1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/kvm/guest.c: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #include <linux/bits.h> 12 #include <linux/errno.h> 13 #include <linux/err.h> 14 #include <linux/nospec.h> 15 #include <linux/kvm_host.h> 16 #include <linux/module.h> 17 #include <linux/stddef.h> 18 #include <linux/string.h> 19 #include <linux/vmalloc.h> 20 #include <linux/fs.h> 21 #include <kvm/arm_hypercalls.h> 22 #include <asm/cputype.h> 23 #include <linux/uaccess.h> 24 #include <asm/fpsimd.h> 25 #include <asm/kvm.h> 26 #include <asm/kvm_emulate.h> 27 #include <asm/kvm_nested.h> 28 #include <asm/sigcontext.h> 29 30 #include "trace.h" 31 32 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 33 KVM_GENERIC_VM_STATS() 34 }; 35 36 const struct kvm_stats_header kvm_vm_stats_header = { 37 .name_size = KVM_STATS_NAME_SIZE, 38 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 39 .id_offset = sizeof(struct kvm_stats_header), 40 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 41 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 42 sizeof(kvm_vm_stats_desc), 43 }; 44 45 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 46 KVM_GENERIC_VCPU_STATS(), 47 STATS_DESC_COUNTER(VCPU, hvc_exit_stat), 48 STATS_DESC_COUNTER(VCPU, wfe_exit_stat), 49 STATS_DESC_COUNTER(VCPU, wfi_exit_stat), 50 STATS_DESC_COUNTER(VCPU, mmio_exit_user), 51 STATS_DESC_COUNTER(VCPU, mmio_exit_kernel), 52 STATS_DESC_COUNTER(VCPU, signal_exits), 53 STATS_DESC_COUNTER(VCPU, exits) 54 }; 55 56 const struct kvm_stats_header kvm_vcpu_stats_header = { 57 .name_size = KVM_STATS_NAME_SIZE, 58 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 59 .id_offset = sizeof(struct kvm_stats_header), 60 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 61 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 62 sizeof(kvm_vcpu_stats_desc), 63 }; 64 65 static bool core_reg_offset_is_vreg(u64 off) 66 { 67 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) && 68 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr); 69 } 70 71 static u64 core_reg_offset_from_id(u64 id) 72 { 73 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE); 74 } 75 76 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off) 77 { 78 int size; 79 80 switch (off) { 81 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... 82 KVM_REG_ARM_CORE_REG(regs.regs[30]): 83 case KVM_REG_ARM_CORE_REG(regs.sp): 84 case KVM_REG_ARM_CORE_REG(regs.pc): 85 case KVM_REG_ARM_CORE_REG(regs.pstate): 86 case KVM_REG_ARM_CORE_REG(sp_el1): 87 case KVM_REG_ARM_CORE_REG(elr_el1): 88 case KVM_REG_ARM_CORE_REG(spsr[0]) ... 89 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]): 90 size = sizeof(__u64); 91 break; 92 93 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... 94 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): 95 size = sizeof(__uint128_t); 96 break; 97 98 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): 99 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): 100 size = sizeof(__u32); 101 break; 102 103 default: 104 return -EINVAL; 105 } 106 107 if (!IS_ALIGNED(off, size / sizeof(__u32))) 108 return -EINVAL; 109 110 /* 111 * The KVM_REG_ARM64_SVE regs must be used instead of 112 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on 113 * SVE-enabled vcpus: 114 */ 115 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off)) 116 return -EINVAL; 117 118 return size; 119 } 120 121 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 122 { 123 u64 off = core_reg_offset_from_id(reg->id); 124 int size = core_reg_size_from_offset(vcpu, off); 125 126 if (size < 0) 127 return NULL; 128 129 if (KVM_REG_SIZE(reg->id) != size) 130 return NULL; 131 132 switch (off) { 133 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... 134 KVM_REG_ARM_CORE_REG(regs.regs[30]): 135 off -= KVM_REG_ARM_CORE_REG(regs.regs[0]); 136 off /= 2; 137 return &vcpu->arch.ctxt.regs.regs[off]; 138 139 case KVM_REG_ARM_CORE_REG(regs.sp): 140 return &vcpu->arch.ctxt.regs.sp; 141 142 case KVM_REG_ARM_CORE_REG(regs.pc): 143 return &vcpu->arch.ctxt.regs.pc; 144 145 case KVM_REG_ARM_CORE_REG(regs.pstate): 146 return &vcpu->arch.ctxt.regs.pstate; 147 148 case KVM_REG_ARM_CORE_REG(sp_el1): 149 return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1); 150 151 case KVM_REG_ARM_CORE_REG(elr_el1): 152 return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1); 153 154 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]): 155 return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1); 156 157 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]): 158 return &vcpu->arch.ctxt.spsr_abt; 159 160 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]): 161 return &vcpu->arch.ctxt.spsr_und; 162 163 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]): 164 return &vcpu->arch.ctxt.spsr_irq; 165 166 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]): 167 return &vcpu->arch.ctxt.spsr_fiq; 168 169 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... 170 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): 171 off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]); 172 off /= 4; 173 return &vcpu->arch.ctxt.fp_regs.vregs[off]; 174 175 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): 176 return &vcpu->arch.ctxt.fp_regs.fpsr; 177 178 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): 179 return &vcpu->arch.ctxt.fp_regs.fpcr; 180 181 default: 182 return NULL; 183 } 184 } 185 186 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 187 { 188 /* 189 * Because the kvm_regs structure is a mix of 32, 64 and 190 * 128bit fields, we index it as if it was a 32bit 191 * array. Hence below, nr_regs is the number of entries, and 192 * off the index in the "array". 193 */ 194 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; 195 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32); 196 void *addr; 197 u32 off; 198 199 /* Our ID is an index into the kvm_regs struct. */ 200 off = core_reg_offset_from_id(reg->id); 201 if (off >= nr_regs || 202 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) 203 return -ENOENT; 204 205 addr = core_reg_addr(vcpu, reg); 206 if (!addr) 207 return -EINVAL; 208 209 if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id))) 210 return -EFAULT; 211 212 return 0; 213 } 214 215 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 216 { 217 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; 218 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32); 219 __uint128_t tmp; 220 void *valp = &tmp, *addr; 221 u64 off; 222 int err = 0; 223 224 /* Our ID is an index into the kvm_regs struct. */ 225 off = core_reg_offset_from_id(reg->id); 226 if (off >= nr_regs || 227 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) 228 return -ENOENT; 229 230 addr = core_reg_addr(vcpu, reg); 231 if (!addr) 232 return -EINVAL; 233 234 if (KVM_REG_SIZE(reg->id) > sizeof(tmp)) 235 return -EINVAL; 236 237 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) { 238 err = -EFAULT; 239 goto out; 240 } 241 242 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) { 243 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK; 244 switch (mode) { 245 case PSR_AA32_MODE_USR: 246 if (!kvm_supports_32bit_el0()) 247 return -EINVAL; 248 break; 249 case PSR_AA32_MODE_FIQ: 250 case PSR_AA32_MODE_IRQ: 251 case PSR_AA32_MODE_SVC: 252 case PSR_AA32_MODE_ABT: 253 case PSR_AA32_MODE_UND: 254 if (!vcpu_el1_is_32bit(vcpu)) 255 return -EINVAL; 256 break; 257 case PSR_MODE_EL2h: 258 case PSR_MODE_EL2t: 259 if (!vcpu_has_nv(vcpu)) 260 return -EINVAL; 261 fallthrough; 262 case PSR_MODE_EL0t: 263 case PSR_MODE_EL1t: 264 case PSR_MODE_EL1h: 265 if (vcpu_el1_is_32bit(vcpu)) 266 return -EINVAL; 267 break; 268 default: 269 err = -EINVAL; 270 goto out; 271 } 272 } 273 274 memcpy(addr, valp, KVM_REG_SIZE(reg->id)); 275 276 if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) { 277 int i, nr_reg; 278 279 switch (*vcpu_cpsr(vcpu)) { 280 /* 281 * Either we are dealing with user mode, and only the 282 * first 15 registers (+ PC) must be narrowed to 32bit. 283 * AArch32 r0-r14 conveniently map to AArch64 x0-x14. 284 */ 285 case PSR_AA32_MODE_USR: 286 case PSR_AA32_MODE_SYS: 287 nr_reg = 15; 288 break; 289 290 /* 291 * Otherwise, this is a privileged mode, and *all* the 292 * registers must be narrowed to 32bit. 293 */ 294 default: 295 nr_reg = 31; 296 break; 297 } 298 299 for (i = 0; i < nr_reg; i++) 300 vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i)); 301 302 *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu); 303 } 304 out: 305 return err; 306 } 307 308 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64) 309 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64) 310 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq))) 311 312 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 313 { 314 unsigned int max_vq, vq; 315 u64 vqs[KVM_ARM64_SVE_VLS_WORDS]; 316 317 if (!vcpu_has_sve(vcpu)) 318 return -ENOENT; 319 320 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl))) 321 return -EINVAL; 322 323 memset(vqs, 0, sizeof(vqs)); 324 325 max_vq = vcpu_sve_max_vq(vcpu); 326 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq) 327 if (sve_vq_available(vq)) 328 vqs[vq_word(vq)] |= vq_mask(vq); 329 330 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs))) 331 return -EFAULT; 332 333 return 0; 334 } 335 336 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 337 { 338 unsigned int max_vq, vq; 339 u64 vqs[KVM_ARM64_SVE_VLS_WORDS]; 340 341 if (!vcpu_has_sve(vcpu)) 342 return -ENOENT; 343 344 if (kvm_arm_vcpu_sve_finalized(vcpu)) 345 return -EPERM; /* too late! */ 346 347 if (WARN_ON(vcpu->arch.sve_state)) 348 return -EINVAL; 349 350 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs))) 351 return -EFAULT; 352 353 max_vq = 0; 354 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq) 355 if (vq_present(vqs, vq)) 356 max_vq = vq; 357 358 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl)) 359 return -EINVAL; 360 361 /* 362 * Vector lengths supported by the host can't currently be 363 * hidden from the guest individually: instead we can only set a 364 * maximum via ZCR_EL2.LEN. So, make sure the available vector 365 * lengths match the set requested exactly up to the requested 366 * maximum: 367 */ 368 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq) 369 if (vq_present(vqs, vq) != sve_vq_available(vq)) 370 return -EINVAL; 371 372 /* Can't run with no vector lengths at all: */ 373 if (max_vq < SVE_VQ_MIN) 374 return -EINVAL; 375 376 /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */ 377 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq); 378 379 return 0; 380 } 381 382 #define SVE_REG_SLICE_SHIFT 0 383 #define SVE_REG_SLICE_BITS 5 384 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS) 385 #define SVE_REG_ID_BITS 5 386 387 #define SVE_REG_SLICE_MASK \ 388 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \ 389 SVE_REG_SLICE_SHIFT) 390 #define SVE_REG_ID_MASK \ 391 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT) 392 393 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS) 394 395 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0)) 396 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0)) 397 398 /* 399 * Number of register slices required to cover each whole SVE register. 400 * NOTE: Only the first slice every exists, for now. 401 * If you are tempted to modify this, you must also rework sve_reg_to_region() 402 * to match: 403 */ 404 #define vcpu_sve_slices(vcpu) 1 405 406 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */ 407 struct sve_state_reg_region { 408 unsigned int koffset; /* offset into sve_state in kernel memory */ 409 unsigned int klen; /* length in kernel memory */ 410 unsigned int upad; /* extra trailing padding in user memory */ 411 }; 412 413 /* 414 * Validate SVE register ID and get sanitised bounds for user/kernel SVE 415 * register copy 416 */ 417 static int sve_reg_to_region(struct sve_state_reg_region *region, 418 struct kvm_vcpu *vcpu, 419 const struct kvm_one_reg *reg) 420 { 421 /* reg ID ranges for Z- registers */ 422 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0); 423 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1, 424 SVE_NUM_SLICES - 1); 425 426 /* reg ID ranges for P- registers and FFR (which are contiguous) */ 427 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0); 428 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1); 429 430 unsigned int vq; 431 unsigned int reg_num; 432 433 unsigned int reqoffset, reqlen; /* User-requested offset and length */ 434 unsigned int maxlen; /* Maximum permitted length */ 435 436 size_t sve_state_size; 437 438 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1, 439 SVE_NUM_SLICES - 1); 440 441 /* Verify that the P-regs and FFR really do have contiguous IDs: */ 442 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1); 443 444 /* Verify that we match the UAPI header: */ 445 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES); 446 447 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT; 448 449 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) { 450 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0) 451 return -ENOENT; 452 453 vq = vcpu_sve_max_vq(vcpu); 454 455 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) - 456 SVE_SIG_REGS_OFFSET; 457 reqlen = KVM_SVE_ZREG_SIZE; 458 maxlen = SVE_SIG_ZREG_SIZE(vq); 459 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) { 460 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0) 461 return -ENOENT; 462 463 vq = vcpu_sve_max_vq(vcpu); 464 465 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) - 466 SVE_SIG_REGS_OFFSET; 467 reqlen = KVM_SVE_PREG_SIZE; 468 maxlen = SVE_SIG_PREG_SIZE(vq); 469 } else { 470 return -EINVAL; 471 } 472 473 sve_state_size = vcpu_sve_state_size(vcpu); 474 if (WARN_ON(!sve_state_size)) 475 return -EINVAL; 476 477 region->koffset = array_index_nospec(reqoffset, sve_state_size); 478 region->klen = min(maxlen, reqlen); 479 region->upad = reqlen - region->klen; 480 481 return 0; 482 } 483 484 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 485 { 486 int ret; 487 struct sve_state_reg_region region; 488 char __user *uptr = (char __user *)reg->addr; 489 490 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */ 491 if (reg->id == KVM_REG_ARM64_SVE_VLS) 492 return get_sve_vls(vcpu, reg); 493 494 /* Try to interpret reg ID as an architectural SVE register... */ 495 ret = sve_reg_to_region(®ion, vcpu, reg); 496 if (ret) 497 return ret; 498 499 if (!kvm_arm_vcpu_sve_finalized(vcpu)) 500 return -EPERM; 501 502 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset, 503 region.klen) || 504 clear_user(uptr + region.klen, region.upad)) 505 return -EFAULT; 506 507 return 0; 508 } 509 510 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 511 { 512 int ret; 513 struct sve_state_reg_region region; 514 const char __user *uptr = (const char __user *)reg->addr; 515 516 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */ 517 if (reg->id == KVM_REG_ARM64_SVE_VLS) 518 return set_sve_vls(vcpu, reg); 519 520 /* Try to interpret reg ID as an architectural SVE register... */ 521 ret = sve_reg_to_region(®ion, vcpu, reg); 522 if (ret) 523 return ret; 524 525 if (!kvm_arm_vcpu_sve_finalized(vcpu)) 526 return -EPERM; 527 528 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr, 529 region.klen)) 530 return -EFAULT; 531 532 return 0; 533 } 534 535 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 536 { 537 return -EINVAL; 538 } 539 540 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 541 { 542 return -EINVAL; 543 } 544 545 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu, 546 u64 __user *uindices) 547 { 548 unsigned int i; 549 int n = 0; 550 551 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) { 552 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i; 553 int size = core_reg_size_from_offset(vcpu, i); 554 555 if (size < 0) 556 continue; 557 558 switch (size) { 559 case sizeof(__u32): 560 reg |= KVM_REG_SIZE_U32; 561 break; 562 563 case sizeof(__u64): 564 reg |= KVM_REG_SIZE_U64; 565 break; 566 567 case sizeof(__uint128_t): 568 reg |= KVM_REG_SIZE_U128; 569 break; 570 571 default: 572 WARN_ON(1); 573 continue; 574 } 575 576 if (uindices) { 577 if (put_user(reg, uindices)) 578 return -EFAULT; 579 uindices++; 580 } 581 582 n++; 583 } 584 585 return n; 586 } 587 588 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu) 589 { 590 return copy_core_reg_indices(vcpu, NULL); 591 } 592 593 static const u64 timer_reg_list[] = { 594 KVM_REG_ARM_TIMER_CTL, 595 KVM_REG_ARM_TIMER_CNT, 596 KVM_REG_ARM_TIMER_CVAL, 597 KVM_REG_ARM_PTIMER_CTL, 598 KVM_REG_ARM_PTIMER_CNT, 599 KVM_REG_ARM_PTIMER_CVAL, 600 }; 601 602 #define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list) 603 604 static bool is_timer_reg(u64 index) 605 { 606 switch (index) { 607 case KVM_REG_ARM_TIMER_CTL: 608 case KVM_REG_ARM_TIMER_CNT: 609 case KVM_REG_ARM_TIMER_CVAL: 610 case KVM_REG_ARM_PTIMER_CTL: 611 case KVM_REG_ARM_PTIMER_CNT: 612 case KVM_REG_ARM_PTIMER_CVAL: 613 return true; 614 } 615 return false; 616 } 617 618 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 619 { 620 for (int i = 0; i < NUM_TIMER_REGS; i++) { 621 if (put_user(timer_reg_list[i], uindices)) 622 return -EFAULT; 623 uindices++; 624 } 625 626 return 0; 627 } 628 629 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 630 { 631 void __user *uaddr = (void __user *)(long)reg->addr; 632 u64 val; 633 int ret; 634 635 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)); 636 if (ret != 0) 637 return -EFAULT; 638 639 return kvm_arm_timer_set_reg(vcpu, reg->id, val); 640 } 641 642 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 643 { 644 void __user *uaddr = (void __user *)(long)reg->addr; 645 u64 val; 646 647 val = kvm_arm_timer_get_reg(vcpu, reg->id); 648 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0; 649 } 650 651 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu) 652 { 653 const unsigned int slices = vcpu_sve_slices(vcpu); 654 655 if (!vcpu_has_sve(vcpu)) 656 return 0; 657 658 /* Policed by KVM_GET_REG_LIST: */ 659 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu)); 660 661 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */) 662 + 1; /* KVM_REG_ARM64_SVE_VLS */ 663 } 664 665 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu, 666 u64 __user *uindices) 667 { 668 const unsigned int slices = vcpu_sve_slices(vcpu); 669 u64 reg; 670 unsigned int i, n; 671 int num_regs = 0; 672 673 if (!vcpu_has_sve(vcpu)) 674 return 0; 675 676 /* Policed by KVM_GET_REG_LIST: */ 677 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu)); 678 679 /* 680 * Enumerate this first, so that userspace can save/restore in 681 * the order reported by KVM_GET_REG_LIST: 682 */ 683 reg = KVM_REG_ARM64_SVE_VLS; 684 if (put_user(reg, uindices++)) 685 return -EFAULT; 686 ++num_regs; 687 688 for (i = 0; i < slices; i++) { 689 for (n = 0; n < SVE_NUM_ZREGS; n++) { 690 reg = KVM_REG_ARM64_SVE_ZREG(n, i); 691 if (put_user(reg, uindices++)) 692 return -EFAULT; 693 num_regs++; 694 } 695 696 for (n = 0; n < SVE_NUM_PREGS; n++) { 697 reg = KVM_REG_ARM64_SVE_PREG(n, i); 698 if (put_user(reg, uindices++)) 699 return -EFAULT; 700 num_regs++; 701 } 702 703 reg = KVM_REG_ARM64_SVE_FFR(i); 704 if (put_user(reg, uindices++)) 705 return -EFAULT; 706 num_regs++; 707 } 708 709 return num_regs; 710 } 711 712 /** 713 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG 714 * @vcpu: the vCPU pointer 715 * 716 * This is for all registers. 717 */ 718 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu) 719 { 720 unsigned long res = 0; 721 722 res += num_core_regs(vcpu); 723 res += num_sve_regs(vcpu); 724 res += kvm_arm_num_sys_reg_descs(vcpu); 725 res += kvm_arm_get_fw_num_regs(vcpu); 726 res += NUM_TIMER_REGS; 727 728 return res; 729 } 730 731 /** 732 * kvm_arm_copy_reg_indices - get indices of all registers. 733 * @vcpu: the vCPU pointer 734 * @uindices: register list to copy 735 * 736 * We do core registers right here, then we append system regs. 737 */ 738 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 739 { 740 int ret; 741 742 ret = copy_core_reg_indices(vcpu, uindices); 743 if (ret < 0) 744 return ret; 745 uindices += ret; 746 747 ret = copy_sve_reg_indices(vcpu, uindices); 748 if (ret < 0) 749 return ret; 750 uindices += ret; 751 752 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices); 753 if (ret < 0) 754 return ret; 755 uindices += kvm_arm_get_fw_num_regs(vcpu); 756 757 ret = copy_timer_indices(vcpu, uindices); 758 if (ret < 0) 759 return ret; 760 uindices += NUM_TIMER_REGS; 761 762 return kvm_arm_copy_sys_reg_indices(vcpu, uindices); 763 } 764 765 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 766 { 767 /* We currently use nothing arch-specific in upper 32 bits */ 768 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) 769 return -EINVAL; 770 771 switch (reg->id & KVM_REG_ARM_COPROC_MASK) { 772 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg); 773 case KVM_REG_ARM_FW: 774 case KVM_REG_ARM_FW_FEAT_BMAP: 775 return kvm_arm_get_fw_reg(vcpu, reg); 776 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg); 777 } 778 779 if (is_timer_reg(reg->id)) 780 return get_timer_reg(vcpu, reg); 781 782 return kvm_arm_sys_reg_get_reg(vcpu, reg); 783 } 784 785 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 786 { 787 /* We currently use nothing arch-specific in upper 32 bits */ 788 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) 789 return -EINVAL; 790 791 switch (reg->id & KVM_REG_ARM_COPROC_MASK) { 792 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg); 793 case KVM_REG_ARM_FW: 794 case KVM_REG_ARM_FW_FEAT_BMAP: 795 return kvm_arm_set_fw_reg(vcpu, reg); 796 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg); 797 } 798 799 if (is_timer_reg(reg->id)) 800 return set_timer_reg(vcpu, reg); 801 802 return kvm_arm_sys_reg_set_reg(vcpu, reg); 803 } 804 805 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 806 struct kvm_sregs *sregs) 807 { 808 return -EINVAL; 809 } 810 811 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 812 struct kvm_sregs *sregs) 813 { 814 return -EINVAL; 815 } 816 817 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 818 struct kvm_vcpu_events *events) 819 { 820 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE); 821 events->exception.serror_has_esr = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 822 823 if (events->exception.serror_pending && events->exception.serror_has_esr) 824 events->exception.serror_esr = vcpu_get_vsesr(vcpu); 825 826 /* 827 * We never return a pending ext_dabt here because we deliver it to 828 * the virtual CPU directly when setting the event and it's no longer 829 * 'pending' at this point. 830 */ 831 832 return 0; 833 } 834 835 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 836 struct kvm_vcpu_events *events) 837 { 838 bool serror_pending = events->exception.serror_pending; 839 bool has_esr = events->exception.serror_has_esr; 840 bool ext_dabt_pending = events->exception.ext_dabt_pending; 841 842 if (serror_pending && has_esr) { 843 if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) 844 return -EINVAL; 845 846 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK)) 847 kvm_set_sei_esr(vcpu, events->exception.serror_esr); 848 else 849 return -EINVAL; 850 } else if (serror_pending) { 851 kvm_inject_vabt(vcpu); 852 } 853 854 if (ext_dabt_pending) 855 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 856 857 return 0; 858 } 859 860 u32 __attribute_const__ kvm_target_cpu(void) 861 { 862 unsigned long implementor = read_cpuid_implementor(); 863 unsigned long part_number = read_cpuid_part_number(); 864 865 switch (implementor) { 866 case ARM_CPU_IMP_ARM: 867 switch (part_number) { 868 case ARM_CPU_PART_AEM_V8: 869 return KVM_ARM_TARGET_AEM_V8; 870 case ARM_CPU_PART_FOUNDATION: 871 return KVM_ARM_TARGET_FOUNDATION_V8; 872 case ARM_CPU_PART_CORTEX_A53: 873 return KVM_ARM_TARGET_CORTEX_A53; 874 case ARM_CPU_PART_CORTEX_A57: 875 return KVM_ARM_TARGET_CORTEX_A57; 876 } 877 break; 878 case ARM_CPU_IMP_APM: 879 switch (part_number) { 880 case APM_CPU_PART_XGENE: 881 return KVM_ARM_TARGET_XGENE_POTENZA; 882 } 883 break; 884 } 885 886 /* Return a default generic target */ 887 return KVM_ARM_TARGET_GENERIC_V8; 888 } 889 890 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 891 { 892 return -EINVAL; 893 } 894 895 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 896 { 897 return -EINVAL; 898 } 899 900 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 901 struct kvm_translation *tr) 902 { 903 return -EINVAL; 904 } 905 906 /** 907 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging 908 * @vcpu: the vCPU pointer 909 * @dbg: the ioctl data buffer 910 * 911 * This sets up and enables the VM for guest debugging. Userspace 912 * passes in a control flag to enable different debug types and 913 * potentially other architecture specific information in the rest of 914 * the structure. 915 */ 916 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 917 struct kvm_guest_debug *dbg) 918 { 919 int ret = 0; 920 921 trace_kvm_set_guest_debug(vcpu, dbg->control); 922 923 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) { 924 ret = -EINVAL; 925 goto out; 926 } 927 928 if (dbg->control & KVM_GUESTDBG_ENABLE) { 929 vcpu->guest_debug = dbg->control; 930 931 /* Hardware assisted Break and Watch points */ 932 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) { 933 vcpu->arch.external_debug_state = dbg->arch; 934 } 935 936 } else { 937 /* If not enabled clear all flags */ 938 vcpu->guest_debug = 0; 939 vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING); 940 } 941 942 out: 943 return ret; 944 } 945 946 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 947 struct kvm_device_attr *attr) 948 { 949 int ret; 950 951 switch (attr->group) { 952 case KVM_ARM_VCPU_PMU_V3_CTRL: 953 mutex_lock(&vcpu->kvm->arch.config_lock); 954 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr); 955 mutex_unlock(&vcpu->kvm->arch.config_lock); 956 break; 957 case KVM_ARM_VCPU_TIMER_CTRL: 958 ret = kvm_arm_timer_set_attr(vcpu, attr); 959 break; 960 case KVM_ARM_VCPU_PVTIME_CTRL: 961 ret = kvm_arm_pvtime_set_attr(vcpu, attr); 962 break; 963 default: 964 ret = -ENXIO; 965 break; 966 } 967 968 return ret; 969 } 970 971 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 972 struct kvm_device_attr *attr) 973 { 974 int ret; 975 976 switch (attr->group) { 977 case KVM_ARM_VCPU_PMU_V3_CTRL: 978 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr); 979 break; 980 case KVM_ARM_VCPU_TIMER_CTRL: 981 ret = kvm_arm_timer_get_attr(vcpu, attr); 982 break; 983 case KVM_ARM_VCPU_PVTIME_CTRL: 984 ret = kvm_arm_pvtime_get_attr(vcpu, attr); 985 break; 986 default: 987 ret = -ENXIO; 988 break; 989 } 990 991 return ret; 992 } 993 994 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 995 struct kvm_device_attr *attr) 996 { 997 int ret; 998 999 switch (attr->group) { 1000 case KVM_ARM_VCPU_PMU_V3_CTRL: 1001 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr); 1002 break; 1003 case KVM_ARM_VCPU_TIMER_CTRL: 1004 ret = kvm_arm_timer_has_attr(vcpu, attr); 1005 break; 1006 case KVM_ARM_VCPU_PVTIME_CTRL: 1007 ret = kvm_arm_pvtime_has_attr(vcpu, attr); 1008 break; 1009 default: 1010 ret = -ENXIO; 1011 break; 1012 } 1013 1014 return ret; 1015 } 1016 1017 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, 1018 struct kvm_arm_copy_mte_tags *copy_tags) 1019 { 1020 gpa_t guest_ipa = copy_tags->guest_ipa; 1021 size_t length = copy_tags->length; 1022 void __user *tags = copy_tags->addr; 1023 gpa_t gfn; 1024 bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST); 1025 int ret = 0; 1026 1027 if (!kvm_has_mte(kvm)) 1028 return -EINVAL; 1029 1030 if (copy_tags->reserved[0] || copy_tags->reserved[1]) 1031 return -EINVAL; 1032 1033 if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST) 1034 return -EINVAL; 1035 1036 if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK) 1037 return -EINVAL; 1038 1039 /* Lengths above INT_MAX cannot be represented in the return value */ 1040 if (length > INT_MAX) 1041 return -EINVAL; 1042 1043 gfn = gpa_to_gfn(guest_ipa); 1044 1045 mutex_lock(&kvm->slots_lock); 1046 1047 while (length > 0) { 1048 kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL); 1049 void *maddr; 1050 unsigned long num_tags; 1051 struct page *page; 1052 1053 if (is_error_noslot_pfn(pfn)) { 1054 ret = -EFAULT; 1055 goto out; 1056 } 1057 1058 page = pfn_to_online_page(pfn); 1059 if (!page) { 1060 /* Reject ZONE_DEVICE memory */ 1061 ret = -EFAULT; 1062 goto out; 1063 } 1064 maddr = page_address(page); 1065 1066 if (!write) { 1067 if (page_mte_tagged(page)) 1068 num_tags = mte_copy_tags_to_user(tags, maddr, 1069 MTE_GRANULES_PER_PAGE); 1070 else 1071 /* No tags in memory, so write zeros */ 1072 num_tags = MTE_GRANULES_PER_PAGE - 1073 clear_user(tags, MTE_GRANULES_PER_PAGE); 1074 kvm_release_pfn_clean(pfn); 1075 } else { 1076 /* 1077 * Only locking to serialise with a concurrent 1078 * __set_ptes() in the VMM but still overriding the 1079 * tags, hence ignoring the return value. 1080 */ 1081 try_page_mte_tagging(page); 1082 num_tags = mte_copy_tags_from_user(maddr, tags, 1083 MTE_GRANULES_PER_PAGE); 1084 1085 /* uaccess failed, don't leave stale tags */ 1086 if (num_tags != MTE_GRANULES_PER_PAGE) 1087 mte_clear_page_tags(maddr); 1088 set_page_mte_tagged(page); 1089 1090 kvm_release_pfn_dirty(pfn); 1091 } 1092 1093 if (num_tags != MTE_GRANULES_PER_PAGE) { 1094 ret = -EFAULT; 1095 goto out; 1096 } 1097 1098 gfn++; 1099 tags += num_tags; 1100 length -= PAGE_SIZE; 1101 } 1102 1103 out: 1104 mutex_unlock(&kvm->slots_lock); 1105 /* If some data has been copied report the number of bytes copied */ 1106 if (length != copy_tags->length) 1107 return copy_tags->length - length; 1108 return ret; 1109 } 1110