(struct kvm_stats_header),
40 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
41 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
42 		       sizeof(kvm_vm_stats_desc),
43 };
44 
45 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
46 	KVM_GENERIC_VCPU_STATS(),
47 	STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
48 	STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
49 	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
50 	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
51 	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
52 	STATS_DESC_COUNTER(VCPU, signal_exits),
53 	STATS_DESC_COUNTER(VCPU, exits)
54 };
55 
56 const struct kvm_stats_header kvm_vcpu_stats_header = {
57 	.name_size = KVM_STATS_NAME_SIZE,
58 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
59 	.id_offset = sizeof(struct kvm_stats_header),
60 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
61 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
62 		       sizeof(kvm_vcpu_stats_desc),
63 };
64 
65 static bool core_reg_offset_is_vreg(u64 off)
66 {
67 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
68 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
69 }
70 
71 static u64 core_reg_offset_from_id(u64 id)
72 {
73 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
74 }
75 
76 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
77 {
78 	int size;
79 
80 	switch (off) {
81 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
82 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
83 	case KVM_REG_ARM_CORE_REG(regs.sp):
84 	case KVM_REG_ARM_CORE_REG(regs.pc):
85 	case KVM_REG_ARM_CORE_REG(regs.pstate):
86 	case KVM_REG_ARM_CORE_REG(sp_el1):
87 	case KVM_REG_ARM_CORE_REG(elr_el1):
88 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
89 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
90 		size = sizeof(__u64);
91 		break;
92 
93 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
94 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
95 		size = sizeof(__uint128_t);
96 		break;
97 
98 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
99 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
100 		size = sizeof(__u32);
101 		break;
102 
103 	default:
104 		return -EINVAL;
105 	}
106 
107 	if (!IS_ALIGNED(off, size / sizeof(__u32)))
108 		return -EINVAL;
109 
110 	/*
111 	 * The KVM_REG_ARM64_SVE regs must be used instead of
112 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
113 	 * SVE-enabled vcpus:
114 	 */
115 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
116 		return -EINVAL;
117 
118 	return size;
119 }
120 
121 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
122 {
123 	u64 off = core_reg_offset_from_id(reg->id);
124 	int size = core_reg_size_from_offset(vcpu, off);
125 
126 	if (size < 0)
127 		return NULL;
128 
129 	if (KVM_REG_SIZE(reg->id) != size)
130 		return NULL;
131 
132 	switch (off) {
133 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
134 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
135 		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
136 		off /= 2;
137 		return &vcpu->arch.ctxt.regs.regs[off];
138 
139 	case KVM_REG_ARM_CORE_REG(regs.sp):
140 		return &vcpu->arch.ctxt.regs.sp;
141 
142 	case KVM_REG_ARM_CORE_REG(regs.pc):
143 		return &vcpu->arch.ctxt.regs.pc;
144 
145 	case KVM_REG_ARM_CORE_REG(regs.pstate):
146 		return &vcpu->arch.ctxt.regs.pstate;
147 
148 	case KVM_REG_ARM_CORE_REG(sp_el1):
149 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
150 
151 	case KVM_REG_ARM_CORE_REG(elr_el1):
152 		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
153 
154 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
155 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
156 
157 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
158 		return &vcpu->arch.ctxt.spsr_abt;
159 
160 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
161 		return &vcpu->arch.ctxt.spsr_und;
162 
163 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
164 		return &vcpu->arch.ctxt.spsr_irq;
165 
166 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
167 		return &vcpu->arch.ctxt.spsr_fiq;
168 
169 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
170 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
171 		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
172 		off /= 4;
173 		return &vcpu->arch.ctxt.fp_regs.vregs[off];
174 
175 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
176 		return &vcpu->arch.ctxt.fp_regs.fpsr;
177 
178 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
179 		return &vcpu->arch.ctxt.fp_regs.fpcr;
180 
181 	default:
182 		return NULL;
183 	}
184 }
185 
186 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
187 {
188 	/*
189 	 * Because the kvm_regs structure is a mix of 32, 64 and
190 	 * 128bit fields, we index it as if it was a 32bit
191 	 * array. Hence below, nr_regs is the number of entries, and
192 	 * off the index in the "array".
193 	 */
194 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
195 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
196 	void *addr;
197 	u32 off;
198 
199 	/* Our ID is an index into the kvm_regs struct. */
200 	off = core_reg_offset_from_id(reg->id);
201 	if (off >= nr_regs ||
202 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
203 		return -ENOENT;
204 
205 	addr = core_reg_addr(vcpu, reg);
206 	if (!addr)
207 		return -EINVAL;
208 
209 	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
210 		return -EFAULT;
211 
212 	return 0;
213 }
214 
215 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
216 {
217 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
218 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
219 	__uint128_t tmp;
220 	void *valp = &tmp, *addr;
221 	u64 off;
222 	int err = 0;
223 
224 	/* Our ID is an index into the kvm_regs struct. */
225 	off = core_reg_offset_from_id(reg->id);
226 	if (off >= nr_regs ||
227 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
228 		return -ENOENT;
229 
230 	addr = core_reg_addr(vcpu, reg);
231 	if (!addr)
232 		return -EINVAL;
233 
234 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
235 		return -EINVAL;
236 
237 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
238 		err = -EFAULT;
239 		goto out;
240 	}
241 
242 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
243 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
244 		switch (mode) {
245 		case PSR_AA32_MODE_USR:
246 			if (!kvm_supports_32bit_el0())
247 				return -EINVAL;
248 			break;
249 		case PSR_AA32_MODE_FIQ:
250 		case PSR_AA32_MODE_IRQ:
251 		case PSR_AA32_MODE_SVC:
252 		case PSR_AA32_MODE_ABT:
253 		case PSR_AA32_MODE_UND:
254 		case PSR_AA32_MODE_SYS:
255 			if (!vcpu_el1_is_32bit(vcpu))
256 				return -EINVAL;
257 			break;
258 		case PSR_MODE_EL2h:
259 		case PSR_MODE_EL2t:
260 			if (!vcpu_has_nv(vcpu))
261 				return -EINVAL;
262 			fallthrough;
263 		case PSR_MODE_EL0t:
264 		case PSR_MODE_EL1t:
265 		case PSR_MODE_EL1h:
266 			if (vcpu_el1_is_32bit(vcpu))
267 				return -EINVAL;
268 			break;
269 		default:
270 			err = -EINVAL;
271 			goto out;
272 		}
273 	}
274 
275 	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
276 
277 	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
278 		int i, nr_reg;
279 
280 		switch (*vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK) {
281 		/*
282 		 * Either we are dealing with user mode, and only the
283 		 * first 15 registers (+ PC) must be narrowed to 32bit.
284 		 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
285 		 */
286 		case PSR_AA32_MODE_USR:
287 		case PSR_AA32_MODE_SYS:
288 			nr_reg = 15;
289 			break;
290 
291 		/*
292 		 * Otherwise, this is a privileged mode, and *all* the
293 		 * registers must be narrowed to 32bit.
294 		 */
295 		default:
296 			nr_reg = 31;
297 			break;
298 		}
299 
300 		for (i = 0; i < nr_reg; i++)
301 			vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
302 
303 		*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
304 	}
305 out:
306 	return err;
307 }
308 
309 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
310 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
311 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
312 
313 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
314 {
315 	unsigned int max_vq, vq;
316 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
317 
318 	if (!vcpu_has_sve(vcpu))
319 		return -ENOENT;
320 
321 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
322 		return -EINVAL;
323 
324 	memset(vqs, 0, sizeof(vqs));
325 
326 	max_vq = vcpu_sve_max_vq(vcpu);
327 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
328 		if (sve_vq_available(vq))
329 			vqs[vq_word(vq)] |= vq_mask(vq);
330 
331 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
332 		return -EFAULT;
333 
334 	return 0;
335 }
336 
337 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
338 {
339 	unsigned int max_vq, vq;
340 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
341 
342 	if (!vcpu_has_sve(vcpu))
343 		return -ENOENT;
344 
345 	if (kvm_arm_vcpu_sve_finalized(vcpu))
346 		return -EPERM; /* too late! */
347 
348 	if (WARN_ON(vcpu->arch.sve_state))
349 		return -EINVAL;
350 
351 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
352 		return -EFAULT;
353 
354 	max_vq = 0;
355 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
356 		if (vq_present(vqs, vq))
357 			max_vq = vq;
358 
359 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
360 		return -EINVAL;
361 
362 	/*
363 	 * Vector lengths supported by the host can't currently be
364 	 * hidden from the guest individually: instead we can only set a
365 	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
366 	 * lengths match the set requested exactly up to the requested
367 	 * maximum:
368 	 */
369 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
370 		if (vq_present(vqs, vq) != sve_vq_available(vq))
371 			return -EINVAL;
372 
373 	/* Can't run with no vector lengths at all: */
374 	if (max_vq < SVE_VQ_MIN)
375 		return -EINVAL;
376 
377 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
378 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
379 
380 	return 0;
381 }
382 
383 #define SVE_REG_SLICE_SHIFT	0
384 #define SVE_REG_SLICE_BITS	5
385 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
386 #define SVE_REG_ID_BITS		5
387 
388 #define SVE_REG_SLICE_MASK					\
389 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
390 		SVE_REG_SLICE_SHIFT)
391 #define SVE_REG_ID_MASK							\
392 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
393 
394 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
395 
396 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
397 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
398 
399 /*
400  * Number of register slices required to cover each whole SVE register.
401  * NOTE: Only the first slice every exists, for now.
402  * If you are tempted to modify this, you must also rework sve_reg_to_region()
403  * to match:
404  */
405 #define vcpu_sve_slices(vcpu) 1
406 
407 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
408 struct sve_state_reg_region {
409 	unsigned int koffset;	/* offset into sve_state in kernel memory */
410 	unsigned int klen;	/* length in kernel memory */
411 	unsigned int upad;	/* extra trailing padding in user memory */
412 };
413 
414 /*
415  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
416  * register copy
417  */
418 static int sve_reg_to_region(struct sve_state_reg_region *region,
419 			     struct kvm_vcpu *vcpu,
420 			     const struct kvm_one_reg *reg)
421 {
422 	/* reg ID ranges for Z- registers */
423 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
424 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
425 						       SVE_NUM_SLICES - 1);
426 
427 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
428 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
429 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
430 
431 	unsigned int vq;
432 	unsigned int reg_num;
433 
434 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
435 	unsigned int maxlen; /* Maximum permitted length */
436 
437 	size_t sve_state_size;
438 
439 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
440 							SVE_NUM_SLICES - 1);
441 
442 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
443 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
444 
445 	/* Verify that we match the UAPI header: */
446 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
447 
448 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
449 
450 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
451 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
452 			return -ENOENT;
453 
454 		vq = vcpu_sve_max_vq(vcpu);
455 
456 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
457 				SVE_SIG_REGS_OFFSET;
458 		reqlen = KVM_SVE_ZREG_SIZE;
459 		maxlen = SVE_SIG_ZREG_SIZE(vq);
460 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
461 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
462 			return -ENOENT;
463 
464 		vq = vcpu_sve_max_vq(vcpu);
465 
466 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
467 				SVE_SIG_REGS_OFFSET;
468 		reqlen = KVM_SVE_PREG_SIZE;
469 		maxlen = SVE_SIG_PREG_SIZE(vq);
470 	} else {
471 		return -EINVAL;
472 	}
473 
474 	sve_state_size = vcpu_sve_state_size(vcpu);
475 	if (WARN_ON(!sve_state_size))
476 		return -EINVAL;
477 
478 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
479 	region->klen = min(maxlen, reqlen);
480 	region->upad = reqlen - region->klen;
481 
482 	return 0;
483 }
484 
485 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
486 {
487 	int ret;
488 	struct sve_state_reg_region region;
489 	char __user *uptr = (char __user *)reg->addr;
490 
491 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
492 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
493 		return get_sve_vls(vcpu, reg);
494 
495 	/* Try to interpret reg ID as an architectural SVE register... */
496 	ret = sve_reg_to_region(&region, vcpu, reg);
497 	if (ret)
498 		return ret;
499 
500 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
501 		return -EPERM;
502 
503 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
504 			 region.klen) ||
505 	    clear_user(uptr + region.klen, region.upad))
506 		return -EFAULT;
507 
508 	return 0;
509 }
510 
511 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
512 {
513 	int ret;
514 	struct sve_state_reg_region region;
515 	const char __user *uptr = (const char __user *)reg->addr;
516 
517 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
518 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
519 		return set_sve_vls(vcpu, reg);
520 
521 	/* Try to interpret reg ID as an architectural SVE register... */
522 	ret = sve_reg_to_region(&region, vcpu, reg);
523 	if (ret)
524 		return ret;
525 
526 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
527 		return -EPERM;
528 
529 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
530 			   region.klen))
531 		return -EFAULT;
532 
533 	return 0;
534 }
535 
536 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
537 {
538 	return -EINVAL;
539 }
540 
541 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
542 {
543 	return -EINVAL;
544 }
545 
546 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
547 				 u64 __user *uindices)
548 {
549 	unsigned int i;
550 	int n = 0;
551 
552 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
553 		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
554 		int size = core_reg_size_from_offset(vcpu, i);
555 
556 		if (size < 0)
557 			continue;
558 
559 		switch (size) {
560 		case sizeof(__u32):
561 			reg |= KVM_REG_SIZE_U32;
562 			break;
563 
564 		case sizeof(__u64):
565 			reg |= KVM_REG_SIZE_U64;
566 			break;
567 
568 		case sizeof(__uint128_t):
569 			reg |= KVM_REG_SIZE_U128;
570 			break;
571 
572 		default:
573 			WARN_ON(1);
574 			continue;
575 		}
576 
577 		if (uindices) {
578 			if (put_user(reg, uindices))
579 				return -EFAULT;
580 			uindices++;
581 		}
582 
583 		n++;
584 	}
585 
586 	return n;
587 }
588 
589 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
590 {
591 	return copy_core_reg_indices(vcpu, NULL);
592 }
593 
594 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
595 {
596 	const unsigned int slices = vcpu_sve_slices(vcpu);
597 
598 	if (!vcpu_has_sve(vcpu))
599 		return 0;
600 
601 	/* Policed by KVM_GET_REG_LIST: */
602 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
603 
604 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
605 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
606 }
607 
608 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
609 				u64 __user *uindices)
610 {
611 	const unsigned int slices = vcpu_sve_slices(vcpu);
612 	u64 reg;
613 	unsigned int i, n;
614 	int num_regs = 0;
615 
616 	if (!vcpu_has_sve(vcpu))
617 		return 0;
618 
619 	/* Policed by KVM_GET_REG_LIST: */
620 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
621 
622 	/*
623 	 * Enumerate this first, so that userspace can save/restore in
624 	 * the order reported by KVM_GET_REG_LIST:
625 	 */
626 	reg = KVM_REG_ARM64_SVE_VLS;
627 	if (put_user(reg, uindices++))
628 		return -EFAULT;
629 	++num_regs;
630 
631 	for (i = 0; i < slices; i++) {
632 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
633 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
634 			if (put_user(reg, uindices++))
635 				return -EFAULT;
636 			num_regs++;
637 		}
638 
639 		for (n = 0; n < SVE_NUM_PREGS; n++) {
640 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
641 			if (put_user(reg, uindices++))
642 				return -EFAULT;
643 			num_regs++;
644 		}
645 
646 		reg = KVM_REG_ARM64_SVE_FFR(i);
647 		if (put_user(reg, uindices++))
648 			return -EFAULT;
649 		num_regs++;
650 	}
651 
652 	return num_regs;
653 }
654 
655 /**
656  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
657  * @vcpu: the vCPU pointer
658  *
659  * This is for all registers.
660  */
661 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
662 {
663 	unsigned long res = 0;
664 
665 	res += num_core_regs(vcpu);
666 	res += num_sve_regs(vcpu);
667 	res += kvm_arm_num_sys_reg_descs(vcpu);
668 	res += kvm_arm_get_fw_num_regs(vcpu);
669 
670 	return res;
671 }
672 
673 /**
674  * kvm_arm_copy_reg_indices - get indices of all registers.
675  * @vcpu: the vCPU pointer
676  * @uindices: register list to copy
677  *
678  * We do core registers right here, then we append system regs.
679  */
680 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
681 {
682 	int ret;
683 
684 	ret = copy_core_reg_indices(vcpu, uindices);
685 	if (ret < 0)
686 		return ret;
687 	uindices += ret;
688 
689 	ret = copy_sve_reg_indices(vcpu, uindices);
690 	if (ret < 0)
691 		return ret;
692 	uindices += ret;
693 
694 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
695 	if (ret < 0)
696 		return ret;
697 	uindices += kvm_arm_get_fw_num_regs(vcpu);
698 
699 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
700 }
701 
702 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
703 {
704 	/* We currently use nothing arch-specific in upper 32 bits */
705 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
706 		return -EINVAL;
707 
708 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
709 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
710 	case KVM_REG_ARM_FW:
711 	case KVM_REG_ARM_FW_FEAT_BMAP:
712 		return kvm_arm_get_fw_reg(vcpu, reg);
713 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
714 	}
715 
716 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
717 }
718 
719 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
720 {
721 	/* We currently use nothing arch-specific in upper 32 bits */
722 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
723 		return -EINVAL;
724 
725 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
726 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
727 	case KVM_REG_ARM_FW:
728 	case KVM_REG_ARM_FW_FEAT_BMAP:
729 		return kvm_arm_set_fw_reg(vcpu, reg);
730 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
731 	}
732 
733 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
734 }
735 
736 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
737 				  struct kvm_sregs *sregs)
738 {
739 	return -EINVAL;
740 }
741 
742 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
743 				  struct kvm_sregs *sregs)
744 {
745 	return -EINVAL;
746 }
747 
748 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
749 			      struct kvm_vcpu_events *events)
750 {
751 	events->exception.serror_has_esr = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
752 	events->exception.serror_pending = (vcpu->arch.hcr_el2 & HCR_VSE) ||
753 					   vcpu_get_flag(vcpu, NESTED_SERROR_PENDING);
754 
755 	if (events->exception.serror_pending && events->exception.serror_has_esr)
756 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
757 
758 	/*
759 	 * We never return a pending ext_dabt here because we deliver it to
760 	 * the virtual CPU directly when setting the event and it's no longer
761 	 * 'pending' at this point.
762 	 */
763 
764 	return 0;
765 }
766 
767 static void commit_pending_events(struct kvm_vcpu *vcpu)
768 {
769 	if (!vcpu_get_flag(vcpu, PENDING_EXCEPTION))
770 		return;
771 
772 	/*
773 	 * Reset the MMIO emulation state to avoid stepping PC after emulating
774 	 * the exception entry.
775 	 */
776 	vcpu->mmio_needed = false;
777 	kvm_call_hyp(__kvm_adjust_pc, vcpu);
778 }
779 
780 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
781 			      struct kvm_vcpu_events *events)
782 {
783 	bool serror_pending = events->exception.serror_pending;
784 	bool has_esr = events->exception.serror_has_esr;
785 	bool ext_dabt_pending = events->exception.ext_dabt_pending;
786 	u64 esr = events->exception.serror_esr;
787 	int ret = 0;
788 
789 	/*
790 	 * Immediately commit the pending SEA to the vCPU's architectural
791 	 * state which is necessary since we do not return a pending SEA
792 	 * to userspace via KVM_GET_VCPU_EVENTS.
793 	 */
794 	if (ext_dabt_pending) {
795 		ret = kvm_inject_sea_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
796 		commit_pending_events(vcpu);
797 	}
798 
799 	if (ret < 0)
800 		return ret;
801 
802 	if (!serror_pending)
803 		return 0;
804 
805 	if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && has_esr)
806 		return -EINVAL;
807 
808 	if (has_esr && (esr & ~ESR_ELx_ISS_MASK))
809 		return -EINVAL;
810 
811 	if (has_esr)
812 		ret = kvm_inject_serror_esr(vcpu, esr);
813 	else
814 		ret = kvm_inject_serror(vcpu);
815 
816 	/*
817 	 * We could've decided that the SError is due for immediate software
818 	 * injection; commit the exception in case userspace decides it wants
819 	 * to inject more exceptions for some strange reason.
820 	 */
821 	commit_pending_events(vcpu);
822 	return (ret < 0) ? ret : 0;
823 }
824 
825 u32 __attribute_const__ kvm_target_cpu(void)
826 {
827 	unsigned long implementor = read_cpuid_implementor();
828 	unsigned long part_number = read_cpuid_part_number();
829 
830 	switch (implementor) {
831 	case ARM_CPU_IMP_ARM:
832 		switch (part_number) {
833 		case ARM_CPU_PART_AEM_V8:
834 			return KVM_ARM_TARGET_AEM_V8;
835 		case ARM_CPU_PART_FOUNDATION:
836 			return KVM_ARM_TARGET_FOUNDATION_V8;
837 		case ARM_CPU_PART_CORTEX_A53:
838 			return KVM_ARM_TARGET_CORTEX_A53;
839 		case ARM_CPU_PART_CORTEX_A57:
840 			return KVM_ARM_TARGET_CORTEX_A57;
841 		}
842 		break;
843 	case ARM_CPU_IMP_APM:
844 		switch (part_number) {
845 		case APM_CPU_PART_XGENE:
846 			return KVM_ARM_TARGET_XGENE_POTENZA;
847 		}
848 		break;
849 	}
850 
851 	/* Return a default generic target */
852 	return KVM_ARM_TARGET_GENERIC_V8;
853 }
854 
855 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
856 {
857 	return -EINVAL;
858 }
859 
860 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
861 {
862 	return -EINVAL;
863 }
864 
865 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
866 				  struct kvm_translation *tr)
867 {
868 	return -EINVAL;
869 }
870 
871 /**
872  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
873  * @vcpu: the vCPU pointer
874  * @dbg: the ioctl data buffer
875  *
876  * This sets up and enables the VM for guest debugging. Userspace
877  * passes in a control flag to enable different debug types and
878  * potentially other architecture specific information in the rest of
879  * the structure.
880  */
881 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
882 					struct kvm_guest_debug *dbg)
883 {
884 	trace_kvm_set_guest_debug(vcpu, dbg->control);
885 
886 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK)
887 		return -EINVAL;
888 
889 	if (!(dbg->control & KVM_GUESTDBG_ENABLE)) {
890 		vcpu->guest_debug = 0;
891 		vcpu_clear_flag(vcpu, HOST_SS_ACTIVE_PENDING);
892 		return 0;
893 	}
894 
895 	vcpu->guest_debug = dbg->control;
896 
897 	/* Hardware assisted Break and Watch points */
898 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW)
899 		vcpu->arch.external_debug_state = dbg->arch;
900 
901 	return 0;
902 }
903 
904 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
905 			       struct kvm_device_attr *attr)
906 {
907 	int ret;
908 
909 	switch (attr->group) {
910 	case KVM_ARM_VCPU_PMU_V3_CTRL:
911 		mutex_lock(&vcpu->kvm->arch.config_lock);
912 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
913 		mutex_unlock(&vcpu->kvm->arch.config_lock);
914 		break;
915 	case KVM_ARM_VCPU_TIMER_CTRL:
916 		ret = kvm_arm_timer_set_attr(vcpu, attr);
917 		break;
918 	case KVM_ARM_VCPU_PVTIME_CTRL:
919 		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
920 		break;
921 	default:
922 		ret = -ENXIO;
923 		break;
924 	}
925 
926 	return ret;
927 }
928 
929 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
930 			       struct kvm_device_attr *attr)
931 {
932 	int ret;
933 
934 	switch (attr->group) {
935 	case KVM_ARM_VCPU_PMU_V3_CTRL:
936 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
937 		break;
938 	case KVM_ARM_VCPU_TIMER_CTRL:
939 		ret = kvm_arm_timer_get_attr(vcpu, attr);
940 		break;
941 	case KVM_ARM_VCPU_PVTIME_CTRL:
942 		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
943 		break;
944 	default:
945 		ret = -ENXIO;
946 		break;
947 	}
948 
949 	return ret;
950 }
951 
952 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
953 			       struct kvm_device_attr *attr)
954 {
955 	int ret;
956 
957 	switch (attr->group) {
958 	case KVM_ARM_VCPU_PMU_V3_CTRL:
959 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
960 		break;
961 	case KVM_ARM_VCPU_TIMER_CTRL:
962 		ret = kvm_arm_timer_has_attr(vcpu, attr);
963 		break;
964 	case KVM_ARM_VCPU_PVTIME_CTRL:
965 		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
966 		break;
967 	default:
968 		ret = -ENXIO;
969 		break;
970 	}
971 
972 	return ret;
973 }
974 
975 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
976 			       struct kvm_arm_copy_mte_tags *copy_tags)
977 {
978 	gpa_t guest_ipa = copy_tags->guest_ipa;
979 	size_t length = copy_tags->length;
980 	void __user *tags = copy_tags->addr;
981 	gpa_t gfn;
982 	bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
983 	int ret = 0;
984 
985 	if (!kvm_has_mte(kvm))
986 		return -EINVAL;
987 
988 	if (copy_tags->reserved[0] || copy_tags->reserved[1])
989 		return -EINVAL;
990 
991 	if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
992 		return -EINVAL;
993 
994 	if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
995 		return -EINVAL;
996 
997 	/* Lengths above INT_MAX cannot be represented in the return value */
998 	if (length > INT_MAX)
999 		return -EINVAL;
1000 
1001 	gfn = gpa_to_gfn(guest_ipa);
1002 
1003 	mutex_lock(&kvm->slots_lock);
1004 
1005 	if (write && atomic_read(&kvm->nr_memslots_dirty_logging)) {
1006 		ret = -EBUSY;
1007 		goto out;
1008 	}
1009 
1010 	while (length > 0) {
1011 		struct page *page = __gfn_to_page(kvm, gfn, write);
1012 		void *maddr;
1013 		unsigned long num_tags;
1014 		struct folio *folio;
1015 
1016 		if (!page) {
1017 			ret = -EFAULT;
1018 			goto out;
1019 		}
1020 
1021 		if (!pfn_to_online_page(page_to_pfn(page))) {
1022 			/* Reject ZONE_DEVICE memory */
1023 			kvm_release_page_unused(page);
1024 			ret = -EFAULT;
1025 			goto out;
1026 		}
1027 		folio = page_folio(page);
1028 		maddr = page_address(page);
1029 
1030 		if (!write) {
1031 			if ((folio_test_hugetlb(folio) &&
1032 			     folio_test_hugetlb_mte_tagged(folio)) ||
1033 			     page_mte_tagged(page))
1034 				num_tags = mte_copy_tags_to_user(tags, maddr,
1035 							MTE_GRANULES_PER_PAGE);
1036 			else
1037 				/* No tags in memory, so write zeros */
1038 				num_tags = MTE_GRANULES_PER_PAGE -
1039 					clear_user(tags, MTE_GRANULES_PER_PAGE);
1040 			kvm_release_page_clean(page);
1041 		} else {
1042 			/*
1043 			 * Only locking to serialise with a concurrent
1044 			 * __set_ptes() in the VMM but still overriding the
1045 			 * tags, hence ignoring the return value.
1046 			 */
1047 			if (folio_test_hugetlb(folio))
1048 				folio_try_hugetlb_mte_tagging(folio);
1049 			else
1050 				try_page_mte_tagging(page);
1051 			num_tags = mte_copy_tags_from_user(maddr, tags,
1052 							MTE_GRANULES_PER_PAGE);
1053 
1054 			/* uaccess failed, don't leave stale tags */
1055 			if (num_tags != MTE_GRANULES_PER_PAGE)
1056 				mte_clear_page_tags(maddr);
1057 			if (folio_test_hugetlb(folio))
1058 				folio_set_hugetlb_mte_tagged(folio);
1059 			else
1060 				set_page_mte_tagged(page);
1061 
1062 			kvm_release_page_dirty(page);
1063 		}
1064 
1065 		if (num_tags != MTE_GRANULES_PER_PAGE) {
1066 			ret = -EFAULT;
1067 			goto out;
1068 		}
1069 
1070 		gfn++;
1071 		tags += num_tags;
1072 		length -= PAGE_SIZE;
1073 	}
1074 
1075 out:
1076 	mutex_unlock(&kvm->slots_lock);
1077 	/* If some data has been copied report the number of bytes copied */
1078 	if (length != copy_tags->length)
1079 		return copy_tags->length - length;
1080 	return ret;
1081 }
1082